Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Recent Advances in the Synthesis of Thiazole Ring: Mini Review

Author(s): Inas G. Shahin, Khaled O. Mohamed, Azza T. Taher, Abdelrahman S. Mayhoub and Asmaa E. Kassab*

Volume 20, Issue 3, 2023

Published on: 05 August, 2022

Page: [270 - 284] Pages: 15

DOI: 10.2174/1570193X19666220413104255

Price: $65

Abstract

The thiazole scaffold is an essential structural foundation in a plethora of pharmaceutical products having an extensive array of biological activities. Consequently, its synthesis has been extensively discussed in the literature. In this mini review, we have summarized the recent advances in thiazole synthesis, covering articles published between 2002 and 2021. We have reviewed and discussed various recent and novel routes for synthesizing compounds containing thiazole rings from various starting materials such as thiourea, thioamide, or thiosemicarbazone. Additionally, we have illustrated environmentally benign methods for thiazole synthesis. We hope that this review can help other researchers efficiently synthesize the thiazole ring.

Keywords: Thiazole, thiourea, thioamide, thiosemicarbazone, green, scaffold, anti-cancer.

Graphical Abstract
[1]
Hays, S.J.; Rice, M.J.; Ortwine, D.F.; Johnson, G.; Schwarz, R.D.; Boyd, D.K.; Copeland, L.F.; Vartanian, M.G.; Boxer, P.A. Substituted 2-benzothiazolamines as sodium flux inhibitors: Quantitative structure-activity relationships and anticonvulsant activity. J. Pharm. Sci., 1994, 83(10), 1425-1432.
[http://dx.doi.org/10.1002/jps.2600831013 ] [PMID: 7884664]
[2]
Hutchinson, I.; Bradshaw, T.D.; Matthews, C.S.; Stevens, M.F.G.; Westwell, A.D. Antitumour benzothiazoles. Part 20: 3′-cyano and 3′-alkynyl-substituted 2-(4′-aminophenyl)benzothiazoles as new potent and selective analogues. Bioorg. Med. Chem. Lett., 2003, 13(3), 471-474.
[http://dx.doi.org/10.1016/S0960-894X(02)00930-7 ] [PMID: 12565953]
[3]
Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.A.; Yousef, M.H. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur. J. Med. Chem., 2015, 102, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.005 ] [PMID: 26291036]
[4]
Shelke, S.H.; Mhaske, P.C.; Hande, P.; Bobade, V.D. Synthesis and antimicrobial activities of novel series of 1-((4-methyl-2-substituted thiazol-5-yl)methyleneamino)-2-substituted isothiourea derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2013, 188(9), 1262-1270.
[http://dx.doi.org/10.1080/10426507.2012.745542]
[5]
Oniga, S.D.; Araniciu, C.; Palage, M.D.; Popa, M.; Chifiriuc, M.C.; Marc, G.; Pirnau, A.; Stoica, C.I.; Lagoudis, I.; Dragoumis, T.; Oniga, O. New 2-phenylthiazoles as potential sortase a inhibitors: Synthesis, biological evaluation and molecular docking. Molecules, 2017, 22(11), 1-18.
[http://dx.doi.org/10.3390/molecules22111827 ] [PMID: 29077016]
[6]
El-Husseiny, W.M. Synthesis and biological evaluation of new 3-phenylthiazolidin-4-one and 3-phenylthiazole derivatives as antimicrobial agents. Polycycl. Aromat. Compd., 2021, 41, 1988-2002.
[7]
Mohammad, H.; Eldesouky, H.E.; Hazbun, T.; Mayhoub, A.S.; Seleem, M.N. Identification of a phenylthiazole small molecule with dual antifungal and antibiofilm activity against Candida albicans and Candida auris. Sci. Rep., 2019, 9(1), 18941.
[http://dx.doi.org/10.1038/s41598-019-55379-1 ] [PMID: 31831822]
[8]
Helal, M.H.M.; Salem, M.A.; El-Gaby, M.S.A.; Aljahdali, M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 65, 517-526.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005 ] [PMID: 23787438]
[9]
Thore, S.N.; Gupta, S.V.; Baheti, K.G. Synthesis and pharmacological evaluation of 5-methyl-2-phenylthiazole-4-substituted heteroazoles as a potential anti-inflammatory and analgesic agents. J. Saudi Chem. Soc., 2016, 20, S46-S52.
[http://dx.doi.org/10.1016/j.jscs.2012.09.002]
[10]
Ma, L.; Wang, T.; Shi, M.; Ye, H. Synthesis, activity, and docking study of phenylthiazole acids as potential agonists of PPARγ. Drug Des. Devel. Ther., 2016, 10, 1807-1815.
[http://dx.doi.org/10.2147/DDDT.S106406 ] [PMID: 27313447]
[11]
Wang, D.Z. Hantzsch thiazole synthesis.In: Comprehensive organic name reactions and reagents; Wiley, 2010, pp. 1330-1334.
[12]
Xiabing, M.; Ablajan, K.; Obul, M.; Seydimemet, M.; Ruzi, R.; Wenbo, L. Facile one-pot, three-component synthesis of thiazole compounds by the reactions of aldehyde/ketone, thiosemicarbazide and chlorinated carboxylic ester derivatives. Tetrahedron, 2016, 72(18), 2349-2353.
[http://dx.doi.org/10.1016/j.tet.2016.03.053]
[13]
Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.; Carradori, S.; D’Ascenzio, M.; Lilli, D.; Rivanera, D. Synthesis and biological evaluation of novel 2,4-disubstituted-1,3-thiazoles as anti-Candida spp. agents. Eur. J. Med. Chem., 2011, 46(1), 378-382.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.027 ] [PMID: 21084135]
[14]
Ablajan, K.; Liju, W.; Tuoheti, A. An efficient synthesis of some new hydrazone derivatives containing 1,2,3-triazole and thiazole. Lett. Org. Chem., 2013, 10(10), 715-721.
[http://dx.doi.org/10.2174/157017861010131126115715]
[15]
Eriks, J.C.; van der Goot, H.; Sterk, G.J.; Timmerman, H. Histamine H2-receptor agonists. Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4- and 5-(2-aminoethyl)thiazoles. J. Med. Chem., 1992, 35(17), 3239-3246.
[http://dx.doi.org/10.1021/jm00095a021 ] [PMID: 1507209]
[16]
Ochiai, M.; Nishi, Y.; Hashimoto, S.; Tsuchimoto, Y.; Chen, D.W. Synthesis of 2,4-disubstituted thiazoles from (Z)-(2-acetoxyvinyl)phenyl-λ3-iodanes: Nucleophilic substitution of α-λ3-iodanyl ketones with thioureas and thioamides. J. Org. Chem., 2003, 68(20), 7887-7888.
[http://dx.doi.org/10.1021/jo020759o ] [PMID: 14510572]
[17]
Halimehjani, A.Z.; Hasani, L.; Alaei, M.A.; Saidi, M.R. Dithiocarbamates as an efficient intermediate for the synthesis of 2-(alkylsulfanyl) thiazoles. Tetrahedron Lett., 2016, 57(8), 883-886.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.045]
[18]
Hassan, A.A.; Mohamed, S.K.; Mohamed, N.K.; El-Shaieb, K.M.A.; Abdel-Aziz, A.T.; Mague, J.T.; Akkurt, M. Facile and convenient synthesis of 2,4-disubstituted and 2,3,4-trisubstituted 1,3-thiazoles. J. Sulfur Chem., 2016, 37(2), 162-175.
[http://dx.doi.org/10.1080/17415993.2015.1114621]
[19]
Sheldrake, P.W.; Matteucci, M.; Mcdonald, E. Facile generation of a library of 5-aryl-2-arylsulfonyl-1,3-thiazoles. Synlett, 2006, 3(3), 460-462.
[http://dx.doi.org/10.1055/s-2006-926243]
[20]
Sanz-Cervera, J.F.; Blasco, R.; Piera, J.; Cynamon, M.; Ibáñez, I.; Murguía, M.; Fustero, S. Solution versus fluorous versus solid-phase synthesis of 2,5-disubstituted 1,3-azoles. Preliminary antibacterial activity studies. J. Org. Chem., 2009, 74(23), 8988-8996.
[http://dx.doi.org/10.1021/jo9016265 ] [PMID: 19894729]
[21]
Ghodse, S.M.; Telvekar, V.N. Synthesis of 2-aminothiazole derivatives from easily available thiourea and alkyl/aryl ketones using aqueous NaICl2. Tetrahedron Lett., 2014, 56(2), 472-474.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.140]
[22]
Ingle, R.D.; Bhingolikar, V.E.; Bondge, S.P.; Mane, R.A. Synthesis of biologically important new 1, 4-benzothiazines bearing thiazole substituted aroyl moiety. ChemInform, 2003, 42(24), 695-698.
[http://dx.doi.org/10.1002/chin.200324135]
[23]
Gaikwad, S.A.; Patil, A.A.; Deshmukh, M.B. An efficient, uncatalyzed, and rapid synthesis of thiazoles and aminothiazoles under microwave irradiation and investigation of their biological activity. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(1), 103-109.
[http://dx.doi.org/10.1080/10426500802715163]
[24]
Ameri, M.; Amoozadeh, A.; Asghari, A.; Nematollahi, D.; Bakherad, M. A facile and efficient one-pot electrochemical synthesis of thiazole derivatives in aqueous solution. Helv. Chim. Acta, 2015, 98(2), 210-223.
[http://dx.doi.org/10.1002/hlca.201400167]
[25]
Faidallah, H.M.; Khan, K.A.; Asiri, A.M. Synthesis and biological evaluation of new 3-trifluoromethylpyrazolesulfonyl-urea and thiourea derivatives as antidiabetic and antimicrobial agents. J. Fluor. Chem., 2011, 132(2), 131-137.
[http://dx.doi.org/10.1016/j.jfluchem.2010.12.009]
[26]
Chen, B.C.; Zhao, R.; Wang, B.; Droghini, R.; Lajeunesse, J.; Sirard, P.; Endo, M.; Balasubramanian, B.; Barrisha, J.C. A new and efficient preparation of 2-aminothiazole-5-carbamides: Applications to the synthesis of the anti-cancer drug dasatinib. ARKIVOC, 2010, 2010(6), 32-38.
[http://dx.doi.org/10.3998/ark.5550190.0011.604]
[27]
Kuarm, B.S.; Madhav, J.V.; Rajitha, B. Xanthan Sulfuric Acid  An efficient bio-supported and recyclable solid acid catalyst for the synthesis of 2-aminothiazole-5-carboxylates and 2-amino-selenazole-5-carboxylates. Lett. Org. Chem., 2011, 8, 549-553.
[http://dx.doi.org/10.2174/157017811797249443]
[28]
Gomez, J.D.C.; Balcazar, E.; Hagenbach, A.; Noufele, C.N.; Abram, U. Benzoylamido-substituted thiazoles and thiazolidines and their rhenium complexes. Polyhedron, 2016, 117, 293-299.
[http://dx.doi.org/10.1016/j.poly.2016.06.004]
[29]
Alajarín, M.; Cabrera, J.; Pastor, A.; Sánchez-Andrada, P.; Bautista, D. On the [2+2] cycloaddition of 2-aminothiazoles and dimethyl acetylenedicarboxylate. Experimental and computational evidence of a thermal disrotatory ring opening of fused cyclobutenes. J. Org. Chem., 2006, 71(14), 5328-5339.
[http://dx.doi.org/10.1021/jo060664c ] [PMID: 16808523]
[30]
Lin, P.Y.; Hou, R.S.; Wang, H.M.; Kang, I.J.; Chen, L.C. Efficient synthesis of 2-aminothiazoles and fanetizole in liquid PEG-400 at ambient conditions. J. Chin. Chem. Soc. (Taipei), 2009, 56(3), 455-458.
[http://dx.doi.org/10.1002/jccs.200900068]
[31]
Madhav, B.; Narayana Murthy, S.; Anil Kumar, B.S.P.; Ramesh, K.; Nageswar, Y.V.D. A tandem one-pot aqueous phase synthesis of thiazoles/selenazoles. Tetrahedron Lett., 2012, 53(30), 3835-3838.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.097]
[32]
Zhu, Y.; Yuan, J.; Zhao, Q.; Lian, M.; Gao, Q.; Liu, M.; Yang, Y.; Wu, A.I. 2/CuO-catalyzed tandem cyclisation strategy for one-pot synthesis of substituted 2-aminothiozole from easily available aromatic ketones / αβ -unsaturated ketones and thiourea. Tetrahedron, 2012, 68(1), 173-178.
[http://dx.doi.org/10.1016/j.tet.2011.10.074]
[33]
Xue, W.; Zheng, K.; Li, H.; Gao, F.; Wu, A. Iodine-promoted selective synthesis of substituted aminothiazole via a self-sorting reaction network. Tetrahedron Lett., 2014, 55(30), 4212-4215.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.101]
[34]
Tsai, C.Y.; Kapoor, M.; Huang, Y.P.; Lin, H.H.; Liang, Y.C.; Lin, Y.L.; Huang, S.C.; Liao, W.N.; Chen, J.K.; Huang, J.S.; Hsu, M.H. Synthesis and evaluation of aminothiazole-paeonol derivatives as potential anticancer agents. Molecules, 2016, 21(2), 145.
[http://dx.doi.org/10.3390/molecules21020145 ] [PMID: 26821004]
[35]
Safari, J.; Abedi-Jazini, Z.; Zarnegar, Z.; Sadeghi, M. Nanochitosan: A biopolymer catalytic system for the synthesis of 2-aminothiazoles. Catal. Commun., 2016, 77, 108-112.
[http://dx.doi.org/10.1016/j.catcom.2016.01.007]
[36]
Shahin, I.G.; Abutaleb, N.S.; Alhashimi, M.; Kassab, A.E.; Mohamed, K.O.; Taher, A.T.; Seleem, M.N.; Mayhoub, A.S. Evaluation of N-phenyl-2-aminothiazoles for treatment of multi-drug resistant and intracellular Staphylococcus aureus infections. Eur. J. Med. Chem., 2020, 202, 112497.
[http://dx.doi.org/10.1016/j.ejmech.2020.112497 ] [PMID: 32707373]
[37]
Miller, T.J.; Farquar, H.D.; Sheybani, A.; Tallini, C.E.; Saurage, A.S.; Fronczek, F.R.; Hammer, R.P. Synthesis of oligonucleotides containing thiazole and thiazole N-oxide nucleobases. Org. Lett., 2002, 4(6), 877-880.
[http://dx.doi.org/10.1021/ol017003g ] [PMID: 11893175]
[38]
Arunkumar, K.; Reddy, D.N.K.; Chandrasekhar, K.B.; Kumar, P.R.; Kumar, K.S.; Pal, M. Catalysis by zeolite leading to the construction of thiazole ring: An improved synthesis of 4-alkynyl substituted thiazoles. Tetrahedron Lett., 2012, 53(30), 3885-3889.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.062]
[39]
Azizi, N.; Rahimi, Z.; Alipour, M. Deep eutectic solvent-assisted one-pot synthesis of 2-aminothiazole and 2-aminoxazole derivatives. C. R. Chim., 2015, 18(6), 626-629.
[http://dx.doi.org/10.1016/j.crci.2014.10.001]
[40]
Heravi, M.M.; Poormohammad, N.; Beheshtiha, Y.S.; Baghernejad, B. Efficient synthesis of 2,4-disubstituted thiazoles under grinding. Synth. Commun., 2011, 41(4), 579-582.
[http://dx.doi.org/10.1080/00397911003629440]
[41]
Jeankumar, V.U.; Renuka, J.; Santosh, P.; Soni, V.; Sridevi, J.P.; Suryadevara, P.; Yogeeswari, P.; Sriram, D. Thiazole-aminopiperidine hybrid analogues: Design and synthesis of novel Mycobacterium tuberculosis GyrB inhibitors. Eur. J. Med. Chem., 2013, 70, 143-153.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.025 ] [PMID: 24148991]
[42]
Reddy, G.M.; Garcia, J.R.; Reddy, V.H.; de Andrade, A.M.; Camilo, A., Jr; Ribeiro, R.A.P.; de Lazaro, S.R. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives. Eur. J. Med. Chem., 2016, 123, 508-513.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.062 ] [PMID: 27494167]
[43]
Fan, T.; Guo, W.; Shao, T.; Zhou, W.; Hu, P.; Liu, M.; Chen, Y.; Yi, Z. Design, synthesis and evaluation of phenylthiazole and phenylthiophene pyrimidindiamine derivatives targeting the bacterial membrane. Eur. J. Med. Chem., 2020, 190, 112141.
[http://dx.doi.org/10.1016/j.ejmech.2020.112141 ] [PMID: 32078862]
[44]
Kesari, C.; Rama, K.R.; Sedighi, K.; Stenvang, J.; Björkling, F.; Kankala, S.; Thota, N. Synthesis of thiazole linked chalcones and their pyrimidine analogues as anticancer agents. Synth. Commun., 2021, 51(9), 1406-1416.
[http://dx.doi.org/10.1080/00397911.2021.1884262]
[45]
Makam, P.; Kankanala, R.; Prakash, A.; Kannan, T. 2-(2-Hydrazinyl)thiazole derivatives: Design, synthesis and in vitro antimycobacterial studies. Eur. J. Med. Chem., 2013, 69, 564-576.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.054 ] [PMID: 24095750]
[46]
Aggarwal, R.; Kumar, S.; Singh, S.P. Sodium carbonate-mediated facile synthesis of 4-substituted-2-(3,5-dimethylpyrazol-1-yl)thiazoles under solvent-free conditions. J. Sulfur Chem., 2012, 33(5), 521-525.
[http://dx.doi.org/10.1080/17415993.2012.711331]
[47]
de Moraes Gomes, P.A.T.; de Oliveira Barbosa, M.; Farias Santiago, E.; de Oliveira Cardoso, M.V.; Capistrano Costa, N.T.; Hernandes, M.Z.; Moreira, D.R.M.; da Silva, A.C.; Dos Santos, T.A.R.; Pereira, V.R.A.; Brayner Dos Santosd, F.A.; do Nascimento Pereira, G.A.; Ferreira, R.S.; Leite, A.C.L. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 121, 387-398.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.050 ] [PMID: 27295485]
[48]
Demirici, S. Synthesis of thiazole derivatives as antimicrobial agents by green chemistry techniques. JOTCSA, 2018, 5, 393-414.
[http://dx.doi.org/10.18596/jotcsa.375716]
[49]
Khidre, R.E.; Radini, I.A.M. Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents. Sci. Rep., 2021, 11(1), 7846.
[http://dx.doi.org/10.1038/s41598-021-86424-7 ] [PMID: 33846389]
[50]
Alqahtani, A.M.; Bayazeed, A.A. Synthesis and antiproliferative activity studies of new functionalized pyridine linked thiazole derivatives. Arab. J. Chem., 2021, 14(1), 102914.
[http://dx.doi.org/10.1016/j.arabjc.2020.11.020]
[51]
Al-Mutabagani, L.A.; Abdelrazek, F.M.; Gomha, S.M.; Hebishy, A.S.; Abdelfattah, M.S.; Hassan, S.M.; Sayed, A.R.; Elaasser, M.M. Synthesis and biological evaluation of thiazolyl-ethylidene hydrazino-thiazole derivatives: a novel heterocyclic system. Appl. Sci. (Basel), 2021, 11(19), 8908.
[http://dx.doi.org/10.3390/app11198908]
[52]
Kassab, R.M.; Gomha, S.M.; Al-Hussain, S.A.; Dena, A.S.; Abdel-Aziz, M.M.; Zaki, M.E.; Muhammad, Z.A. Synthesis and in-silico simulation of some new bis-thiazole derivatives and their preliminary antimicrobial profile: Investigation of hydrazonoyl chloride addition to hydroxy-functionalized bis-carbazones. Arab. J. Chem., 2021, 14(11), 103396.
[http://dx.doi.org/10.1016/j.arabjc.2021.103396]
[53]
Hantzsch, A.; Weber, J.H. About compounds of thiazole (pyridines of the thiophene series). Ber., 1887, 20, 3118-3132.
[http://dx.doi.org/10.1002/cber.188702002200]
[54]
Sasmal, P.K.; Chandrasekhar, A.; Sridhar, S.; Iqbal, J. Novel one-step method for the conversion of isothiocyanates to 2-alkyl(aryl)aminothiazoles. Tetrahedron, 2008, 64(49), 11074-11080.
[http://dx.doi.org/10.1016/j.tet.2008.09.074]
[55]
Lingaraju, G.S.; Swaroop, T.R.; Vinayaka, A.C.; Kumar, K.S.S.; Sadashiva, M.P.; Rangappa, K.S. An easy access to 4,5-disubstituted thiazoles via base-induced click reaction of active methylene isocyanides with methyl dithiocarboxylates. Synthesis, 2012, 44(9), 1373-1379.
[http://dx.doi.org/10.1055/s-0031-1290762]
[56]
Lee, T.; Lee, D.; Lee, I.Y.; Gong, Y.D. Solid-phase synthesis of thiazolo[4,5-b]pyridine derivatives using Friedländer reaction. J. Comb. Chem., 2010, 12(1), 95-99.
[http://dx.doi.org/10.1021/cc900147y ] [PMID: 19954205]
[57]
Kim, D.; Baek, D.J.; Lee, D.; Liu, K.H.; Bae, J.S.; Gong, Y.D.; Min, K.H.; Lee, T. Efficient solid-phase synthesis of 2,4-disubstituted 5-carbamoyl-thiazole derivatives using a traceless support. Tetrahedron, 2015, 71(21), 3367-3377.
[http://dx.doi.org/10.1016/j.tet.2015.03.104]
[58]
Prajapati, N.P.; Vekariya, R.H.; Patel, H.D. Microwave induced facile one-pot access to diverse 2-cyanobenzothiazole-A key intermediate for the synthesis of firefly Luciferin. Int. Lett. Chem. Phys. Astron., 2015, 44, 81-89.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.44.81]
[59]
Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2(11), 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a]
[60]
Elinson, M.N.; Vereshchagin, A.N.; Nasybullin, R.F.; Bobrovsky, S.I.; Ilovaisky, A.I.; Merkulova, V.M.; Bushmarinov, I.S.; Egorov, M.P. General approach to a spiro indole-3,1′-naphthalene tetracyclic system: Stereoselective pseudo four-component reaction of isatins and cyclic ketones with two molecules of malononitrile. RSC Advances, 2015, 5(62), 50421-50424.
[http://dx.doi.org/10.1039/C5RA03452C]
[61]
Sujatha, K.; Vedula, R.R. Novel one-pot expeditious synthesis of 2,4-disubstituted thiazoles through a three-component reaction under solvent free conditions. Synth. Commun., 2018, 48(3), 302-308.
[http://dx.doi.org/10.1080/00397911.2017.1399422]
[62]
Arandkar, V.; Vaarla, K.; Vedula, R.R. Facile one pot multicomponent synthesis of novel 4-(benzofuran-2-yl)-2-(3-(aryl/heteryl)-5-(aryl/heteryl)-4,5-dihydro-1H-pyrazol-1yl)thiazole derivatives. Synth. Commun., 2018, 48(11), 1285-1290.
[http://dx.doi.org/10.1080/00397911.2018.1440600]
[63]
Reddy, G.T.; Kumar, G.; Reddy, N.C.G. Water-mediated one-pot three-component synthesis of hydrazinyl-thiazoles catalyzed by copper oxide nanoparticles dispersed on titanium dioxide support: A green catalytic process. Adv. Synth. Catal., 2018, 360(5), 995-1006.
[http://dx.doi.org/10.1002/adsc.201701063]
[64]
Shiran, J.A.; Yahyazadeh, A.; Mamaghani, M.; Yamin, B.M.; Albadi, J.; Shirini, F.; Rassa, M. Novel, one-pot, three-component, regioselective synthesis of fluorine-containing thiazole and bis-3H-thiazole derivatives using polyvinyl pyridine as heterogeneous catalyst, and evaluation of their antibacterial activity. Synth. Commun., 2015, 45(13), 1520-1532.
[http://dx.doi.org/10.1080/00397911.2015.1025909]
[65]
Wang, X.; Qiu, X.; Wei, J.; Liu, J.; Song, S.; Wang, W.; Jiao, N. Cu-catalyzed aerobic oxidative sulfuration/annulation approach to thiazoles via multiple Csp3–H bond cleavage. Org. Lett., 2018, 20(9), 2632-2636.
[http://dx.doi.org/10.1021/acs.orglett.8b00840 ] [PMID: 29659292]
[66]
Jiang, J.; Huang, H.; Deng, G.J. Four-component thiazole formation from simple chemicals under metal-free conditions. Green Chem., 2019, 21(5), 986-990.
[http://dx.doi.org/10.1039/C8GC03895C]
[67]
Mekky, A.E.; Sanad, S.M.; El-Idreesy, T.T. New thiazole and thiazole-chromene hybrids possessing morpholine units: Piperazine-mediated one-pot synthesis of potential acetylcholinesterase inhibitors. Synth. Commun., 2021, 51(21), 3332-3344.
[http://dx.doi.org/10.1080/00397911.2021.1970774]
[68]
Kamila, S.; Koh, B.; Biehl, E.R. Microwave‐assisted “green” synthesis of 2‐alkyl/arylbenzothiazoles in one pot: A facile approach to anti‐tumor drugs. J. Heterocycl. Chem., 2006, 43(6), 1609-1612.
[http://dx.doi.org/10.1002/jhet.5570430627]
[69]
Khodaei, M.M.; Alizadeh, A.; Kanjouri, T. An efficient, one‐pot, green synthesis of tetracyclic imidazo [2,1‐b] thiazoles via electrochemically induced tandem heteroannulation reactions. J. Heterocycl. Chem., 2013, 50(1), 23-28.
[http://dx.doi.org/10.1002/jhet.959]
[70]
Nikpassand, M.; Fekri, L.Z.; Sanagou, S. Green synthesis of 2-hydrazonyl-4-phenylthiazoles using KIT-6 mesoporous silica coated magnetite nanoparticles. Dyes Pigments, 2017, 136, 140-144.
[http://dx.doi.org/10.1016/j.dyepig.2016.08.044]
[71]
Vekariya, R.H.; Patel, K.D.; Vekariya, M.K.; Prajapati, N.P.; Rajani, D.P.; Rajani, S.D.; Pat, H.D. Microwave-assisted green synthesis of new imidazo [2, 1-b] thiazole derivatives and their antimicrobial, antimalarial, and antitubercular activities. Res. Chem. Intermed., 2017, 43(11), 6207-6231.
[http://dx.doi.org/10.1007/s11164-017-2985-5]
[72]
Kaur, N. Ultrasound-assisted green synthesis of five-membered O-and S-heterocycles. Synth. Commun., 2018, 48(14), 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671]
[73]
Shaterian, H.R.; Molaei, P. Fe3O4@ vitamin B1 as a sustainable superparamagnetic heterogeneous nanocatalyst promoting green synthesis of trisubstituted 1,3‐thiazole derivatives. Appl. Organomet. Chem., 2019, 33(7), e4964.
[http://dx.doi.org/10.1002/aoc.4964]
[74]
Xu, J.; Deng, R.; Chen, J.; Tang, X.; Zhao, J. DMSO/H2O2 Promoted Regioselective Synthesis of Benzoimidazo [2,1‐b] thiazoles from 2‐Mercaptobenzimidazoles and Ketones in Water. Adv. Synth. Catal., 2019, 361(22), 5144-5148.
[http://dx.doi.org/10.1002/adsc.201900909]
[75]
Shabaan, S.N.; Baaiu, B.S.; Abdel-Aziem, A.; Abdel-Aziz, M.S. Ultrasound-assisted green synthesis and antimicrobial assessment of 1, 3-thiazoles and 1, 3, 4-thiadiazines. Green Chem. Lett. Rev., 2021, 14(4), 689-698.
[http://dx.doi.org/10.1080/17518253.2021.1999508]
[76]
Chen, L.; Xuchen, X.; Wang, F.; Yang, Y.; Deng, G.; Liu, Y.; Liang, Y. Double C-S bond formation via multiple Csp3-H bond cleavage: Synthesis of 4-hydroxythiazoles from amides and elemental sulfur under metal-free conditions. Org. Biomol. Chem., 2021, 19(46), 10068-10072.
[http://dx.doi.org/10.1039/D1OB01989A ] [PMID: 34762083]
[77]
Zhong, X.; He, F.; Ran, Q.; Li, W.; Xiong, H.; Zhou, W. Cascade nucleophilic addition/cyclization/c−n coupling of o-Iodo-phenyl isothiocyanates with propargylamines: Access to benzimidazo[2,1-b]thiazole derivatives. Asian J. Org. Chem., 2021, 10(12), 3253-3256.
[http://dx.doi.org/10.1002/ajoc.202100545]
[78]
Nguyen, T.B.; Retailleau, P. Base-catalyzed three-component reaction between chalcones, isothiocyanates, and sulfur: Access to thiazole-2-thiones. Org. Lett., 2021, 23(14), 5344-5348.
[http://dx.doi.org/10.1021/acs.orglett.1c01653 ] [PMID: 34227811]
[79]
Chen, Y.; Lv, S.; Lai, R.; Xu, Y.; Huang, X.; Li, J.; Lv, G.; Wu, Y. Synthesis of 2-aminothiazoles via rhodium-catalyzed carbenoid insertion/annulation of sulfoxonium ylides with thioureas. Chin. Chem. Lett., 2021, 32(8), 2555-2558.
[http://dx.doi.org/10.1016/j.cclet.2021.02.052]
[80]
Tokárová, Z.; Eckstein-Andicsová, A.; Balogh, R.; Tokár, K. Survey of the Ketcham reaction for series of furan-substituted thiazolo[5,4-d]thiazoles. Tetrahedron, 2021, 89, 132155.
[http://dx.doi.org/10.1016/j.tet.2021.132155]
[81]
Ahmed, W.; Huang, Z.H.; Cui, Z.N.; Tang, R.Y. Design and synthesis of unique thiazoloisoquinolinium thiolates and derivatives. Chin. Chem. Lett., 2021, 32(10), 3211-3214.
[http://dx.doi.org/10.1016/j.cclet.2021.03.065]
[82]
Mei, R.; Xiong, F.; Yang, C.; Zhao, J. Salicylic acid-promoted three-component annulation of benzimidazoles, aryl nitroalkenes and elemental sulfur. Adv. Synth. Catal., 2021, 363(7), 1861-1866.
[http://dx.doi.org/10.1002/adsc.202001564]
[83]
Bangade, V.M.; Mali, P.R.; Meshram, H.M. Synthesis of potent anticancer substituted 5-benzimidazol-2-amino thiazoles controlled by bifunctional hydrogen bonding under microwave irradiations. J. Org. Chem., 2021, 86(9), 6056-6065.
[http://dx.doi.org/10.1021/acs.joc.0c02542 ] [PMID: 33872008]
[84]
Zhang, B.; Liu, D.; Sun, Y.; Zhang, Y.; Feng, J.; Yu, F. Preparation of thiazole-2-thiones through tbpb-promoted oxidative cascade cyclization of enaminones with elemental sulfur. Org. Lett., 2021, 23(8), 3076-3082.
[http://dx.doi.org/10.1021/acs.orglett.1c00751 ] [PMID: 33769063]
[85]
Cheng, Y.; He, Y.; Zheng, J.; Yang, H.; Liu, J.; An, G.; Li, G. Ruthenium (II)-catalyzed para-selective C-H difluoroalkylation of aromatic aldehydes and ketones using transient directing groups. Chin. Chem. Lett., 2021, 32(4), 1437-1441.
[http://dx.doi.org/10.1016/j.cclet.2020.09.044]
[86]
Cheng, Y.; Yu, S.; He, Y.; An, G.; Li, G.; Yang, Z. C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(i)-Pd(ii) catalysis vs. Pd(ii) catalysis. Chem. Sci. (Camb.), 2021, 12(9), 3216-3225.
[http://dx.doi.org/10.1039/D0SC05409G ] [PMID: 34164090]
[87]
Cheng, Y.; Zheng, J.; Tian, C.; He, Y.; Zhang, C.; Tan, Q.; An, G.; Li, G. Palladium‐catalyzed C-H arylation of aliphatic and aromatic ketones using dipeptide transient directing groups. Asian J. Org. Chem., 2019, 8(4), 526-531.
[http://dx.doi.org/10.1002/ajoc.201900037]
[88]
Tian, H.; Yang, H.; Tian, C.; An, G.; Li, G. Cross-dehydrogenative coupling of strong C(sp3)-H with N-heteroarenes through visible-light-induced energy transfer. Org. Lett., 2020, 22(19), 7709-7715.
[http://dx.doi.org/10.1021/acs.orglett.0c02912 ] [PMID: 32942860]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy