Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

A Review on Experimental Models to Test Medicinal Plants on Postprandial Blood Glucose in Diabetes

Author(s): Sanae Abid and Mohamed Bnouham*

Volume 19, Issue 9, 2023

Published on: 03 November, 2022

Article ID: e080422203278 Pages: 8

DOI: 10.2174/1573399818666220408100830

Price: $65

Abstract

Due to the gravity of postprandial hyperglycemia in the development of microvascular and macrovascular diseases in diabetics, many medicinal plants are tested to determine their effectiveness in glycemic control and the mechanisms of action of the products. Consequently, various diabetic models have been developed and enhanced over the years.

The objective of this review is to describe some of the experimental models to study the effect of medicinal plants used to control postprandial hyperglycemia.

Data was collected from PubMed, ScienceDirect, Scopus, and Google scholar (1953-2021). Fiftyseven (57) studies were included in this review article.

Ten models were identified and described. For each model, we described the targets involved and their roles in postprandial blood glucose control. The experimental design and procedures described the targets such as an α-glucosidase enzyme, SGLT1, GLUT2, DPP-IV, Na+/K+ ATPase pump, or intestinal motility in the models, experiment design and procedures were described.

This review will facilitate the selection of the most appropriate model for studying agents used to investigate postprandial blood glucose.

Keywords: Diabetes, postprandial blood glucose models, medicinal plants, hyperglycemia, macrovascular diseases, intestinal motility.

[1]
Zanatta L, de Sousa E, Cazarolli LH, et al. Effect of crude extract and fractions from Vitex megapotamica leaves on hyperglycemia in alloxan-diabetic rats. J Ethnopharmacol 2007; 109(1): 151-5.
[http://dx.doi.org/10.1016/j.jep.2006.07.019] [PMID: 16930892]
[2]
Ortiz-Andrade RR, García-Jiménez S, Castillo-España P, Ramírez-Avila G, Villalobos-Molina R, Estrada-Soto S. α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: An anti-hyperglycemic agent. J Ethnopharmacol 2007; 109(1): 48-53.
[http://dx.doi.org/10.1016/j.jep.2006.07.002] [PMID: 16920301]
[3]
Huang YH, Chen ST, Liu FH, et al. The efficacy and safety of concentrated herbal extract granules, YH1, as an add-on medication in poorly controlled type 2 diabetes: A randomized, double-blind, placebo-controlled pilot trial. PLoS One 2019; 14(8): e0221199.
[http://dx.doi.org/10.1371/journal.pone.0221199] [PMID: 31415655]
[4]
Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 1999; 87(5): 1990-5.
[http://dx.doi.org/10.1152/jappl.1999.87.5.1990] [PMID: 10562646]
[5]
Perfetti R, Ahmad A. Novel sulfonylurea and non-sulfonylurea drugs to promote the secretion of insulin. Trends Endocrinol Metab 2000; 11(6): 218-23.
[http://dx.doi.org/10.1016/S1043-2760(00)00269-1] [PMID: 10878751]
[6]
Alberts P, Engblom L, Edling N, et al. Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia 2002; 45(11): 1528-32.
[http://dx.doi.org/10.1007/s00125-002-0959-6] [PMID: 12436336]
[7]
Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000; 49(12): 2063-9.
[http://dx.doi.org/10.2337/diabetes.49.12.2063] [PMID: 11118008]
[8]
Mudaliar S, Henry RR. New oral therapies for type 2 diabetes mellitus: The glitazones or insulin sensitizers. Annu Rev Med 2001; 52(1): 239-57.
[http://dx.doi.org/10.1146/annurev.med.52.1.239] [PMID: 11160777]
[9]
Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinol Metab Clin North Am 1997; 26(3): 539-51.
[http://dx.doi.org/10.1016/S0889-8529(05)70266-8] [PMID: 9314014]
[10]
Saxena A, Vikram NK. Role of selected Indian plants in management of type 2 diabetes: A review. J Altern Complement Med 2004; 10(2): 369-78.
[http://dx.doi.org/10.1089/107555304323062365] [PMID: 15165418]
[11]
Virally M, Kevorkian JP, Guillausseau PJ. Incretins, incretinomimetics and DPP-IV inhibitors: Glucose homeostasis and type 2 diabetes. Sang Thrombose Vaisseaux 2008; 20(9): 453-61.
[12]
Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia. Nutrition 2005; 21(6): 756-61.
[http://dx.doi.org/10.1016/j.nut.2004.10.014] [PMID: 15925302]
[13]
Dahlqvist A. Method for assay of intestinal disaccharidases. Anal Biochem 1964; 7(1): 18-25.
[http://dx.doi.org/10.1016/0003-2697(64)90115-0] [PMID: 14106916]
[14]
Abid S, Lekchiri A, Mekhfi H, et al. Inhibition of α-glucosidase and glucose intestinal absorption by Thymelaea hirsuta fractions. J Diabetes 2014; 6(4): 351-9.
[http://dx.doi.org/10.1111/1753-0407.12106] [PMID: 24219781]
[15]
Gholamhoseinian A, Fallah H. Sharifi far F. Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on α-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats. Phytomedicine 2009; 16(10): 935-41.
[http://dx.doi.org/10.1016/j.phymed.2009.02.020] [PMID: 19380218]
[16]
Mechchate H, Es-Safi I, Louba A, et al. In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Withania frutescens L. Foliar Extract. Molecules 2021; 26(2): 293.
[http://dx.doi.org/10.3390/molecules26020293] [PMID: 33430115]
[17]
Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J. α- Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem 2008; 106(1): 247-52.
[http://dx.doi.org/10.1016/j.foodchem.2007.05.077]
[18]
Shim YJ, Doo HK, Ahn SY, et al. Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. J Ethnopharmacol 2003; 85(2-3): 283-7.
[http://dx.doi.org/10.1016/S0378-8741(02)00370-7] [PMID: 12639753]
[19]
Guide for the care and use of laboratory animals. Washington: National Academia Press 1996.
[20]
Patela MB, Mishra SM. Magnoflorine from Tinospora cordifoliastem inhibits α-glucosidase and is antiglycemic in rats. J Funct Food 2001; 4: 79-86.
[21]
Andrade-Cetto A, Espinoza-Hernandez F, Mata-Torres G. Hypoglycemic effect of Calea urticifolia (mill.) DC. Evidence-based complement. Evid Based Complement Alternat Med 2021; 2021: 1-10.
[22]
Zarzuelo A, Risco S, Gámez MJ, Jimenez J, Cámara M, Martinez MA. Hypoglycemic action of Vahl. ssp. oxydon: A contribution to studies of the mechanism of action. Life Sci 1990; 47(11): 909-15.
[http://dx.doi.org/10.1016/0024-3205(90)90537-2] [PMID: 2215073]
[23]
Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. Resistance to blood flow in microvessels in vivo. Circ Res 1994; 75(5): 904-15.
[http://dx.doi.org/10.1161/01.RES.75.5.904] [PMID: 7923637]
[24]
Tandon S, Das M, Khanna SK. Effect of sanguinarine on the transport of essential nutrients in an everted gut sac model: Role of Na+,K(+)-ATPase. Nat Toxins 1993; 1(4): 235-40.
[http://dx.doi.org/10.1002/nt.2620010406] [PMID: 8167940]
[25]
Obatomi AB, Adeniyi KO, Isfchei CO. Effect of malnourishment on intestinal glucose and fluid transport in rats. Acta Physiol Hung 1994; 82(2): 187-93.
[PMID: 7887179]
[26]
Mahomoodally MF, Gurib-Fakim A, Subratty AH. Experimental evidence for in vitro fluid transport in the presence of a traditional medicinal fruit extract across rat everted intestinal sacs. Fundam Clin Pharmacol 2005; 19(1): 87-92.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00311.x] [PMID: 15660964]
[27]
Wilson TH, Wiseman G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol 1954; 123(1): 116-25.
[http://dx.doi.org/10.1113/jphysiol.1954.sp005036] [PMID: 13131249]
[28]
Yamamoto S, Inoue K, Murata T, et al. Identification and functional characterization of the first nucleobase transporter in mammals: Implication in the species difference in the intestinal absorption mechanism of nucleobases and their analogs between higher primates and other mammals. J Biol Chem 2010; 285(9): 6522-31.
[http://dx.doi.org/10.1074/jbc.M109.032961] [PMID: 20042597]
[29]
Tomimatsu T, Horie T. Enhanced glucose absorption in the rat small intestine following repeated doses of 5-fluorouracil. Chem Biol Interact 2005; 155(3): 129-39.
[http://dx.doi.org/10.1016/j.cbi.2005.04.001] [PMID: 15996645]
[30]
Peng BJ, Zhu Q, Zhong YL, Xu SH, Wang Z. Chlorogenic acid maintains glucose homeostasis through modulating the expression of SGLT-1, GLUT-2, and PLG in different intestinal segments of Sprague-Dawley rats fed a high-fat diet. Biomed Environ Sci 2015; 28(12): 894-903.
[PMID: 26777909]
[31]
Palaniappan B, Arthur S, Sundaram VL, et al. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension. FASEB J 2019; 33(8): 9323-33.
[http://dx.doi.org/10.1096/fj.201802673R] [PMID: 31107610]
[32]
Duffy NA, Green BD, Irwin N, et al. Effects of antidiabetic drugs on dipeptidyl peptidase IV activity: Nateglinide is an inhibitor of DPP IV and augments the antidiabetic activity of glucagon-like peptide-1. Eur J Pharmacol 2007; 568(1-3): 278-86.
[http://dx.doi.org/10.1016/j.ejphar.2007.05.010] [PMID: 17573070]
[33]
McKillop AM, Duffy NA, Lindsay JR, et al. Insulinotropic actions of nateglinide in type 2 diabetic patients and effects on dipeptidyl peptidase-IV activity and glucose-dependent insulinotropic polypeptide degradation. Eur J Endocrinol 2009; 161(6): 877-85.
[http://dx.doi.org/10.1530/EJE-09-0547] [PMID: 19755410]
[34]
Ansari P, Hannon-Fletcher MP, Flatt PR, Abdel-Wahab YHA. Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Biosci Rep 2021; 41(1): BSR20203824.
[http://dx.doi.org/10.1042/BSR20203824] [PMID: 33416077]
[35]
Setyaningsih EP, Saputri FC, Mun’im A. The antidiabetic effectivity of Indonesian plants extracts via DPP-IV inhibitory mechanism. J Young Pharm 2019; 11(2): 161-4.
[http://dx.doi.org/10.5530/jyp.2019.11.34]
[36]
Bailey CJ, Flatt PR. Hormonal control of glucose homeostasis during development and ageing in mice. Metabolism 1982; 31(3): 238-46.
[http://dx.doi.org/10.1016/0026-0495(82)90059-2] [PMID: 7043171]
[37]
Morgan EL, Mace OJ, Affleck J, Kellett GL. Apical GLUT2 and Cav1.3: Regulation of rat intestinal glucose and calcium absorption. J Physiol 2007; 580(Pt. 2): 593-604.
[http://dx.doi.org/10.1113/jphysiol.2006.124768] [PMID: 17272350]
[38]
Ai J, Du J, Wang N, Du ZM, Yang BF. Inhibition of small-intestinal sugar absorption mediated by sodium orthovanadate Na3VO4 in rats and its mechanisms. World J Gastroenterol 2004; 10(24): 3612-5.
[http://dx.doi.org/10.3748/wjg.v10.i24.3612] [PMID: 15534916]
[39]
Khurana S, Kreydiyyeh S, Aronzon A, et al. Asymmetric signal transduction in polarized ileal Na(+)-absorbing cells: Carbachol activates brush-border but not basolateral-membrane PIP2-PLC and translocates PLC-gamma 1 only to the brush border. Biochem J 1996; 313(Pt 2): 509-18.
[http://dx.doi.org/10.1042/bj3130509] [PMID: 8573085]
[40]
Kreydiyyeh SI, Usta J, Copti R. Effect of cinnamon, clove and some of their constituents on the Na(+)-K(+)-ATPase activity and alanine absorption in the rat jejunum. Food Chem Toxicol 2000; 38(9): 755-62.
[http://dx.doi.org/10.1016/S0278-6915(00)00073-9] [PMID: 10930696]
[41]
Taussky HH, Shorr E, Kurzmann G. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 1953; 202(2): 675-85.
[http://dx.doi.org/10.1016/S0021-9258(18)66180-0] [PMID: 13061491]
[42]
Aziz M, Karim A, Mekhfi H, et al. Antispasmodic effects of aqueous extract of Anthemis mauritiana Maire & Sennen flowers. J Appl Pharm Sci 2012; 2(9): 041-4.
[43]
Sokeng SD, Rokeya B, Hannan JM, et al. Inhibitory effect of Ipomoea aquatica extracts on glucose absorption using a perfused rat intestinal preparation. Fitoterapia 2007; 78(7-8): 526-9.
[http://dx.doi.org/10.1016/j.fitote.2007.06.011] [PMID: 17651914]
[44]
Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med 2005; 22(4): 359-70.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01499.x] [PMID: 15787657]
[45]
Bliss M. The Discovery of Insulin. Chicago: The University of Chicago Press 1982.
[46]
Geethalakshmi R, Sarada DVL, Marimuthu P, Ramasamy K. α- Amylase inhibitory activity of Trianthema decandra L. Int J Biotechnol Biochem 2010; 6: 369-76.
[47]
Alzaid F, Cheung HM, Preedy VR, Sharp PA. Regulation of glucose transporter expression in human intestinal Caco-2 cells following exposure to an anthocyanin-rich berry extract. PLoS One 2013; 8(11): e78932.
[http://dx.doi.org/10.1371/journal.pone.0078932] [PMID: 24236070]
[48]
Manzano S, Williamson G. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Mol Nutr Food Res 2010; 54(12): 1773-80.
[http://dx.doi.org/10.1002/mnfr.201000019] [PMID: 20564476]
[49]
Schulze C, Bangert A, Kottra G, et al. Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans. Mol Nutr Food Res 2014; 58(9): 1795-808.
[http://dx.doi.org/10.1002/mnfr.201400016] [PMID: 25074384]
[50]
Song J, Kwon O, Chen S, et al. Flavonoid inhibition of SVCT1 and GLUT2, intestinal transporters for vitamin C and glucoseJ. Biol Chem 2002; 277: 15252-60.
[http://dx.doi.org/10.1074/jbc.M110496200]
[51]
Helliwell PA, Richardson M, Affleck J, Kellett GL. Regulation of GLUT5, GLUT2 and intestinal brush-border fructose absorption by the extracellular signal-regulated kinase, p38 mitogen-activated kinase and phosphatidylinositol 3-kinase intracellular signalling pathways: Implications for adaptation to diabetes. Biochem J 2000; 350(Pt 1): 163-9.
[http://dx.doi.org/10.1042/bj3500163] [PMID: 10926840]
[52]
Helliwell PA, Richardson M, Affleck J, Kellett GL. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Biochem J 2000; 350(Pt 1): 149-54.
[http://dx.doi.org/10.1042/bj3500149] [PMID: 10926838]
[53]
Kellett GL, Helliwell PA. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J 2000; 350(Pt 1): 155-62.
[http://dx.doi.org/10.1042/bj3500155] [PMID: 10926839]
[54]
Onat A, Can G, Çiçek G, Ayhan E. Doğan Y, Kaya H. Fasting, non-fasting glucose and HDL dysfunction in risk of pre-diabetes, diabetes, and coronary disease in non-diabetic adults. Acta Diabetol 2013; 50(4): 519-28.
[http://dx.doi.org/10.1007/s00592-011-0313-x] [PMID: 21769500]
[55]
Leon-Acuña A, Alcala-Diaz JF, Delgado-Lista J, et al. Hepatic insulin resistance both in prediabetic and diabetic patients determines postprandial lipoprotein metabolism: From the CORDIOPREV study. Cardiovasc Diabetol 2016; 15(1): 68.
[http://dx.doi.org/10.1186/s12933-016-0380-y] [PMID: 27095446]
[56]
Haller H. Postprandial glucose and vascular disease. Diabet Med 1997; 14(S3)(Suppl. 3): S50-6.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199708)14:3+<S50::AID-DIA445>3.0.CO;2-1] [PMID: 9272614]
[57]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy