Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Silencing of FANCI Promotes DNA Damage and Sensitizes Ovarian Cancer Cells to Carboplatin

Author(s): Yuqing Li, Yanan Zhang, Qi Yang, Xuantong Zhou, Yuanyuan Guo, Fang Ding, Zhihua Liu and Aiping Luo*

Volume 22, Issue 7, 2022

Published on: 23 May, 2022

Page: [591 - 602] Pages: 12

DOI: 10.2174/1568009622666220331091709

Price: $65

Abstract

Background: Ovarian cancer (OVCA) has unique epigenetic alterations and defects in homologous recombination (HR). Despite initial sensitivity to platinum-based chemotherapy, HR dysfunctional tumors eventually acquire drug resistance. Fanconi anemia (FA) is characterized by bone marrow failure (BMF) and a reduced ability to eradicate DNA interstrand cross-links (ICL). However, the mechanism of chemoresistance mediated by FANCI was unclear in OVCA.

Objective: We explore to identify whether FANCI was involved in chemoresistance in OVCA.

Methods: FANCI expression and epigenetic alterations were analyzed, respectively, using TIMER and cBioPortal. The correlation between FANCI expression and the survival of OVCA patients was analyzed using Kaplan-Meier Plotter, GSE63885, and TCGA-OVCA dataset. FANCI expression in OVCA was detected by immunohistochemistry. Cell proliferation, migration, and invasion in FANCI inhibiting cells were assessed by CCK-8 and Transwell. Apoptosis and DNA damage were examined by flow cytometry and immunofluorescence. Meanwhile, the activity of caspase 3/7 was detected by Caspase-Glo® 3/7 kit. In addition, the expression of FANCI, γH2AX, and apoptosis effectors was examined by Western blot.

Results: FANCI has copy number variations (CNVs) in OVCA. The high expression of FANCI in OVCA patients was associated with poor survival. Moreover, FANCI expression was correlated with the response to chemotherapy in OVCA. FANCI expression in OVCA cells was induced by carboplatin in a time-dependent manner. Silencing of FANCI had no effect on cell proliferation, but hindered OVCA cell migration and invasion. Mechanically, knockdown of FANCI enhanced DNA damage-induced apoptosis through the CHK1/2-P53-P21 pathway.

Conclusion: FANCI may be a potential therapeutic target for OVCA patients.

Keywords: FANCI, FANCD2, ovarian cancer, chemoresistance, DNA damage, P53.

Graphical Abstract
[1]
Vaughan, S.; Coward, J.I.; Bast, R.C., Jr; Berchuck, A.; Berek, J.S.; Brenton, J.D.; Coukos, G.; Crum, C.C.; Drapkin, R.; Etemadmoghadam, D.; Friedlander, M.; Gabra, H.; Kaye, S.B.; Lord, C.J.; Lengyel, E.; Levine, D.A.; McNeish, I.A.; Menon, U.; Mills, G.B.; Nephew, K.P.; Oza, A.M.; Sood, A.K.; Stronach, E.A.; Walczak, H.; Bowtell, D.D.; Balkwill, F.R. Rethinking ovarian cancer: Recommendations for improving outcomes. Nat. Rev. Cancer, 2011, 11(10), 719-725.
[http://dx.doi.org/10.1038/nrc3144] [PMID: 21941283]
[2]
González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; Baumann, K.; Jardon, K.; Redondo, A.; Moore, R.G.; Vulsteke, C.; O’Cearbhaill, R.E.; Lund, B.; Backes, F.; Barretina-Ginesta, P.; Haggerty, A.F.; Rubio-Pérez, M.J.; Shahin, M.S.; Mangili, G.; Bradley, W.H.; Bruchim, I.; Sun, K.; Malinowska, I.A.; Li, Y.; Gupta, D.; Monk, B.J. PRIMA/ENGOTOV26/ GOG-3012 Investigators. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med., 2019, 381(25), 2391-2402.
[http://dx.doi.org/10.1056/NEJMoa1910962] [PMID: 31562799]
[3]
Ledermann, J.A.; Raja, F.A.; Fotopoulou, C.; Gonzalez-Martin, A.; Colombo, N.; Sessa, C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2018, 29(Suppl. 4), iv259.
[http://dx.doi.org/10.1093/annonc/mdy157]
[4]
Coleman, R.L.; Monk, B.J.; Sood, A.K.; Herzog, T.J. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat. Rev. Clin. Oncol., 2013, 10(4), 211-224.
[http://dx.doi.org/10.1038/nrclinonc.2013.5] [PMID: 23381004]
[5]
Mei, L.; Chen, H.; Wei, D.M.; Fang, F.; Liu, G.J.; Xie, H.Y.; Wang, X.; Zou, J.; Han, X.; Feng, D. Maintenance chemotherapy for ovarian cancer. Cochrane Database Syst. Rev., 2013, 2013(6), CD007414.
[PMID: 23813336]
[6]
Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med., 2017, 14(1), 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[7]
Pilié, P.G.; Tang, C.; Mills, G.B.; Yap, T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol., 2019, 16(2), 81-104.
[http://dx.doi.org/10.1038/s41571-018-0114-z] [PMID: 30356138]
[8]
McMullen, M.; Karakasis, K.; Madariaga, A.; Oza, A.M. Overcoming platinum and PARP-inhibitor resistance in ovarian cancer. Cancers (Basel), 2020, 12(6), E1607.
[http://dx.doi.org/10.3390/cancers12061607] [PMID: 32560564]
[9]
Nalepa, G.; Clapp, D.W. Fanconi anaemia and cancer: An intricate relationship. Nat. Rev. Cancer, 2018, 18(3), 168-185.
[http://dx.doi.org/10.1038/nrc.2017.116] [PMID: 29376519]
[10]
Ceccaldi, R.; Sarangi, P.; D’Andrea, A.D. The Fanconi anaemia pathway: New players and new functions. Nat. Rev. Mol. Cell Biol., 2016, 17(6), 337-349.
[http://dx.doi.org/10.1038/nrm.2016.48] [PMID: 27145721]
[11]
Kottemann, M.C.; Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature, 2013, 493(7432), 356-363.
[http://dx.doi.org/10.1038/nature11863] [PMID: 23325218]
[12]
Longerich, S.; Kwon, Y.; Tsai, M-S.; Hlaing, A.S.; Kupfer, G.M.; Sung, P. Regulation of FANCD2 and FANCI monoubiquitination by their interaction and by DNA. Nucleic Acids Res., 2014, 42(9), 5657-5670.
[http://dx.doi.org/10.1093/nar/gku198] [PMID: 24623813]
[13]
Liang, Z.; Liang, F.; Teng, Y.; Chen, X.; Liu, J.; Longerich, S.; Rao, T.; Green, A.M.; Collins, N.B.; Xiong, Y.; Lan, L.; Sung, P.; Kupfer, G.M. Binding of FANCI-FANCD2 Complex to RNA and R-Loops Stimulates Robust FANCD2 Monoubiquitination. Cell Rep., 2019, 26(3), 564-572.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.12.084] [PMID: 30650351]
[14]
Rennie, M.L.; Lemonidis, K.; Arkinson, C.; Chaugule, V.K.; Clarke, M.; Streetley, J.; Spagnolo, L.; Walden, H. Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA. EMBO Rep., 2020, 21(7), e50133.
[http://dx.doi.org/10.15252/embr.202050133] [PMID: 32510829]
[15]
Li, L.; Tan, W.; Deans, A.J. Structural insight into FANCI-FANCD2 monoubiquitination. Essays Biochem., 2020, 64(5), 807-817.
[http://dx.doi.org/10.1042/EBC20200001] [PMID: 32725171]
[16]
Tan, W.; van Twest, S.; Murphy, V.J.; Deans, A.J. ATR-mediated FANCI phosphorylation regulates both ubiquitination and deubiquitination of FANCD2. Front. Cell Dev. Biol., 2020, 8, 2.
[http://dx.doi.org/10.3389/fcell.2020.00002] [PMID: 32117957]
[17]
Lemonidis, K.; Arkinson, C.; Rennie, M.L.; Walden, H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J., 2021, 16077.
[http://dx.doi.org/10.1111/febs.16077] [PMID: 34137174]
[18]
van Twest, S.; Murphy, V.J.; Hodson, C.; Tan, W.; Swuec, P.; O’Rourke, J.J.; Heierhorst, J.; Crismani, W.; Deans, A.J. Mechanism of ubiquitination and deubiquitination in the fanconi anemia pathway. Mol. Cell, 2017, 65(2), 247-259.
[http://dx.doi.org/10.1016/j.molcel.2016.11.005] [PMID: 27986371]
[19]
Yang, Y.; Guo, T.; Liu, R.; Ke, H.; Xu, W.; Zhao, S.; Qin, Y. FANCL gene mutations in premature ovarian insufficiency. Hum. Mutat., 2020, 41(5), 1033-1041.
[http://dx.doi.org/10.1002/humu.23997] [PMID: 32048394]
[20]
Frost, M.G.; Mazloumi Aboukheili, A.M.; Toth, R.; Walden, H. Characterization of FANCL variants observed in patient cancer cells. Biosci. Rep., 2020, 40(6), BSR20191304.
[http://dx.doi.org/10.1042/BSR20191304] [PMID: 32420600]
[21]
Nijman, S.M.B.; Huang, T.T.; Dirac, A.M.G.; Brummelkamp, T.R.; Kerkhoven, R.M.; D’Andrea, A.D.; Bernards, R. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell, 2005, 17(3), 331-339.
[http://dx.doi.org/10.1016/j.molcel.2005.01.008] [PMID: 15694335]
[22]
Ishiai, M.; Kitao, H.; Smogorzewska, A.; Tomida, J.; Kinomura, A.; Uchida, E.; Saberi, A.; Kinoshita, E.; Kinoshita-Kikuta, E.; Koike, T.; Tashiro, S.; Elledge, S.J.; Takata, M. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol., 2008, 15(11), 1138-1146.
[http://dx.doi.org/10.1038/nsmb.1504] [PMID: 18931676]
[23]
Chen, Y-H.; Jones, M.J.K.; Yin, Y.; Crist, S.B.; Colnaghi, L.; Sims, R.J., III; Rothenberg, E.; Jallepalli, P.V.; Huang, T.T. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol. Cell, 2015, 58(2), 323-338.
[http://dx.doi.org/10.1016/j.molcel.2015.02.031] [PMID: 25843623]
[24]
Shah, R.B.; Kernan, J.L.; van Hoogstraten, A.; Ando, K.; Li, Y.; Belcher, A.L.; Mininger, I.; Bussenault, A.M.; Raman, R.; Ramanagoudr-Bhojappa, R.; Huang, T.T.; D’Andrea, A.D.; Chandrasekharappa, S.C.; Aggarwal, A.K.; Thompson, R.; Sidi, S. FANCI functions as a repair/apoptosis switch in response to DNA crosslinks. Dev. Cell, 2021, 56(15), 2207-2222.e7.
[http://dx.doi.org/10.1016/j.devcel.2021.06.010] [PMID: 34256011]
[25]
Luo, Q.; Wu, X.; Chang, W.; Zhao, P.; Zhu, X.; Chen, H.; Nan, Y.; Luo, A.; Zhou, X.; Su, D.; Jiao, W.; Liu, Z. ARID1A Hypermethylation disrupts transcriptional homeostasis to promote squamous cell carcinoma progression. Cancer Res., 2020, 80(3), 406-417.
[PMID: 32015157]
[26]
Luo, Q.; Wu, X.; Chang, W.; Zhao, P.; Nan, Y.; Zhu, X.; Katz, J.P.; Su, D.; Liu, Z. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ., 2020, 27(6), 1981-1997.
[http://dx.doi.org/10.1038/s41418-019-0475-6] [PMID: 31831874]
[27]
Ben Ayed-Guerfali, D.; Ben Kridis-Rejab, W.; Ammous-Boukhris, N.; Ayadi, W.; Charfi, S.; Khanfir, A.; Sellami-Boudawara, T.; Frikha, M.; Daoud, J.; Mokdad-Gargouri, R. Novel and recurrent BRCA1/BRCA2 germline mutations in patients with breast/ovarian cancer: A series from the south of Tunisia. J. Transl. Med., 2021, 19(1), 108.
[http://dx.doi.org/10.1186/s12967-021-02772-y] [PMID: 33726785]
[28]
Christie, E.L.; Fereday, S.; Doig, K.; Pattnaik, S.; Dawson, S-J.; Bowtell, D.D.L. Reversion of BRCA1/2 germline mutations detected in circulating tumor DNA from patients with high-grade serous ovarian cancer. J. Clin. Oncol., 2017, 35(12), 1274-1280.
[http://dx.doi.org/10.1200/JCO.2016.70.4627] [PMID: 28414925]
[29]
Thompson, E.L.; Yeo, J.E.; Lee, E-A.; Kan, Y.; Raghunandan, M.; Wiek, C.; Hanenberg, H.; Schärer, O.D.; Hendrickson, E.A.; Sobeck, A. FANCI and FANCD2 have common as well as independent functions during the cellular replication stress response. Nucleic Acids Res., 2017, 45(20), 11837-11857.
[http://dx.doi.org/10.1093/nar/gkx847] [PMID: 29059323]
[30]
Sondalle, S.B.; Longerich, S.; Ogawa, L.M.; Sung, P.; Baserga, S.J. Fanconi anemia protein FANCI functions in ribosome biogenesis. Proc. Natl. Acad. Sci. USA, 2019, 116(7), 2561-2570.
[http://dx.doi.org/10.1073/pnas.1811557116] [PMID: 30692263]
[31]
Dubois, E.L.; Guitton-Sert, L.; Béliveau, M.; Parmar, K.; Chagraoui, J.; Vignard, J.; Pauty, J.; Caron, M-C.; Coulombe, Y.; Buisson, R.; Jacquet, K.; Gamblin, C.; Gao, Y.; Laprise, P.; Lebel, M.; Sauvageau, G. D d’Andrea, A.; Masson, J.Y. A Fanci knockout mouse model reveals common and distinct functions for FANCI and FANCD2. Nucleic Acids Res., 2019, 47(14), 7532-7547.
[http://dx.doi.org/10.1093/nar/gkz514] [PMID: 31219578]
[32]
Colnaghi, L.; Jones, M.J.K.; Cotto-Rios, X.M.; Schindler, D.; Hanenberg, H.; Huang, T.T. Patient-derived C-terminal mutation of FANCI causes protein mislocalization and reveals putative EDGE motif function in DNA repair. Blood, 2011, 117(7), 2247-2256.
[http://dx.doi.org/10.1182/blood-2010-07-295758] [PMID: 20971953]
[33]
Han, B.; Yang, X.; Zhang, P.; Zhang, Y.; Tu, Y.; He, Z.; Li, Y.; Yuan, J.; Dong, Y.; Hosseini, D.K.; Zhou, T.; Sun, H. DNA methylation biomarkers for nasopharyngeal carcinoma. PLoS One, 2020, 15(4), e0230524.
[http://dx.doi.org/10.1371/journal.pone.0230524] [PMID: 32271791]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy