Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Recent Developments of Nanomaterials and Sensor Performance for Electronic Skin

Author(s): Ke Xu* and Rong Su

Volume 18, Issue 6, 2022

Published on: 19 April, 2022

Page: [700 - 716] Pages: 17

DOI: 10.2174/1573413718666220329220551

Price: $65

Abstract

Throughout the research of flexible nanomaterials and sensing technology in recent years, electronic skin has been widely developed as well as applied in many fields. As a bionic flexible tactile sensor, electronic skin can simulate the touching of human skin with external signals as well as collect and detect dynamic information of the physical surface. This paper reviews the flexible substrate materials and electrode nanomaterials of electronic skin. The stable support of the flexible substrate largely determines the mechanical properties of the electronic skin. At the outset, this article introduces the flexible substrate materials commonly used in electronic skins. PDMS, PI, and PET are typical representatives of flexible substrate materials. Then, the nanomaterials used for electrodes are discussed, including one-dimensional and two-dimensional nanomaterials, especially emphasizing the innovation of the sensor performance about the advanced electronic skin along with the use of different nanomaterials under the integrated application background. In addition, these electrode nanomaterials need to be appropriately embedded in flexible substrate materials. The response time, sensitivity, detection limit, response range, and the cycle of electronic skin are selected for comparison. Finally, the opportunities and challenges of electronic skin in nanomaterials and sensing technology are summarized.

Keywords: Flexible tactile sensor, electronic skin, nanomaterial, flexible substrate material, sensing performance, electrode nanomaterials.

Graphical Abstract
[1]
Ren, Y.; Wu, Y.N.; Yang, C.Y.; Xu, T.; Harvey, R.L.; Zhang, L.Q. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng., 2017, 25(6), 589-596.
[http://dx.doi.org/10.1109/TNSRE.2016.2584003] [PMID: 27337720]
[2]
Ding, S.; Ouyang, X.; Liu, T.; Li, Z.; Yang, H. Gait event detection of a lower extremity exoskeleton robot by an intelligent IMU. IEEE Sens. J., 2018, 18(23), 9728-9735.
[http://dx.doi.org/10.1109/JSEN.2018.2871328]
[3]
Logishetty, K.; Western, L.; Morgan, R.; Iranpour, F.; Cobb, J.P.; Auvinet, E. Can an augmented reality headset improve accuracy of acetabular cup orientation in simulated THA? A randomized trial. Clin. Orthop. Relat. Res., 2019, 477(5), 1190-1199.
[http://dx.doi.org/10.1097/CORR.0000000000000542] [PMID: 30507832]
[4]
Cutolo, F.; Freschi, C.; Mascioli, S.; Parchi, P.D.; Ferrari, M.; Ferrari, V. Robust and accurate algorithm for wearable stereoscopic augmented reality with three indistinguishable markers. Electronics (Basel), 2016, 5(3), 59.
[http://dx.doi.org/10.3390/electronics5030059]
[5]
Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z.A.; Yin Yin Nyein, H.; Challa, S.; Ryan, S.P.; Fahad, H.M.; Chen, K.; Shahpar, Z.; Talebi, S.; Milla, C.; Javey, A.; Davis, R.W. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA, 2017, 114(18), 4625-4630.
[http://dx.doi.org/10.1073/pnas.1701740114] [PMID: 28416667]
[6]
Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; Ghaffari, R.; Su, C.J.; Leshock, J.P.; Ray, T.; Verrillo, A.; Thomas, K.; Krishnamurthi, V.; Han, S.; Kim, J.; Krishnan, S.; Hang, T.; Rogers, J.A. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv., 2019, 5(1), eaav3294.
[http://dx.doi.org/10.1126/sciadv.aav3294] [PMID: 30746477]
[7]
Boutry, C.M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot., 2018, 3(24), eaau6914.
[http://dx.doi.org/10.1126/scirobotics.aau6914] [PMID: 33141713]
[8]
Byun, J.; Lee, Y.; Yoon, J.; Lee, B.; Oh, E.; Chung, S.; Lee, T.; Cho, K.J.; Kim, J.; Hong, Y. Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci. Robot., 2018, 3(18), eaas9020.
[http://dx.doi.org/10.1126/scirobotics.aas9020] [PMID: 33141703]
[9]
Cheng, Y.; Ma, Y.; Li, L.; Zhu, M.; Yue, Y.; Liu, W.; Wang, L.; Jia, S.; Li, C.; Qi, T.; Wang, J.; Gao, Y. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-Based Piezoresistive Sensor. ACS Nano, 2020, 14(2), 2145-2155.
[http://dx.doi.org/10.1021/acsnano.9b08952] [PMID: 32040310]
[10]
Rahman, M.A.; Walia, S.; Naznee, S.; Taha, M.; Nirantar, S.; Rahman, F.; Bhaskaran, M.; Sriram, S. Artificial somatosensors: Feedback receptors for electronic skins. Adv. Intelligent Syst., 2020, 2(11), 2000094.
[http://dx.doi.org/10.1002/aisy.202000094]
[11]
Wu, H.X.; Su, Z.M.; Shi, M.Y.; Miao, L.M.; Song, Y.; Chen, H.T.; Han, M.D.; Zhang, H.X. Self-powered noncontact electronic skin for motion sensing. Adv. Funct. Mater., 2018, 28(6), 1704641.
[http://dx.doi.org/10.1002/adfm.201704641]
[12]
Lü, X.; Yang, J.; Qi, L.; Bao, W.; Zhao, L.; Chen, R. High sensitivity flexible electronic skin based on graphene film. Sensors (Basel), 2019, 19(4), 794.
[http://dx.doi.org/10.3390/s19040794] [PMID: 30781388]
[13]
Yang, X.; Wang, Y.; Sun, H.; Qing, X. A flexible ionic liquid-polyurethane sponge capacitive pressure sensor. Sens. Actuators A Phys., 2019, 285, 67-72.
[http://dx.doi.org/10.1016/j.sna.2018.10.041]
[14]
Chao, C.T. C.; Chau, Y.F., Chou; H.P., Chiang Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects. J. Phys. D Appl. Phys., 2021, 54(11), 115301.
[http://dx.doi.org/10.1088/1361-6463/abce7f]
[15]
Baetens, T.; Pallecchi, E.; Thomy, V.; Arscott, S. Metallized SU-8 thin film patterns on stretchable PDMS. J. Micromech. Microeng., 2019, 29(9), 095009.
[http://dx.doi.org/10.1088/1361-6439/ab307f]
[16]
Miki, H.; Sugii, R.; Kawabata, Y.; Tsuchitani, S. Lithographic micropatterning on the beta-PVDF film using reactive ion etching aim for high-resolution skin sensors. IEEJ Trans. Electr. Electron. Eng., 2019, 14(10), 1575-1577.
[http://dx.doi.org/10.1002/tee.22978]
[17]
Wu, C.; Tang, X.; Gan, L.; Li, W.; Zhang, J.; Wang, H.; Qin, Z.; Zhang, T.; Zhou, T.; Huang, J.; Xie, C.; Zeng, D. High-adhesion stretchable electrode via cross-linking intensified electroless deposition on a biomimetic elastomeric micropore film. ACS Appl. Mater. Interfaces, 2019, 11(22), 20535-20544.
[http://dx.doi.org/10.1021/acsami.9b05135] [PMID: 31081609]
[18]
Wang, S.; Chen, Z.; Yang, B.; Chen, H.; Ruckenstein, E. Mechanical deformation: A feasible route for reconfiguration of inner interfaces to modulate the high performance of three-dimensional porous carbon material anodes in stretchable lithium-Ion batteries. J. Colloid Interface Sci., 2019, 555, 431-437.
[http://dx.doi.org/10.1016/j.jcis.2019.07.101] [PMID: 31400535]
[19]
Yang, C.; Huang, H.; Fan, S.C.; Yang, C.L.; Chen, Y.H.; Yu, B.; Li, W.Q.; Liao, J.W. A novel dual-crosslinked functional hydrogel activated by poss for accelerating wound healing. Adv. Mater. Technol., 2021, 6(4), 2001012.
[http://dx.doi.org/10.1002/admt.202001012]
[20]
Zhang, S.; Zahed, M.A.; Sharifuzzaman, M.; Yoon, S.; Hui, X.; Chandra Barman, S.; Sharma, S.; Yoon, H.S.; Park, C.; Park, J.Y. A wearable battery-free wireless and skin-interfaced microfluidics integrated electrochemical sensing patch for on-site biomarkers monitoring in human perspiration. Biosens. Bioelectron., 2021, 175, 112844.
[http://dx.doi.org/10.1016/j.bios.2020.112844] [PMID: 33248878]
[21]
Wang, Q.; Jian, M.; Wang, C.; Zhang, Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater., 2017, 27(9), 1605657.
[http://dx.doi.org/10.1002/adfm.201605657]
[22]
Liu, S.; Yin, Y.; Hui, K.S.; Hui, K.N.; Lee, S.C.; Jun, S.C. High-performance flexible quasi-solid-state supercapacitors realized by molybdenum dioxide@nitrogen-doped carbon and copper cobalt sulfide tubular nanostructures. Adv. Sci. (Weinh.), 2018, 5(10), 1800733.
[http://dx.doi.org/10.1002/advs.201800733] [PMID: 30356947]
[23]
Guo, R.; Sun, X.; Yuan, B.; Wang, H.; Liu, J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv. Sci. (Weinh.), 2019, 6(20), 1901478.
[http://dx.doi.org/10.1002/advs.201901478] [PMID: 31637174]
[24]
Wang, L.; Chen, Y.; Lin, L.; Wang, H.; Huang, X.; Xue, H.; Gao, J. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J., 2019, 362, 89-98.
[http://dx.doi.org/10.1016/j.cej.2019.01.014]
[25]
Qin, Z.; Sun, X.; Yu, Q.; Zhang, H.; Wu, X.; Yao, M.; Liu, W.; Yao, F.; Li, J. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces, 2020, 12(4), 4944-4953.
[http://dx.doi.org/10.1021/acsami.9b21659] [PMID: 31912722]
[26]
Chen, J.; Zhu, Y.; Jiang, W. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Compos. Sci. Technol., 2020, 186, 186.
[http://dx.doi.org/10.1016/j.compscitech.2019.107938]
[27]
Joo, Y.; Byun, J.; Seong, N.; Ha, J.; Kim, H.; Kim, S.; Kim, T. Im, H.; Kim, D.; Hong, Y. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale, 2015, 7(14), 6208-6215.
[http://dx.doi.org/10.1039/C5NR00313J] [PMID: 25779911]
[28]
Choi, S.; Han, S.I.; Jung, D.; Hwang, H.J.; Lim, C.; Bae, S.; Park, O.K.; Tschabrunn, C.M.; Lee, M.; Bae, S.Y.; Yu, J.W.; Ryu, J.H.; Lee, S.W.; Park, K.; Kang, P.M.; Lee, W.B.; Nezafat, R.; Hyeon, T.; Kim, D.H. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol., 2018, 13(11), 1048-1056.
[http://dx.doi.org/10.1038/s41565-018-0226-8] [PMID: 30104619]
[29]
Wang, Y.; Wang, J.; Cao, S.; Kong, D. A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(31), 9748-9755.
[http://dx.doi.org/10.1039/C9TC02584G]
[30]
Zhou, Y.; Cheng, X.; Huang, F.; Sha, Z.; Han, Z.; Chen, J.; Yang, W.; Yu, Y.; Zhang, J.; Peng, S.; Wu, S.; Rider, A.; Dai, L.; Wang, C.H. Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon, 2021, 172, 272-282.
[http://dx.doi.org/10.1016/j.carbon.2020.10.025]
[31]
Pan, X.; Wang, Q.; He, P.; Liu, K.; Ni, Y.; Chen, L.; Ouyang, X.; Huang, L.; Wang, H.; Xu, S. A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties. Chem. Eng. J., 2020, 379, 122271.
[http://dx.doi.org/10.1016/j.cej.2019.122271]
[32]
You, R.; Liu, Y.Q.; Hao, Y.L.; Han, D.D.; Zhang, Y.L.; You, Z. Laser fabrication of graphene-based flexible electronics. Adv. Mater., 2020, 32(15), e1901981.
[http://dx.doi.org/10.1002/adma.201901981] [PMID: 31441164]
[33]
Jia, Z.; Li, Z.; Ma, S.; Zhang, W.; Chen, Y.; Luo, Y.; Jia, D.; Zhong, B.; Razal, J.M.; Wang, X.; Kong, L. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci., 2021, 584, 1-10.
[http://dx.doi.org/10.1016/j.jcis.2020.09.035] [PMID: 33035798]
[34]
Liao, H.; Guo, X.; Wan, P.; Yu, G. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater., 2019, 29(39), 1904507.
[http://dx.doi.org/10.1002/adfm.201904507]
[35]
Ma, C.; Cao, W.T.; Zhang, W.; Ma, M.G.; Sun, W.M.; Zhang, J.; Chen, F. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J., 2021, 403, 126438.
[http://dx.doi.org/10.1016/j.cej.2020.126438]
[36]
Yang, Y.; Sun, N.; Wen, Z.; Cheng, P.; Zheng, H.; Shao, H.; Xia, Y.; Chen, C.; Lan, H.; Xie, X.; Zhou, C.; Zhong, J.; Sun, X.; Lee, S.T. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano, 2018, 12(2), 2027-2034.
[http://dx.doi.org/10.1021/acsnano.8b00147] [PMID: 29420011]
[37]
Zou, B.; Chen, Y.; Liu, Y.; Xie, R.; Du, Q.; Zhang, T.; Shen, Y.; Zheng, B.; Li, S.; Wu, J.; Zhang, W.; Huang, W.; Huang, X.; Huo, F. Repurposed leather with sensing capabilities for multifunctional electronic skin. Adv. Sci. (Weinh.), 2018, 6(3), 1801283.
[http://dx.doi.org/10.1002/advs.201801283] [PMID: 30775226]
[38]
Chou Chau, Y.F.; Chen, K.H.; Chiang, H.P.; Lim, C.M.; Huang, H.J.; Lai, C.H.; Kumara, N.T.R.N. Fabrication and characterization of a metallic-dielectric nanorod array by nanosphere lithography for plasmonic sensing application. Nanomaterials (Basel), 2019, 9(12), 1691.
[http://dx.doi.org/10.3390/nano9121691] [PMID: 31779222]
[39]
Zhu, M.; Lou, M.; Abdalla, I.; Yu, J.; Li, Z.; Ding, B. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy, 2020, 69, 104429.
[http://dx.doi.org/10.1016/j.nanoen.2019.104429]
[40]
Chen, L.; Feng, J.; Li, T.; Li, X.; Zhang, J. High-tactile sensitivity of piezoresistive sensors with a micro-crack structure induced by thin film tension. IEEE Electron Device Lett., 2019, 40(9), 1519-1521.
[http://dx.doi.org/10.1109/LED.2019.2927720]
[41]
Park, K.; Kim, S.; Lee, H.; Park, I.; Kim, J. Low-hysteresis and low-interference soft tactile sensor using a conductive coated porous elastomer and a structure for interference reduction. Sens. Actuators A Phys., 2019, 295, 541-550.
[http://dx.doi.org/10.1016/j.sna.2019.06.026]
[42]
Zhou, D.; Sharma, S.K.; Luttgen, A.; Sarris, C.D. Systematic design optimization of capacitive touch sensor electrode patterns. IEEE Sens. J., 2020, 20(4), 1962-1970.
[http://dx.doi.org/10.1109/JSEN.2019.2948893]
[43]
Gao, Y.H.; Bi, Y.Q.; Lang, J.H.; Zhang, Q. Insights into theoretical and practical characteristics of capacitive flexible tactile sensor based on spherical surface plate. J. Mater. Sci. Mater. Electron., 2021, 32(13), 17182-17190.
[http://dx.doi.org/10.1007/s10854-021-06181-1]
[44]
Xia, G.; Huang, Y.; Li, F.; Wang, L.; Pang, J.; Li, L.; Wang, K. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng., 2020, 14(6), 1039-1051.
[http://dx.doi.org/10.1007/s11705-019-1901-5]
[45]
Deng, W.; Yang, T.; Jin, L.; Yan, C.; Huang, H.; Chu, X.; Wang, Z.; Xiong, D.; Tian, G.; Gao, Y.; Zhang, H.; Yang, W. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 2019, 55, 516-525.
[http://dx.doi.org/10.1016/j.nanoen.2018.10.049]
[46]
Chou Chau, Y.F. Mid-infrared sensing properties of a plasmonic metal-insulator-metal waveguide with a single stub including the defects. J. Phys. D Appl. Phys., 2019, 53(11), 115401.
[http://dx.doi.org/10.1088/1361-6463/ab5ec3]
[47]
Jin, G.; Sun, Y.; Geng, J.; Yuan, X.; Chen, T.; Liu, H.; Wang, F.; Sun, L. Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metal. Nano Energy, 2021, 84, 105896.
[http://dx.doi.org/10.1016/j.nanoen.2021.105896]
[48]
Afroj, S.; Tan, S.; Abdelkader, A.M.; Novoselov, K.S.; Karim, N. Highly conductive, scalable, and machine washable graphene-based E-Textiles for multifunctional wearable electronic applications. Adv. Funct. Mater., 2020, 30(23), 2000293.
[http://dx.doi.org/10.1002/adfm.202000293]
[49]
Kang, J.; Son, D.; Wang, G.N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J.Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J.B.H.; Bao, Z. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater., 2018, 30(13), e1706846.
[http://dx.doi.org/10.1002/adma.201706846] [PMID: 29424026]
[50]
Oh, J.Y.; Bao, Z. Second skin enabled by advanced electronics. Adv. Sci. (Weinh.), 2019, 6(11), 1900186.
[http://dx.doi.org/10.1002/advs.201900186] [PMID: 31179225]
[51]
Wang, S.; Xu, J.; Wang, W.; Wang, G.N.; Rastak, R.; Molina-Lopez, F.; Chung, J.W.; Niu, S.; Feig, V.R.; Lopez, J.; Lei, T.; Kwon, S.K.; Kim, Y.; Foudeh, A.M.; Ehrlich, A.; Gasperini, A.; Yun, Y.; Murmann, B.; Tok, J.B.H.; Bao, Z. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694), 83-88.
[http://dx.doi.org/10.1038/nature25494] [PMID: 29466334]
[52]
Cao, Y.; Tan, Y.J.; Li, S.; Lee, W.W.; Guo, H.; Cai, Y.; Wang, C.; Tee, B.C.K. Self-healing electronic skins for aquatic environments. Nat. Electron., 2019, 2(2), 75-82.
[http://dx.doi.org/10.1038/s41928-019-0206-5]
[53]
Chen, H.; Song, Y.; Cheng, X.; Zhang, H. Self-powered electronic skin based on the triboelectric generator. Nano Energy, 2019, 56, 252-268.
[http://dx.doi.org/10.1016/j.nanoen.2018.11.061]
[54]
Escobedo, P.; Ntagios, M.; Shakthivel, D.; Navaraj, W.T.; Dahiya, R. Energy generating electronic skin with intrinsic tactile sensing without touch sensors. IEEE Trans. Robot., 2021, 37(2), 683-690.
[http://dx.doi.org/10.1109/TRO.2020.3031264]
[55]
Yuan, H.; Lei, T.; Qin, Y.; Yang, R. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy, 2019, 59, 84-90.
[http://dx.doi.org/10.1016/j.nanoen.2019.01.072]
[56]
Peng, X.; Dong, K.; Ye, C.; Jiang, Y.; Zhai, S.; Cheng, R.; Liu, D.; Gao, X.; Wang, J.; Wang, Z.L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv., 2020, 6(26), eaba9624.
[http://dx.doi.org/10.1126/sciadv.aba9624] [PMID: 32637619]
[57]
Selimefendigil, F.; Öztop, H.F. Analysis of MHD mixed convection in a flexible walled and nanofluids filled lid-driven cavity with volumetric heat generation. Int. J. Mech. Sci., 2016, 118, 113-124.
[http://dx.doi.org/10.1016/j.ijmecsci.2016.09.011]
[58]
Wang, J.; Zhang, C.; Chen, D.; Sun, M.; Liang, N.; Cheng, Q.; Ji, Y.; Gao, H.; Guo, Z.; Li, Y.; Sun, D.; Li, Q.; Liu, H. Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded PDMS. ACS Appl. Mater. Interfaces, 2020, 12(46), 51854-51863.
[http://dx.doi.org/10.1021/acsami.0c16152] [PMID: 33151060]
[59]
Yu, G.; Hu, J.; Tan, J.; Gao, Y.; Lu, Y.; Xuan, F. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins. Nanotechnology, 2018, 29(11), 115502.
[http://dx.doi.org/10.1088/1361-6528/aaa855] [PMID: 29339577]
[60]
Zhao, G.; Zhang, Y.; Shi, N.; Liu, Z.; Zhang, X.; Wu, M.; Pan, C.; Liu, H.; Li, L.; Wang, Z.L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 2019, 59, 302-310.
[http://dx.doi.org/10.1016/j.nanoen.2019.02.054]
[61]
Liu, Y.Q.; Zhang, J-R.; Han, D-D.; Zhang, Y.L.; Sun, H-B. Versatile electronic skins with biomimetic micronanostructures fabricated using natural reed leaves as templates. ACS Appl. Mater. Interfaces, 2019, 11(41), 38084-38091.
[http://dx.doi.org/10.1021/acsami.9b14135] [PMID: 31547649]
[62]
Chou Chau, Y.F.; Lin, C.J.; Kao, T. S.; Wang, Y.C.; Ming Lim, C.; Kumara, N.T.R.N.; Chiang, H.P. Enhanced photoluminescence of DCJTB with ordered Ag-SiO2 core-shell nanostructures via nanosphere lithography. Results Phys., 2020, 17, 103168.
[http://dx.doi.org/10.1016/j.rinp.2020.103168]
[63]
Alwan, A.M.; Mahmood, M.J. Using laser duty cycles for modifying the performance of Au-NPs/Si nano column hot spot SERS sensors. Plasmonics, 2020, 15(6), 1709-1717.
[http://dx.doi.org/10.1007/s11468-020-01199-3]
[64]
Wang, H.; Yang, H.; Zhang, S.; Zhang, L.; Li, J.; Zeng, X. 3D-printed flexible tactile sensor mimicking the texture and sensitivity of human skin. Adv. Mater. Technol., 2019, 4(9), 1900147.
[http://dx.doi.org/10.1002/admt.201900147]
[65]
Zhang, S.; Lin, C.; Xia, Z.; Chen, M.; Jia, Y.; Tao, B.; Li, S.; Cai, K. A facile and novel design of multifunctional electronic skin based on polydimethylsiloxane with micropillars for signal monitoring. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(36), 8315-8322.
[http://dx.doi.org/10.1039/D0TB00954G] [PMID: 32785401]
[66]
Chen, M.; Li, K.; Cheng, G.; He, K.; Li, W.; Zhang, D.; Li, W.; Feng, Y.; Wei, L.; Li, W.; Zhong, G.; Yang, C. Touchpoint-tailored ultrasensitive piezoresistive pressure sensors with a broad dynamic response range and low detection limit. ACS Appl. Mater. Interfaces, 2019, 11(2), 2551-2558.
[http://dx.doi.org/10.1021/acsami.8b20284] [PMID: 30576104]
[67]
Cañón Bermúdez, G.S.; Karnaushenko, D.D.; Karnaushenko, D.; Lebanov, A.; Bischoff, L.; Kaltenbrunner, M.; Fassbender, J.; Schmidt, O.G.; Makarov, D. Magnetosensitive e-skins with directional perception for augmented reality. Sci. Adv., 2018, 4(1), eaao2623.
[http://dx.doi.org/10.1126/sciadv.aao2623] [PMID: 29376121]
[68]
Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun., 2018, 9(1), 244.
[http://dx.doi.org/10.1038/s41467-017-02685-9] [PMID: 29339793]
[69]
Romero, F.J.; Castillo, E.; Rivadeneyra, A.; Toral-Lopez, A.; Becherer, M.; Ruiz, F.G.; Rodriguez, N.; Morales, D.P. Inexpensive and flexible nanographene-based electrodes for ubiquitous electrocardiogram monitoring. NPJ Flexible Electronics, 2019, 3(1)
[70]
Chen, X.; Liu, H.; Zheng, Y.; Zhai, Y.; Liu, X.; Liu, C.; Mi, L.; Guo, Z.; Shen, C. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl. Mater. Interfaces, 2019, 11(45), 42594-42606.
[http://dx.doi.org/10.1021/acsami.9b14688] [PMID: 31618002]
[71]
Kimura, H.; Fukuda, K.; Jinno, H.; Park, S.; Saito, M.; Osaka, I.; Takimiya, K.; Umezu, S.; Someya, T. High operation stability of ultraflexible organic solar cells with ultraviolet-filtering substrates. Adv. Mater., 2019, 31(19), e1808033.
[http://dx.doi.org/10.1002/adma.201808033] [PMID: 30920690]
[72]
Shaikh, S.F.; Hussain, M.M. Multisensory graphene-skin for harsh-environment applications. Appl. Phys. Lett., 2020, 117(7), 074101.
[http://dx.doi.org/10.1063/5.0017769]
[73]
Zhang, Y.; Ye, J.; Lin, Z.; Huang, S.; Wang, H.; Wu, H. A piezoresistive tactile sensor for a large area employing neural network. Sensors (Basel), 2018, 19(1), E27.
[http://dx.doi.org/10.3390/s19010027] [PMID: 30577675]
[74]
Tang, X.; Miao, Y.; Chen, X.; Nie, B. A flexible and highly sensitive inductive pressure sensor array based on ferrite films. Sensors (Basel), 2019, 19(10), E2406.
[http://dx.doi.org/10.3390/s19102406] [PMID: 31137763]
[75]
Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B.K.; Kim, J.H.; Ahn, J.H. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy, 2019, 62, 259-267.
[http://dx.doi.org/10.1016/j.nanoen.2019.05.039]
[76]
Wang, J.; Jiang, J.; Zhang, C.; Sun, M.; Han, S.; Zhang, R.; Liang, N.; Sun, D.; Liu, H. Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors. Nano Energy, 2020, 76, 76.
[http://dx.doi.org/10.1016/j.nanoen.2020.105050]
[77]
Zhang, Y.; Pan, T.; Yang, Z. Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J., 2020, 389, 389.
[http://dx.doi.org/10.1016/j.cej.2020.124433]
[78]
Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363(6430), 603-605.
[http://dx.doi.org/10.1038/363603a0]
[79]
Jeong, C.; Ko, H.; Kim, H.T.; Sun, K.; Kwon, T.H.; Jeong, H.E.; Park, Y.B. Bioinspired, high-sensitivity mechanical sensors realized with hexagonal microcolumnar arrays coated with ultrasonic-sprayed single-walled carbon nanotubes. ACS Appl. Mater. Interfaces, 2020, 12(16), 18813-18822.
[http://dx.doi.org/10.1021/acsami.9b23370] [PMID: 32233452]
[80]
Zhao, P.; Zhang, R.; Tong, Y.; Zhao, X.; Zhang, T.; Tang, Q.; Liu, Y. Strain-discriminable pressure/proximity sensing of transparent stretchable electronic skin based on PEDOT:PSS/SWCNT electrodes. ACS Appl. Mater. Interfaces, 2020, 12(49), 55083-55093.
[http://dx.doi.org/10.1021/acsami.0c16546] [PMID: 33232130]
[81]
Fu, X.; Ramos, M.; Al-Jumaily, A.M.; Meshkinzar, A.; Huang, X. Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. J. Mater. Sci., 2019, 54(3), 2170-2180.
[http://dx.doi.org/10.1007/s10853-018-2954-4]
[82]
Li, H.; Zhang, W.; Ding, Q.; Jin, X.; Ke, Q.; Li, Z.; Wang, D.; Huang, C. Facile strategy for fabrication of flexible, breathable, and washable piezoelectric sensors via welding of nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). ACS Appl. Mater. Interfaces, 2019, 11(41), 38023-38030.
[http://dx.doi.org/10.1021/acsami.9b10886] [PMID: 31556287]
[83]
Li, T.; Li, J.; Zhong, A.; Han, F.; Sun, R.; Wong, C.P.; Niu, F.; Zhang, G.; Jin, Y. A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection. In: Sensors and Actuators a-Physical; , 2020; p. 306.
[84]
Chou Chau, Y.F.; Chou Chau, C.T.; Huang, H.J.; Anwar, U.; Lim, C.M.; Voo, N.Y.; Chiang, H.P. Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results Phys., 2019, 15, 102567.
[http://dx.doi.org/10.1016/j.rinp.2019.102567]
[85]
Chau, Y.F.; Yeh, H.H.; Liao, C.C.; Ho, H.F.; Liu, C.Y.; Tsai, D.P. Controlling surface plasmon of several pair arrays of silver-shell nanocylinders. Appl. Opt., 2010, 49(7), 1163-1169.
[http://dx.doi.org/10.1364/AO.49.001163] [PMID: 20197814]
[86]
Chou, Chao C.T.; Chou Chao, Y.F.; Huang, H.J.; Kumara, N.T.R.N.; Kooh, M.R.R.; Lim, C.M.; Chiang, H.P. Highly sensitive and tunable plasmonic sensor based on a nanoring resonator with silver nanorods. Nanomaterials (Basel), 2020, 10(7), 1399.
[http://dx.doi.org/10.3390/nano10071399]
[87]
Lee, G.; Bae, G.Y.; Son, J.H.; Lee, S.; Kim, S.W.; Kim, D.; Lee, S.G.; Cho, K. User-interactive thermotherapeutic electronic skin based on stretchable thermochromic strain sensor. Adv. Sci. (Weinh.), 2020, 7(17), 2001184.
[http://dx.doi.org/10.1002/advs.202001184] [PMID: 32999818]
[88]
Lim, C.; Shin, Y.; Jung, J.; Kim, J.H.; Lee, S.; Kim, D.H. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Mater., 2019, 7(3), 031502.
[http://dx.doi.org/10.1063/1.5063657]
[89]
Shengbo, S.; Lihua, L.; Aoqun, J.; Qianqian, D.; Jianlong, J.; Qiang, Z.; Wendong, Z. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology, 2018, 29(25), 255202.
[http://dx.doi.org/10.1088/1361-6528/aabbba] [PMID: 29620014]
[90]
Jung, J.; Lee, H.; Ha, I.; Cho, H.; Kim, K.K.; Kwon, J.; Won, P.; Hong, S.; Ko, S.H. Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces, 2017, 9(51), 44609-44616.
[http://dx.doi.org/10.1021/acsami.7b14626] [PMID: 29188706]
[91]
Zhang, S.; Liu, H.; Yang, S.; Shi, X.; Zhang, D.; Shan, C.; Mi, L.; Liu, C.; Shen, C.; Guo, Z. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces, 2019, 11(11), 10922-10932.
[http://dx.doi.org/10.1021/acsami.9b00900] [PMID: 30794745]
[92]
Bae, G.Y.; Han, J.T.; Lee, G.; Lee, S.; Kim, S.W.; Park, S.; Kwon, J.; Jung, S.; Cho, K. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater., 2018, 30(43), e1803388.
[http://dx.doi.org/10.1002/adma.201803388] [PMID: 30216564]
[93]
Qiao, Y.; Wang, Y.; Tian, H.; Li, M.; Jian, J.; Wei, Y.; Tian, Y.; Wang, D.Y.; Pang, Y.; Geng, X.; Wang, X.; Zhao, Y.; Wang, H.; Deng, N.; Jian, M.; Zhang, Y.; Liang, R.; Yang, Y.; Ren, T.L. Multilayer graphene epidermal electronic skin. ACS Nano, 2018, 12(9), 8839-8846.
[http://dx.doi.org/10.1021/acsnano.8b02162] [PMID: 30040381]
[94]
Qiao, Y.; Wang, Y.; Jian, J.; Li, M.; Jiang, G.; Li, X.; Deng, G.; Ji, S.; Wei, Y.; Pang, Y.; Wu, Q.; Tian, H.; Yang, Y.; Wu, X.; Ren, T.L. Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon, 2020, 156, 253-260.
[http://dx.doi.org/10.1016/j.carbon.2019.08.032]
[95]
Shi, J.; Wang, L.; Dai, Z.; Zhao, L.; Du, M.; Li, H.; Fang, Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small, 2018, 14(27), e1800819.
[http://dx.doi.org/10.1002/smll.201800819] [PMID: 29847706]
[96]
Jia, J.; Huang, G.; Deng, J.; Pan, K. Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale, 2019, 11(10), 4258-4266.
[http://dx.doi.org/10.1039/C8NR08503J] [PMID: 30565627]
[97]
Hosseindokht, Z.; Mohammadpour, R.; Asadian, E.; Paryavi, M.; Rafii-Tabar, H.; Sasanpour, P. Low cost flexible pressure sensor using laser scribed GO/RGO periodic structure for electronic skin applications. Superlattices Microstruct., 2020, 140, 140.
[http://dx.doi.org/10.1016/j.spmi.2020.106470]
[98]
Cai, Y.; Shen, J.; Ge, G.; Zhang, Y.; Jin, W.; Huang, W.; Shao, J.; Yang, J.; Dong, X. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano, 2018, 12(1), 56-62.
[http://dx.doi.org/10.1021/acsnano.7b06251] [PMID: 29202226]
[99]
Wang, K.; Lou, Z.; Wang, L.; Zhao, L.; Zhao, S.; Wang, D.; Han, W.; Jiang, K.; Shen, G. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 2019, 13(8), 9139-9147.
[http://dx.doi.org/10.1021/acsnano.9b03454] [PMID: 31330103]
[100]
Zhang, J.; Wan, L.; Gao, Y.; Fang, X.; Lu, T.; Pan, L.; Xuan, F. Highly stretchable and self-healable mxene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater., 2019, 5(7), 1900285.
[http://dx.doi.org/10.1002/aelm.201900285]
[101]
Guo, Y.; Zhong, M.; Fang, Z.; Wan, P.; Yu, G. A wearable transient pressure sensor made with mxene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett., 2019, 19(2), 1143-1150.
[http://dx.doi.org/10.1021/acs.nanolett.8b04514] [PMID: 30657695]
[102]
Fu, X.; Wang, L.; Zhao, L.; Yuan, Z.; Zhang, Y.; Wang, D.; Wang, D.; Li, J.; Li, D.; Shulga, V.; Shen, G.; Han, W. Controlled assembly of mxene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater., 2021, 31(17), 2010533.
[http://dx.doi.org/10.1002/adfm.202010533]
[103]
Cai, Y.W.; Zhang, X.N.; Wang, G.G.; Li, G.Z.; Zhao, D.Q.; Sun, N.; Li, F.; Zhang, H.Y.; Han, J.C.; Yang, Y. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy, 2021, 81, 81.
[http://dx.doi.org/10.1016/j.nanoen.2020.105663]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy