Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Review Article

A Critical Review on Recent Heterocyclics Identified for Anti-Leishmanial Therapy

Author(s): Swati Rathore, Adarsh Sahu*, Ram Kishore Agrawal and Asmita Gajbhiye Patil*

Volume 16, Issue 2, 2022

Published on: 21 July, 2022

Page: [81 - 105] Pages: 25

DOI: 10.2174/2212796816666220328130800

Price: $65

Abstract

Background: Leishmaniasis is a multifaceted disease that is prevalent worldwide. It is an epidemic, tropical/subtropical disease caused by macrophage infection by compulsive leishmania genus intracellular parasites affecting millions of people across the globe.

Methods: The demand for effective and safe molecules in the field of leishmaniasis is still an active research area. The lack of widely effective anti-leishmanial drugs, therefore, means a critical need for the production of modern, effective, affordable, and safe drugs for leishmaniasis care. In the recent past, many new pharmacophores have been synthesized and evaluated for their antileishmanial activity.

Conclusion: Many important heterocycles have proved to be effective against various leishmanial strains in terms of both safety and efficacy. In this article, we have attempted to review the different pharmacophores discovered in the past few years with the potential anti-leishmanial property.

Keywords: Anti-leishmanial activity, targets, pharmacophore, heterocyclic, TRND, chemotherapy.

Graphical Abstract
[1]
Singh N, Mishra BB, Bajpai S, Singh RK, Tiwari VK. Natural product based leads to fight against leishmaniasis. Bioorg Med Chem 2014; 22(1): 18-45.
[http://dx.doi.org/10.1016/j.bmc.2013.11.048] [PMID: 24355247]
[2]
Kamhawi S. Phlebotomine sand flies and Leishmania parasites: Friends or foes? Trends Parasitol 2006; 22(9): 439-45.
[http://dx.doi.org/10.1016/j.pt.2006.06.012] [PMID: 16843727]
[3]
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: A review. F1000 Res 2017; 6: 750.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[4]
Second W. Report on neglected tropical disease. Sustaining the drive to overcome the global impact of neglected tropical disease. leishmaniasis. Diseases 2013; 67-71.
[5]
Nascimento ET, Moura ML, Queiroz JW, et al. The emergence of concurrent HIV-1/AIDS and visceral leishmaniasis in Northeast Brazil. Trans R Soc Trop Med Hyg 2011; 105(5): 298-300.
[http://dx.doi.org/10.1016/j.trstmh.2011.01.006] [PMID: 21474157]
[6]
Sahu A, Kumar D, Agrawal RK. Anti-leishmanial drug discovery: Synthetic methods, chemical characteristics, and biological potential of quinazolines and its derivatives. Anti-Inflam Anti-Aller Agents Med Chem 2017; 16(1): 3-32.
[7]
Bray DP, Hamilton JG. Insecticide-impregnated netting as a potential tool for long-lasting control of the leishmaniasis vector Lutzomyia longipalpis in animal shelters. Parasit Vectors 2013; 6(1): 133.
[http://dx.doi.org/10.1186/1756-3305-6-133] [PMID: 23642213]
[8]
Mishra S, Das D, Sahu A, et al. Electronegativity in substituted-4 (H)-quinazolinones causes anxiolysis without a sedative-hypnotic adverse reaction in female Wistar rats. Cent Nerv Syst Agents Med Chem 2020; 20(1): 26-40.
[9]
Chaves LF, Calzada JE, Rigg C, Valderrama A, Gottdenker NL, Saldaña A. Leishmaniasis sand fly vector density reduction is less marked in destitute housing after insecticide thermal fogging. Parasit Vectors 2013; 6(1): 164.
[http://dx.doi.org/10.1186/1756-3305-6-164] [PMID: 23742709]
[10]
Topuzogullari M, Cakir Koc R, Dincer Isoglu S, et al. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis. J Biomed Sci 2013; 20(1): 35.
[http://dx.doi.org/10.1186/1423-0127-20-35] [PMID: 23731716]
[11]
Kaur J, Kaur T, Kaur S. Studies on the protective efficacy and immunogenicity of Hsp70 and Hsp83 based vaccine formulations in Leishmania donovani infected BALB/c mice. Acta Trop 2011; 119(1): 50-6.
[http://dx.doi.org/10.1016/j.actatropica.2011.04.007] [PMID: 21530477]
[12]
Abdian N, Gholami E, Zahedifard F, Safaee N, Rafati S. Evaluation of DNA/DNA and prime-boost vaccination using LPG3 against Leishmania major infection in susceptible BALB/c mice and its antigenic properties in human leishmaniasis. Exp Parasitol 2011; 127(3): 627-36.
[http://dx.doi.org/10.1016/j.exppara.2010.12.007] [PMID: 21187087]
[13]
Martínez Salazar MB, Delgado Domínguez J, Silva Estrada J, González Bonilla C, Becker I. Vaccination with Leishmania mexicana LPG induces PD-1 in CD8+ and PD-L2 in macrophages thereby suppressing the immune response: A model to assess vaccine efficacy. Vaccine 2014; 32(11): 1259-65.
[http://dx.doi.org/10.1016/j.vaccine.2014.01.016] [PMID: 24462405]
[14]
Ait-Oudhia K, Gazanion E, Oury B, Vergnes B, Sereno D. The fitness of antimony-resistant Leishmania parasites: Lessons from the field. Trends Parasitol 2011; 27(4): 141-2.
[http://dx.doi.org/10.1016/j.pt.2010.12.003] [PMID: 21216196]
[15]
Adam GK, Abdulla MA, Ahmed AA, Adam I. Maternal and perinatal outcomes of visceral leishmaniasis (kala-azar) treated with sodium stibogluconate in eastern Sudan. Int J Gynaecol Obstet 2009; 107(3): 208-10.
[http://dx.doi.org/10.1016/j.ijgo.2009.08.002] [PMID: 19766208]
[16]
Dorlo TP, Kager PA. Comment on: Cutaneous and mucocutaneous leishmaniasis in Tigray, Northern Ethiopia: Clinical aspects and therapeutic concerns. Trans R Soc Trop Med Hyg 2010; 104(1): 84-5.
[http://dx.doi.org/10.1016/j.trstmh.2009.07.022] [PMID: 19836815]
[17]
Bray PG, Barrett MP, Ward SA, de Koning HP. Pentamidine uptake and resistance in pathogenic protozoa: Past, present and future. Trends Parasitol 2003; 19(5): 232-9.
[http://dx.doi.org/10.1016/S1471-4922(03)00069-2] [PMID: 12763430]
[18]
Ben Salah A, Buffet PA, Morizot G, et al. WR279,396, a third generation aminoglycoside ointment for the treatment of Leishmania major cutaneous leishmaniasis: A phase 2, randomized, double blind, placebo controlled study. PLoS Negl Trop Dis 2009; 3(5): e432.
[http://dx.doi.org/10.1371/journal.pntd.0000432] [PMID: 19415122]
[19]
Sangshetti JN, Khan FA, Kulkarni AA, Arote R, Patil RH. Antileishmanial drug discovery: Comprehensive review of the last 10 years. RSC Advances 2015; 5(41): 32376-415.
[http://dx.doi.org/10.1039/C5RA02669E]
[20]
Sundar S, Sinha PK, Rai M, et al. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: An open-label, non-inferiority, randomised controlled trial. Lancet 2011; 377(9764): 477-86.
[http://dx.doi.org/10.1016/S0140-6736(10)62050-8] [PMID: 21255828]
[21]
Sahu A, Sahu P, Agrawal R. A recent review on drug modification using 1, 2, 3-triazole. Curr Chem Biol 2020; 14(2): 71-87.
[http://dx.doi.org/10.2174/2212796814999200807214519]
[22]
Nazarian Z, Emami S, Heydari S, et al. Novel antileishmanial chalconoids: Synthesis and biological activity of 1- or 3-(6-chloro-2H-chromen-3-yl)propen-1-ones. Eur J Med Chem 2010; 45(4): 1424-9.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.046] [PMID: 20074836]
[23]
Foroumadi A, Emami S, Sorkhi M, et al. Chromene-based synthetic chalcones as potent antileishmanial agents: Synthesis and biological activity. Chem Biol Drug Des 2010; 75(6): 590-6.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00959.x] [PMID: 20337782]
[24]
de Mello TF, Bitencourt HR, Pedroso RB, Aristides SM, Lonardoni MV, Silveira TG. Leishmanicidal activity of synthetic chalcones in leishmania (Viannia) braziliensis. Exp Parasitol 2014; 136: 27-34.
[http://dx.doi.org/10.1016/j.exppara.2013.11.003] [PMID: 24269198]
[25]
Gupta S, Shivahare R, Korthikunta V, Singh R, Gupta S, Tadigoppula N. Synthesis and biological evaluation of chalcones as potential antileishmanial agents. Eur J Med Chem 2014; 81: 359-66.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.034] [PMID: 24858541]
[26]
Insuasty B, Ramírez J, Becerra D, et al. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Med Chem 2015; 93: 401-13.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.040] [PMID: 25725376]
[27]
Sousa-Batista AJ, Philipon CIMS, de Souza Albernaz M, Pinto SR, Rossi-Bergmann B, Santos-Oliveira R. New chalcone compound as a promising antileishmanial drug for an old neglected disease: Biological evaluation using radiolabelled biodistribution. J Glob Antimicrob Resist 2018; 13: 139-42.
[http://dx.doi.org/10.1016/j.jgar.2017.11.012] [PMID: 29196220]
[28]
Ortalli M, Ilari A, Colotti G, et al. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Eur J Med Chem 2018; 152: 527-41.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.057] [PMID: 29758517]
[29]
Bernardino AM, Gomes AO, Charret KS, et al. Synthesis and leishmanicidal activities of 1-(4-X-phenyl)-N′-[(4-Y-phenyl) methylene]-1H-pyrazole-4-carbohydrazides. Eur J Med Chem 2006; 41(1): 80-7.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.007] [PMID: 16300859]
[30]
Dardari Z, Lemrani M, Sebban A, et al. Antileishmanial and antibacterial activity of a new pyrazole derivative designated 4-[2-(1-(ethylamino)-2-methyl- propyl)phenyl]-3-(4-methyphenyl)-1-phenyl pyrazole. Arch Pharm (Weinheim) 2006; 339(6): 291-8.
[http://dx.doi.org/10.1002/ardp.200500266] [PMID: 16619283]
[31]
dos Santos MS, Oliveira ML, Bernardino AM, et al. Synthesis and antileishmanial evaluation of 1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazole derivatives. Bioorg Med Chem Lett 2011; 21(24): 7451-4.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.134] [PMID: 22055204]
[32]
Santos MS, Gomes AO, Bernardino AM, et al. Synthesis and anti-leishmanial activity of new 1-aryl-1H-pyrazole-4-carboximidamides derivatives. J Braz Chem Soc 2011; 22(2): 352-8.
[http://dx.doi.org/10.1590/S0103-50532011000200022]
[33]
Tuha A, Bekhit AA, Seid Y. Screening of some pyrazole derivatives as promising anti-leishmanial agent. Afr J Pharm Pharmacol 2017; 11(2): 32-7.
[http://dx.doi.org/10.5897/AJPP2016.4401]
[34]
Srinivas N, Palne S. Nishi, Gupta S, Bhandari K. Aryloxy cyclohexyl imidazoles: A novel class of antileishmanial agents. Bioorg Med Chem Lett 2009; 19(2): 324-7.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.094] [PMID: 19091566]
[35]
Hussain T, Siddiqui HL. Zia-ur-Rehman M, Masoom Yasinzai M, Parvez M. Anti-oxidant, anti-fungal and anti-leishmanial activities of novel 3-[4-(1H-imidazol-1-yl) phenyl]prop-2-en-1-ones. Eur J Med Chem 2009; 44(11): 4654-60.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.038] [PMID: 19664864]
[36]
Poorrajab F, Ardestani SK, Emami S, Behrouzi-Fardmoghadam M, Shafiee A, Foroumadi A. Nitroimidazolyl-1,3,4-thiadiazole-based anti-leishmanial agents: Synthesis and in vitro biological evaluation. Eur J Med Chem 2009; 44(4): 1758-62.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.039] [PMID: 18485538]
[37]
Shokri A, Emami S, Fakhar M, Teshnizi SH, Keighobadi M. In vitro antileishmanial activity of novel azoles (3-imidazolylflavanones) against promastigote and amastigote stages of Leishmania major. Acta Trop 2017; 167: 73-8.
[http://dx.doi.org/10.1016/j.actatropica.2016.12.027] [PMID: 28017860]
[38]
Shokri A, Abastabar M, Keighobadi M, et al. Promising antileishmanial activity of novel imidazole antifungal drug luliconazole against Leishmania major: In vitro and in silico studies. J Glob Antimicrob Resist 2018; 14: 260-5.
[http://dx.doi.org/10.1016/j.jgar.2018.05.007] [PMID: 29793051]
[39]
Mayence A, Pietka A, Collins MS, et al. Novel bisbenzimidazoles with antileishmanial effectiveness. Bioorg Med Chem Lett 2008; 18(8): 2658-61.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.020] [PMID: 18367395]
[40]
Tonelli M, Gabriele E, Piazza F, et al. Benzimidazole derivatives endowed with potent antileishmanial activity. J Enzyme Inhib Med Chem 2018; 33(1): 210-26.
[http://dx.doi.org/10.1080/14756366.2017.1410480] [PMID: 29233048]
[41]
De LL, Ferro S, Buemi MR, et al. Discovery of benzimidazole-based L. mexicana cysteine protease CPB2. 8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem Biol Drug Des 2018.
[42]
Sánchez-Salgado JC, Bilbao-Ramos P, Dea-Ayuela MA, et al. Systematic search for benzimidazole compounds and derivatives with antileishmanial effects. Mol Divers 2018; 22(4): 779-90.
[http://dx.doi.org/10.1007/s11030-018-9830-7] [PMID: 29748853]
[43]
Suryawanshi SN, Tiwari A, Kumar S, et al. Chemotherapy of leishmaniasis. Part XII: Design, synthesis and bioevaluation of novel triazole integrated phenyl heteroterpenoids as antileishmanial agents. Bioorg Med Chem Lett 2013; 23(10): 2925-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.055] [PMID: 23582274]
[44]
El-Saghier AM, Mohamed MA, Abdalla OA, Kadry AM. Utility of amino acid coupled 1, 2, 4-triazoles in organic synthesis: Synthesis of some new anti-leishmainal agents. Bull Chem Soc Ethiop 2018; 32(3): 559-70.
[http://dx.doi.org/10.4314/bcse.v32i3.14]
[45]
Alipour E, Emami S, Yahya-Meymandi A, et al. Synthesis and antileishmanial activity of 5-(5-nitroaryl)-2-substituted-thio-1,3,4-thiadiazoles. J Enzyme Inhib Med Chem 2011; 26(1): 123-8.
[http://dx.doi.org/10.3109/14756361003733654] [PMID: 20578974]
[46]
Sahu A, Agrawal RK, Pandey R. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency. Bioorg Chem 2019; 88: 102939.
[http://dx.doi.org/10.1016/j.bioorg.2019.102939] [PMID: 31028993]
[47]
Tipparaju SK, Joyasawal S, Pieroni M, Kaiser M, Brun R, Kozikowski AP. In pursuit of natural product leads: Synthesis and biological evaluation of 2-[3-hydroxy-2-[(3-hydroxypyridine-2-carbonyl)amino]phenyl]benzoxazole-4-carboxylic acid (A-33853) and its analogues: Discovery of N-(2-benzoxazol-2-ylphenyl)benzamides as novel antileishmanial chemotypes. J Med Chem 2008; 51(23): 7344-7.
[http://dx.doi.org/10.1021/jm801241n] [PMID: 18989953]
[48]
Verma A, Srivastava S, Sane SA, et al. Antileishmanial activity of benzocycloalkyl azole oximino ethers: The conformationally constraint analogues of oxiconazole. Acta Trop 2011; 117(2): 157-60.
[http://dx.doi.org/10.1016/j.actatropica.2010.10.011] [PMID: 21078278]
[49]
Napolitano HB, Silva M, Ellena J, et al. Aurapten, a coumarin with growth inhibition against Leishmania major promastigotes. Braz J Med Biol Res 2004; 37(12): 1847-52.
[http://dx.doi.org/10.1590/S0100-879X2004001200010] [PMID: 15558191]
[50]
Iranshahi M, Arfa P, Ramezani M, et al. Sesquiterpene coumarins from Ferula szowitsiana and in vitro antileishmanial activity of 7-prenyloxycoumarins against promastigotes. Phytochemistry 2007; 68(4): 554-61.
[http://dx.doi.org/10.1016/j.phytochem.2006.11.002] [PMID: 17196626]
[51]
Brenzan MA, Nakamura CV, Prado Dias Filho B, Ueda-Nakamura T, Young MC, Aparício Garcia Cortez D. Antileishmanial activity of crude extract and coumarin from Calophyllum brasiliense leaves against Leishmania amazonensis. Parasitol Res 2007; 101(3): 715-22.
[http://dx.doi.org/10.1007/s00436-007-0542-7] [PMID: 17483964]
[52]
Arango V, Robledo S, Séon-Méniel B, et al. Coumarins from Galipea panamensis and their activity against Leishmania panamensis. J Nat Prod 2010; 73(5): 1012-4.
[http://dx.doi.org/10.1021/np100146y] [PMID: 20423106]
[53]
Zaheer Z, Khan FA, Sangshetti JN, Patil RH. Efficient one-pot synthesis, molecular docking and in silico ADME prediction of bis-(4-hydroxycoumarin-3-yl) methane derivatives as antileishmanial agents. EXCLI J 2015; 14: 935-47.
[PMID: 26839526]
[54]
Mandlik V, Patil S, Bopanna R, Basu S, Singh S. Biological activity of coumarin derivatives as anti-leishmanial agents. PLoS One 2016; 11(10): e0164585.
[http://dx.doi.org/10.1371/journal.pone.0164585] [PMID: 27768694]
[55]
Sangshetti JN, Kalam Khan FA, Kulkarni AA, et al. Antileishmanial activity of novel indolyl-coumarin hybrids: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg Med Chem Lett 2016; 26(3): 829-35.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.085] [PMID: 26778149]
[56]
Zaheer Z, Khan FA, Sangshetti JN, Patil RH. Expeditious synthesis, anti-leishmanial and antioxidant activities of novel 3-substituted-4-hydroxycoumarin derivatives. Chin Chem Lett 2016; 27(2): 287-94.
[http://dx.doi.org/10.1016/j.cclet.2015.10.028]
[57]
Loiseau PM, Gupta S, Verma A, et al. in vitro activities of new 2-substituted quinolines against Leishmania donovani. Antimicrob Agents Chemother 2011; 55(4): 1777-80.
[http://dx.doi.org/10.1128/AAC.01299-10] [PMID: 21220526]
[58]
Carmo AM, Silva FM, Machado PA, et al. Synthesis of 4-aminoquinoline analogues and their platinum(II) complexes as new antileishmanial and antitubercular agents. Biomed Pharmacother 2011; 65(3): 204-9.
[http://dx.doi.org/10.1016/j.biopha.2011.01.003] [PMID: 21602021]
[59]
Paloque L, Verhaeghe P, Casanova M, et al. Discovery of a new antileishmanial hit in 8-nitroquinoline series. Eur J Med Chem 2012; 54: 75-86.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.029] [PMID: 22608675]
[60]
Gopinath VS, Pinjari J, Dere RT, et al. Design, synthesis and biological evaluation of 2-substituted quinolines as potential antileishmanial agents. Eur J Med Chem 2013; 69: 527-36.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.028] [PMID: 24095747]
[61]
Sharma R, Pandey AK, Shivahare R, Srivastava K, Gupta S, Chauhan PM. Triazino indole-quinoline hybrid: A novel approach to antileishmanial agents. Bioorg Med Chem Lett 2014; 24(1): 298-301.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.018] [PMID: 24314395]
[62]
Antinarelli LM, Dias RM, Souza IO, et al. 4-Aminoquinoline derivatives as potential antileishmanial agents. Chem Biol Drug Des 2015; 86(4): 704-14.
[http://dx.doi.org/10.1111/cbdd.12540] [PMID: 25682728]
[63]
Hernández-Chinea C, Carbajo E, Sojo F, et al. In vitro activity of synthetic tetrahydroindeno[2,1-c]quinolines on Leishmania mexicana. Parasitol Int 2015; 64(6): 479-83.
[http://dx.doi.org/10.1016/j.parint.2015.06.011] [PMID: 26148815]
[64]
Kieffer C, Cohen A, Verhaeghe P, et al. Looking for new anti-leishmanial derivatives in 8-nitroquinolin-2 (1H)-one series. Eur J Med Chem 2015; 92: 282-94.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.056] [PMID: 25559208]
[65]
Paloque L, Hemmert C, Valentin A, Gornitzka H. Synthesis, characterization, and antileishmanial activities of gold(I) complexes involving quinoline functionalized N-heterocyclic carbenes. Eur J Med Chem 2015; 94: 22-9.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.046] [PMID: 25747497]
[66]
Costa Duarte M, dos Reis Lage LM, Lage DP, et al. An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis. Vet Parasitol 2016; 217: 81-8.
[http://dx.doi.org/10.1016/j.vetpar.2016.01.002] [PMID: 26827866]
[67]
Soares R. M.R Antinarelli L, de O Souza I, et al. in vivo antimalarial and in vitro antileishmanial activity of 4-aminoquinoline derivatives hybridized to isoniazid or sulfa or hydrazine groups. Lett Drug Des Discov 2017; 14(5): 597-604.
[http://dx.doi.org/10.2174/1570180813666160927113743]
[68]
Calixto SL, Glanzmann N, Xavier Silveira MM, et al. Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp. Chem Biol Interact 2018; 293: 141-51.
[http://dx.doi.org/10.1016/j.cbi.2018.08.003] [PMID: 30098941]
[69]
Koley S, Tiwari N, Singh RK, Singh MS. 2-Mercaptoquinoline analogues: A potent antileishmanial agent. ChemistrySelect 2018; 3(6): 1688-92.
[http://dx.doi.org/10.1002/slct.201703095]
[70]
Madkour HM, El-Hashash MA, Salem MS, Mahmoud AS, Al Kahraman YM. Design, synthesis, and in vitro antileishmanial and antitumor activities of new tetrahydroquinolines. J Heterocycl Chem 2018; 55(2): 391-401.
[http://dx.doi.org/10.1002/jhet.3046]
[71]
da Rocha Pissurno AP, Santos FA, Candido AC, Magalhães LG, de Laurentiz RD. In vitro leishmanicidal activity of lactone 1, 4-dihydroquinoline derivatives against leishmania (leishmania) amazonensis. Med Chem Res 2018; 27(9): 2224-9.
[http://dx.doi.org/10.1007/s00044-018-2231-8]
[72]
Silva EJ, Bezerra-Souza A, Passero LF, et al. Synthesis, leishmanicidal activity, structural descriptors and structure-activity relationship of quinoline derivatives. Future Med Chem 2018; 10(17): 2069-85.
[http://dx.doi.org/10.4155/fmc-2018-0124] [PMID: 30066582]
[73]
Upadhyay A, Kushwaha P, Gupta S, et al. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur J Med Chem 2018; 154: 172-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[74]
Valdivieso E, Mejías F, Torrealba C, et al. In vitro 4-Aryloxy-7-chloroquinoline derivatives are effective in mono- and combined therapy against Leishmania donovani and induce mitocondrial membrane potential disruption. Acta Trop 2018; 183: 36-42.
[http://dx.doi.org/10.1016/j.actatropica.2018.03.023] [PMID: 29604246]
[75]
Agarwal KC, Sharma V, Shakya N, Gupta S. Design and synthesis of novel substituted quinazoline derivatives as antileishmanial agents. Bioorg Med Chem Lett 2009; 19(18): 5474-7.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.081] [PMID: 19692240]
[76]
Kumar S, Shakya N, Gupta S, Sarkar J, Sahu DP. Synthesis and biological evaluation of novel 4-(hetero) aryl-2-piperazino quinazolines as anti-leishmanial and anti-proliferative agents. Bioorg Med Chem Lett 2009; 19(9): 2542-5.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.020] [PMID: 19328690]
[77]
Sharma M, Chauhan K, Shivahare R, et al. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents. J Med Chem 2013; 56(11): 4374-92.
[http://dx.doi.org/10.1021/jm400053v] [PMID: 23611626]
[78]
Fleita DH, Mohareb RM, Sakka OK. Antitumor and antileishmanial evaluation of novel heterocycles derived from quinazoline scaffold: A molecular modeling approach. Med Chem Res 2013; 22(5): 2207-21.
[http://dx.doi.org/10.1007/s00044-012-0213-9]
[79]
Van Horn KS, Zhu X, Pandharkar T, et al. Antileishmanial activity of a series of N2,N4-disubstituted quinazoline-2,4-diamines. J Med Chem 2014; 57(12): 5141-56.
[http://dx.doi.org/10.1021/jm5000408] [PMID: 24874647]
[80]
Birhan YS, Bekhit AA, Hymete A. Synthesis and antileishmanial evaluation of some 2,3-disubstituted-4(3H)-quinazolinone derivatives. Org Med Chem Lett 2014; 4(1): 10.
[http://dx.doi.org/10.1186/s13588-014-0010-1] [PMID: 26548988]
[81]
Mendoza-Martínez C, Galindo-Sevilla N, Correa-Basurto J, et al. Antileishmanial activity of quinazoline derivatives: Synthesis, docking screens, molecular dynamic simulations and electrochemical studies. Eur J Med Chem 2015; 92: 314-31.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.051] [PMID: 25576738]
[82]
Zhu X, Van Horn KS, Barber MM, et al. SAR refinement of anti-leishmanial N2, N4-disubstituted quinazoline-2, 4-diamines. Bioorg Med Chem 2015; 23(16): 5182-9.
[http://dx.doi.org/10.1016/j.bmc.2015.02.020] [PMID: 25749014]
[83]
Barber MM. 2, 4-Disubstituted quinazolines with antileishmanial or antibacterial activity. MSc Thesis, University of South Florida 2015.
[84]
Giraud F, Loge C, Pagniez F, et al. Design, synthesis and evaluation of 3-(imidazol- 1-ylmethyl)indoles as antileishmanial agents. Part II. J Enzyme Inhib Med Chem 2009; 24(5): 1067-75.
[http://dx.doi.org/10.1080/14756360802610795] [PMID: 19555181]
[85]
Chauhan SS, Gupta L, Mittal M, Vishwakarma P, Gupta S, Chauhan PM. Synthesis and biological evaluation of indolyl glyoxylamides as a new class of antileishmanial agents. Bioorg Med Chem Lett 2010; 20(21): 6191-4.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.119] [PMID: 20850302]
[86]
Singh GS, Al-Kahraman YM, Mpadi D, Yasinzai M. Synthesis of N-(1-methyl-1H-indol-3-yl)methyleneamines and 3,3-diaryl-4-(1-methyl-1H-indol-3-yl)azetidin-2-ones as potential antileishmanial agents. Bioorg Med Chem Lett 2012; 22(17): 5704-6.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.081] [PMID: 22832310]
[87]
Bharate SB, Bharate JB, Khan SI, et al. Discovery of 3, 3′-diindolylmethanes as potent anti-leishmanial agents. Eur J Med Chem 2013; 63: 435-43.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.024] [PMID: 23517732]
[88]
Scala A, Cordaro M, Grassi G, et al. Direct synthesis of C3-mono-functionalized oxindoles from N-unprotected 2-oxindole and their antileishmanial activity. Bioorg Med Chem 2014; 22(3): 1063-9.
[http://dx.doi.org/10.1016/j.bmc.2013.12.039] [PMID: 24433962]
[89]
Tiwari S, Kirar S, Banerjee UC, et al. Synthesis of N-substituted indole derivatives as potential antimicrobial and antileishmanial agents. Bioorg Chem 2020; 99: 103787.
[http://dx.doi.org/10.1016/j.bioorg.2020.103787] [PMID: 32251947]
[90]
Taha M, Ismail NH, Ali M, et al. Synthesis of indole-2-hydrazones in search of potential leishmanicidal agents. Med Chem Res 2014; 23(12): 5282-93.
[http://dx.doi.org/10.1007/s00044-014-1082-1]
[91]
Félix MB, de Souza ER, de Lima MDCA, et al. Antileishmanial activity of new thiophene-indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies. Bioorg Med Chem 2016; 24(18): 3972-7.
[http://dx.doi.org/10.1016/j.bmc.2016.04.057] [PMID: 27515718]
[92]
Pandey S, Chauhan SS, Shivahare R, et al. Identification of a diverse indole-2-carboxamides as a potent antileishmanial chemotypes. Eur J Med Chem 2016; 110: 237-45.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.028] [PMID: 26840364]
[93]
Taha M, Uddin I, Gollapalli M, et al. Synthesis, anti-leishmanial and molecular docking study of bis-indole derivatives. BMC Chem 2019; 13(1): 102.
[http://dx.doi.org/10.1186/s13065-019-0617-4] [PMID: 31410413]
[94]
Porwal S, Gupta S, Chauhan PMS. Gem-Dithioacetylated indole derivatives as novel antileishmanial agents. Bioorg Med Chem Lett 2017; 27(20): 4643-6.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.018] [PMID: 28927767]
[95]
Stephens CE, Brun R, Salem MM, et al. The activity of diguanidino and ‘reversed’ diamidino 2,5-diarylfurans versus Trypanosoma cruzi and Leishmania donovani. Bioorg Med Chem Lett 2003; 13(12): 2065-9.
[http://dx.doi.org/10.1016/S0960-894X(03)00319-6] [PMID: 12781196]
[96]
Van Miert S, Van Dyck S, Schmidt TJ, et al. Antileishmanial activity, cytotoxicity and QSAR analysis of synthetic dihydrobenzofuran lignans and related benzofurans. Bioorg Med Chem 2005; 13(3): 661-9.
[http://dx.doi.org/10.1016/j.bmc.2004.10.058] [PMID: 15653333]
[97]
Wansi JD, Wandji J, Lallemand MC, et al. Anti-leishmanial furanosesquiterpene and triterpenoids from DrypeteschevalieriBeille (Euphorbiaceae). Bol Latinoam Caribe Plantas Med Aromat 2007; 6(1): 5-10.
[98]
Bouhlel A, Curti C, Dumètre A, et al. Synthesis and evaluation of original amidoximes as antileishmanial agents. Bioorg Med Chem 2010; 18(20): 7310-20.
[http://dx.doi.org/10.1016/j.bmc.2010.06.099] [PMID: 20833057]
[99]
Marrapu VK, Mittal M, Shivahare R, Gupta S, Bhandari K. Synthesis and evaluation of new furanyl and thiophenyl azoles as antileishmanial agents. Eur J Med Chem 2011; 46(5): 1694-700.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.021] [PMID: 21385661]
[100]
Tahghighi A, Marznaki FR, Kobarfard F, et al. Synthesis and antileishmanial activity of novel 5-(5-nitrofuran-2-y1)-1,3,4-thiadiazoles with piperazinyl-linked benzamidine substituents. Eur J Med Chem 2011; 46(6): 2602-8.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.053] [PMID: 21501907]
[101]
Reid CS, Farahat AA, Zhu X, Pandharkar T, Boykin DW, Werbovetz KA. Antileishmanial bis-arylimidamides: DB766 analogs modified in the linker region and bis-arylimidamide structure-activity relationships. Bioorg Med Chem Lett 2012; 22(22): 6806-10.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.037] [PMID: 22765899]
[102]
Sifontes-Rodríguez S, Monzote-Fidalgo L, Castañedo-Cancio N, et al. The efficacy of 2-nitrovinylfuran derivatives against Leishmania in vitro and in vivo. Mem Inst Oswaldo Cruz 2015; 110(2): 166-73.
[http://dx.doi.org/10.1590/0074-02760140324] [PMID: 25946239]
[103]
Foroumadi A, Adibi H, Kabudanian Ardestani S, Shirooie S, Bozorgomid A, Jafari A. Synthesis and leishmanicidal Activity of 1-[5-(5-nitrofuran-2-yl)-1, 3, 4-thiadiazole-2-yl]-4-benzoylepipe- razines. Iran J Pharm Res 2017; 16(3): 904-9.
[PMID: 29201081]
[104]
Patil SR, Bollikonda S, Patil RH, et al. Microwave-assisted synthesis of novel 5-substituted benzylidene amino-2-butyl benzofuran-3-yl-4-methoxyphenyl methanones as antileishmanial and antioxidant agents. Bioorg Med Chem Lett 2018; 28(3): 482-7.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.013] [PMID: 29258770]
[105]
Kumar A, Katiyar SB, Gupta S, Chauhan PM. Syntheses of new substituted triazino tetrahydroisoquinolines and β-carbolines as novel antileishmanial agents. Eur J Med Chem 2006; 41(1): 106-13.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.007] [PMID: 16356594]
[106]
Sunduru N, Agarwal A, Katiyar SB, et al. Synthesis of 2,4,6-trisubstituted pyrimidine and triazine heterocycles as antileishmanial agents. Bioorg Med Chem 2006; 14(23): 7706-15.
[http://dx.doi.org/10.1016/j.bmc.2006.08.009] [PMID: 16945542]
[107]
Sunduru N. Nishi, Palne S, Chauhan PM, Gupta S. Synthesis and antileishmanial activity of novel 2,4,6-trisubstituted pyrimidines and 1,3,5-triazines. Eur J Med Chem 2009; 44(6): 2473-81.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.016] [PMID: 19217698]
[108]
Gupta L, Sunduru N, Verma A, et al. Synthesis and biological evaluation of new [1,2,4]triazino[5,6-b]indol-3-ylthio-1,3,5-triazines and [1,2,4]triazino[5,6-b]indol-3-ylthio-pyrimidines against Leishmania donovani. Eur J Med Chem 2010; 45(6): 2359-65.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.015] [PMID: 20371140]
[109]
Chauhan K, Sharma M, Shivahare R, et al. Discovery of triazine mimetics as potent antileishmanial agents. ACS Med Chem Lett 2013; 4(11): 1108-13.
[http://dx.doi.org/10.1021/ml400317e] [PMID: 24900613]
[110]
Baréa P, Barbosa VA, Bidóia DL, et al. Synthesis, antileishmanial activity and mechanism of action studies of novel β-carboline-1,3,5-triazine hybrids. Eur J Med Chem 2018; 150: 579-90.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.014] [PMID: 29549842]
[111]
Khattab SN, Khalil HH, Bekhit AA, et al. 1,3,5-Triazino peptide derivatives: Synthesis, characterization, and preliminary antileishmanial activity. ChemMedChem 2018; 13(7): 725-35.
[http://dx.doi.org/10.1002/cmdc.201700770] [PMID: 29388337]
[112]
de Mello H, Echevarria A, Bernardino AM, Canto-Cavalheiro M, Leon LL. Antileishmanial pyrazolopyridine derivatives: Synthesis and structure-activity relationship analysis. J Med Chem 2004; 47(22): 5427-32.
[http://dx.doi.org/10.1021/jm0401006] [PMID: 15481980]
[113]
Agarwal A. Ramesh, Ashutosh, Goyal N, Chauhan PM, Gupta S. Dihydropyrido[2,3-d]pyrimidines as a new class of antileishmanial agents. Bioorg Med Chem 2005; 13(24): 6678-84.
[http://dx.doi.org/10.1016/j.bmc.2005.07.043] [PMID: 16126395]
[114]
Musonda CC, Whitlock GA, Witty MJ, Brun R, Kaiser M. Synthesis and evaluation of 2-pyridyl pyrimidines with in vitro antiplasmodial and antileishmanial activity. Bioorg Med Chem Lett 2009; 19(2): 401-5.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.098] [PMID: 19091562]
[115]
Bharate SB, Thompson CM. Antimicrobial, antimalarial, and antileishmanial activities of mono- and bis-quaternary pyridinium compounds. Chem Biol Drug Des 2010; 76(6): 546-51.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01035.x] [PMID: 21040494]
[116]
Pandey VP, Bisht SS, Mishra M, et al. Synthesis and molecular docking studies of 1-phenyl-4-glycosyl-dihydropyridines as potent antileishmanial agents. Eur J Med Chem 2010; 45(6): 2381-8.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.018] [PMID: 20199824]
[117]
Alptuzun V, Cakiroglu G, Limoncu ME, Erac B, Hosgor-Limoncu M, Erciyas E. Synthesis and antileishmanial activity of novel pyridinium-hydrazone derivatives. J Enzyme Inhib Med Chem 2013; 28(5): 960-7.
[http://dx.doi.org/10.3109/14756366.2012.697058] [PMID: 22803671]
[118]
Caballero E, Manzano JI, Puebla P, Castanys S, Gamarro F, San Feliciano A. Oxazolo[3,2-a]pyridine. A new structural scaffold for the reversal of multi-drug resistance in leishmania. Bioorg Med Chem Lett 2012; 22(19): 6272-5.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.100] [PMID: 22939695]
[119]
Pinheiro LC, Tonioni R, Sathler PC, et al. Searching for new anti-leishmanial lead drug candidates: Synthesis, biological and theoretical evaluations of promising thieno [2, 3-b] pyridine derivatives. J Microbiol Antimicrob 2012; 4(1): 32-9.
[120]
Marhadour S, Marchand P, Pagniez F, et al. Synthesis and biological evaluation of 2,3-diarylimidazo[1,2-a]pyridines as antileishmanial agents. Eur J Med Chem 2012; 58: 543-56.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.048] [PMID: 23164660]
[121]
Castera-Ducros C, Paloque L, Verhaeghe P, et al. Targeting the human parasite Leishmania donovani: Discovery of a new promising anti-infectious pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Bioorg Med Chem 2013; 21(22): 7155-64.
[http://dx.doi.org/10.1016/j.bmc.2013.09.002] [PMID: 24080103]
[122]
Sangshetti JN, Shaikh RI, Khan FA, et al. Synthesis, antileishmanial activity and docking study of N′-substitutedbenzylidene-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetohydrazides. Bioorg Med Chem Lett 2014; 24(6): 1605-10.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.035] [PMID: 24513045]
[123]
Adam R, Bilbao-Ramos P, Abarca B, et al. Triazolopyridopyrimidines: An emerging family of effective DNA photocleavers. DNA binding. Antileishmanial activity. Org Biomol Chem 2015; 13(17): 4903-17.
[http://dx.doi.org/10.1039/C5OB00280J] [PMID: 25812028]
[124]
Khan FA, Zaheer Z, Sangshetti JN, Patil RH, Farooqui M. Antileishmanial evaluation of clubbed bis(indolyl)-pyridine derivatives: One-pot synthesis, in vitro biological evaluations and in silico ADME prediction. Bioorg Med Chem Lett 2017; 27(3): 567-73.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.018] [PMID: 28003139]
[125]
Anand D, Yadav PK, Patel OP, et al. Antileishmanial activity of pyrazolopyridine derivatives and their potential as an adjunct therapy with miltefosine. J Med Chem 2017; 60(3): 1041-59.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01447] [PMID: 28059524]
[126]
Medeiros AC, Borges JC, Becker KM, et al. Synthesis of new conjugates 1H-pyrazolo [3, 4-b] pyridine-phosphoramidate and evaluation against Leishmania amazonensis. J Braz Chem Soc 2018; 29(1): 159-67.
[http://dx.doi.org/10.21577/0103-5053.20170126]
[127]
Fersing C, Basmaciyan L, Boudot C, et al. Non-genotoxic 3-nitroimidazo [1, 2-a] pyridines are NTR1 substrates that display potent in vitro antileishmanial activity. ACS Med Chem Lett 2018; 10(1): 34-9.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00347] [PMID: 30655943]
[128]
Girault S, Grellier P, Berecibar A, et al. Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): Influence of the linker. J Med Chem 2000; 43(14): 2646-54.
[http://dx.doi.org/10.1021/jm990946n] [PMID: 10893302]
[129]
Di Giorgio C, Delmas F, Filloux N, et al. in vitro activities of 7-substituted 9-chloro and 9-amino-2-methoxyacridines and their bis- and tetra-acridine complexes against Leishmania infantum. Antimicrob Agents Chemother 2003; 47(1): 174-80.
[http://dx.doi.org/10.1128/AAC.47.1.174-180.2003] [PMID: 12499188]
[130]
Delmas F, Avellaneda A, Di Giorgio C, et al. Synthesis and antileishmanial activity of (1,3-benzothiazol-2-yl) amino-9-(10H)-acridinone derivatives. Eur J Med Chem 2004; 39(8): 685-90.
[http://dx.doi.org/10.1016/j.ejmech.2004.04.006] [PMID: 15276301]
[131]
Carole DG, Michel DM, Julien C, et al. Synthesis and antileishmanial activities of 4,5-di-substituted acridines as compared to their 4-mono-substituted homologues. Bioorg Med Chem 2005; 13(19): 5560-8.
[http://dx.doi.org/10.1016/j.bmc.2005.06.045] [PMID: 16081295]
[132]
Di Giorgio C, Shimi K, Boyer G, Delmas F, Galy JP. Synthesis and antileishmanial activity of 6-mono-substituted and 3,6-di-substituted acridines obtained by acylation of proflavine. Eur J Med Chem 2007; 42(10): 1277-84.
[http://dx.doi.org/10.1016/j.ejmech.2007.02.010] [PMID: 17418916]
[133]
Chtita S, Ghamali M, Hmamouchi R, et al. Investigation of antileishmanial activities of acridines derivatives against promastigotes and amastigotes form of parasites using quantitative structure activity relationship analysis. Adv Phys Chem 2016.
[http://dx.doi.org/10.1155/2016/5137289]
[134]
de Lima Serafim V, Félix MB, Frade Silva DK, et al. New thiophene-acridine compounds: Synthesis, antileishmanial activity, DNA binding, chemometric, and molecular docking studies. Chem Biol Drug Des 2018; 91(6): 1141-55.
[http://dx.doi.org/10.1111/cbdd.13176] [PMID: 29415325]
[135]
Van Bocxlaer K, Caridha D, Black C, et al. Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist 2019; 11: 129-38.
[http://dx.doi.org/10.1016/j.ijpddr.2019.02.002] [PMID: 30922847]
[136]
Wyllie S, Thomas M, Patterson S, et al. Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature 2018; 560(7717): 192-7.
[http://dx.doi.org/10.1038/s41586-018-0356-z] [PMID: 30046105]
[137]
Nagelkerken IS, Blaber SJ, Bouillon S, et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat Bot 2008; 89(2): 155-85.
[http://dx.doi.org/10.1016/j.aquabot.2007.12.007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy