Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Current Overview on the Potency of Natural Products for Modulating Myeloid-derived Suppressor Cells Dependent Cold Tumors

Author(s): RamaRao Malla*, Lalitha Pappu, Krishna Chaitanya Amajala and Mohammad Amjad Kamal

Volume 29, Issue 40, 2022

Published on: 13 May, 2022

Page: [6197 - 6216] Pages: 20

DOI: 10.2174/0929867329666220324143215

Price: $65

Abstract

Ample data pertaining to the use of MDSCs have been documented. However, the potency of natural products in targeting MDSCs in the light of the tumor immune microenvironment (TME) has not been discussed vividly. The current review is an amalgamation of the documented literature pertaining to the effectiveness of various natural products supported by in silico experimental data. The combination of bioinformatics to wet bench experimentation with natural products against cancer specifically targeting MDSCs can be a promising approach to mitigate cancer.

Keywords: Cold tumors, computational approaches, natural products, myeloid-derived suppressor cells, tumor immune microenvironment.

« Previous
[1]
Magen, A.; Nie, J.; Ciucci, T.; Tamoutounour, S.; Zhao, Y.; Mehta, M.; Tran, B.; McGavern, D.B.; Hannenhalli, S.; Bosselut, R. Single-cell profiling defines transcriptomic signatures specific to tumor-reactive versus virus-responsive CD4+ T cells. Cell Rep., 2019, 29(10), 3019-3032.
[http://dx.doi.org/10.1016/j.celrep.2019.10.131] [PMID: 31801070]
[2]
Fu, T.; Dai, L.-J.; Wu, S.-Y.; Xiao, Y.; Ma, D.; Jiang, Y.-Z.; Shao, Z.-M. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J. Hematol. Oncol., 2021, 14(1), 98.
[http://dx.doi.org/10.1186/s13045-021-01103-4] [PMID: 34172088]
[3]
Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_12] [PMID: 29344893]
[4]
Liu, C.C.; Steen, C.B.; Newman, A.M. Computational approaches for characterizing the tumor immune microenvironment. Immunology, 2019, 158(2), 70-84.
[http://dx.doi.org/10.1111/imm.13101] [PMID: 31347163]
[5]
Cable, J.; Greenbaum, B.; Pe’er, D.; Bollard, C.M.; Bruni, S.; Griffin, M.E.; Allison, J.P.; Wu, C.J.; Subudhi, S.K.; Mardis, E.R.; Brentjens, R.; Sosman, J.A.; Cemerski, S.; Zavitsanou, A.M.; Proia, T.; Egeblad, M.; Nolan, G.; Goswami, S.; Spranger, S.; Mackall, C.L. Frontiers in cancer immunotherapy-a symposium report. Ann. N. Y. Acad. Sci., 2021, 1489(1), 30-47.
[http://dx.doi.org/10.1111/nyas.14526] [PMID: 33184911]
[6]
Finck, A.; Gill, S.I.; June, C.H. Cancer immunotherapy comes of age and looks for maturity. Nat. Commun., 2020, 11(1), 3325.
[http://dx.doi.org/10.1038/s41467-020-17140-5] [PMID: 32620755]
[7]
Mbofung, R.M.; McKenzie, J.A.; Malu, S.; Zhang, M.; Peng, W.; Liu, C.; Kuiatse, I.; Tieu, T.; Williams, L.; Devi, S.; Ashkin, E.; Xu, C.; Huang, L.; Zhang, M.; Talukder, A.H.; Tripathi, S.C.; Khong, H.; Satani, N.; Muller, F.L.; Roszik, J.; Heffernan, T.; Allison, J.P.; Lizee, G.; Hanash, S.M.; Proia, D.; Amaria, R.; Davis, R.E.; Hwu, P. HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nat. Commun., 2017, 8(1), 451.
[http://dx.doi.org/10.1038/s41467-017-00449-z] [PMID: 28878208]
[8]
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[9]
Zhao, J.; Huang, J. Breast cancer immunology and immunotherapy: Targeting the programmed cell death protein-1/programmed cell death protein ligand-1. Chin. Med. J. (Engl.), 2020, 133(7), 853-862.
[http://dx.doi.org/10.1097/CM9.0000000000000710] [PMID: 32106121]
[10]
Gatti-Mays, M.E.; Balko, J.M.; Gameiro, S.R.; Bear, H.D.; Prabhakaran, S.; Fukui, J.; Disis, M.L.; Nanda, R.; Gulley, J.L.; Kalinsky, K.; Abdul Sater, H.; Sparano, J.A.; Cescon, D.; Page, D.B.; McArthur, H.; Adams, S.; Mittendorf, E.A. If we build it they will come: Targeting the immune response to breast cancer. NPJ Breast Cancer, 2019, 5(1), 37.
[http://dx.doi.org/10.1038/s41523-019-0133-7] [PMID: 31700993]
[11]
Goldberg, J.; Pastorello, R.G.; Vallius, T.; Davis, J.; Cui, Y.X.; Agudo, J.; Waks, A.G.; Keenan, T.; McAllister, S.S.; Tolaney, S.M.; Mittendorf, E.A.; Guerriero, J.L. The immunology of hormone receptor positive breast cancer. Front. Immunol., 2021, 12, 674192.
[http://dx.doi.org/10.3389/fimmu.2021.674192] [PMID: 34135901]
[12]
Revuri, V.; Rajendrakumar, S.K.; Park, M.S.; Mohapatra, A.; Uthaman, S.; Mondal, J.; Bae, W.K.; Park, I.K.; Lee, Y.K. Heat-confined tumor-docking reversible thermogel potentiates systemic antitumor immune response during near-infrared photothermal ablation in triple-negative breast cancer. Adv. Healthc. Mater., 2021, 10(21), e2100907.
[http://dx.doi.org/10.1002/adhm.202100907] [PMID: 34541833]
[13]
Giordano, G.; Parcesepe, P.; D’Andrea, M.R.; Coppola, L.; Di Raimo, T.; Remo, A.; Manfrin, E.; Fiorini, C.; Scarpa, A.; Amoreo, C.A.; Conciatori, F.; Milella, M.; Caruso, F.P.; Cerulo, L.; Porras, A.; Pancione, M. JAK/Stat5-mediated subtype-specific lymphocyte antigen 6 complex, locus G6D (LY6G6D) expression drives mismatch repair proficient colorectal cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 28.
[http://dx.doi.org/10.1186/s13046-018-1019-5] [PMID: 30670049]
[14]
Chen, C.; Li, A.; Sun, P.; Xu, J.; Du, W.; Zhang, J.; Liu, Y.; Zhang, R.; Zhang, S.; Yang, Z.; Tang, C.; Jiang, X. Efficiently restoring the tumoricidal immunity against resistant malignancies via an immune nanomodulator. J. Control. Release, 2020, 324, 574-585.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.039] [PMID: 32473178]
[15]
Rameshbabu, S.; Labadie, B.W.; Argulian, A.; Patnaik, A. Targeting innate immunity in cancer therapy. Vaccines (Basel), 2021, 9(2), 138.
[http://dx.doi.org/10.3390/vaccines9020138] [PMID: 33572196]
[16]
Mi, Y.; Guo, N.; Luan, J.; Cheng, J.; Hu, Z.; Jiang, P.; Jin, W.; Gao, X. The emerging role of myeloid-derived suppressor cells in the glioma immune suppressive microenvironment. Front. Immunol., 2020, 11, 737.
[http://dx.doi.org/10.3389/fimmu.2020.00737] [PMID: 32391020]
[17]
Derks, S.; de Klerk, L.K.; Xu, X.; Fleitas, T.; Liu, K.X.; Liu, Y.; Dietlein, F.; Margolis, C.; Chiaravalli, A.M.; Da Silva, A.C.; Ogino, S.; Akarca, F.G.; Freeman, G.J.; Rodig, S.J.; Hornick, J.L.; van Allen, E.; Li, B.; Liu, S.X.; Thorsson, V.; Bass, A.J. Characterizing diversity in the tumor-immune microenvironment of distinct subclasses of gastroesophageal adenocarcinomas. Ann. Oncol., 2020, 31(8), 1011-1020.
[http://dx.doi.org/10.1016/j.annonc.2020.04.011] [PMID: 32387455]
[18]
Duan, Q.; Zhang, H.; Zheng, J.; Zhang, L. Turning cold into hot: Firing up the tumor microenvironment. Trends Cancer, 2020, 6(7), 605-618.
[http://dx.doi.org/10.1016/j.trecan.2020.02.022] [PMID: 32610070]
[19]
Rahma, O.E.; Hodi, F.S. The intersection between tumor angiogenesis and immune suppression. Clin. Cancer Res., 2019, 25(18), 5449-5457.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1543] [PMID: 30944124]
[20]
Tong, N.; He, Z.; Ma, Y.; Wang, Z.; Huang, Z.; Cao, H.; Xu, L.; Zou, Y.; Wang, W.; Yi, C.; Yin, Z.; Wang, Q. Tumor associated macrophages, as the dominant immune cells, are an indispensable target for immunologically cold tumor-glioma therapy? Front. Cell Dev. Biol., 2021, 9, 706286.
[http://dx.doi.org/10.3389/fcell.2021.706286] [PMID: 34368156]
[21]
Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; Shukla, S.A.; Hu, Z.; Li, L.; Le, P.M.; Allesøe, R.L.; Richman, A.R.; Kowalczyk, M.S.; Abdelrahman, S.; Geduldig, J.E.; Charbonneau, S.; Pelton, K.; Iorgulescu, J.B.; Elagina, L.; Zhang, W.; Olive, O.; McCluskey, C.; Olsen, L.R.; Stevens, J.; Lane, W.J.; Salazar, A.M.; Daley, H.; Wen, P.Y.; Chiocca, E.A.; Harden, M.; Lennon, N.J.; Gabriel, S.; Getz, G.; Lander, E.S.; Regev, A.; Ritz, J.; Neuberg, D.; Rodig, S.J.; Ligon, K.L.; Suvà, M.L.; Wucherpfennig, K.W.; Hacohen, N.; Fritsch, E.F.; Livak, K.J.; Ott, P.A.; Wu, C.J.; Reardon, D.A. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565(7738), 234-239.
[http://dx.doi.org/10.1038/s41586-018-0792-9] [PMID: 30568305]
[22]
Melero, I.; Gato, M.; Shekarian, T.; Aznar, A.; Valsesia-Wittmann, S.; Caux, C.; Etxeberrria, I.; Teijeira, A.; Marabelle, A. Repurposing infectious disease vaccines for intratumoral immunotherapy. J. Immunother. Cancer, 2020, 8(1), e000443.
[http://dx.doi.org/10.1136/jitc-2019-000443] [PMID: 32102830]
[23]
Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol., 2019, 10, 168.
[http://dx.doi.org/10.3389/fimmu.2019.00168] [PMID: 30800125]
[24]
Tan, Y.S.; Sansanaphongpricha, K.; Prince, M.E.; Sun, D.; Wolf, G.T.; Lei, Y.L. Engineering vaccines to reprogram immunity against head and neck cancer. J. Dent. Res., 2018, 97(6), 627-634.
[http://dx.doi.org/10.1177/0022034518764416] [PMID: 29533731]
[25]
Newman, J.H.; Chesson, C.B.; Herzog, N.L.; Bommareddy, P.K.; Aspromonte, S.M.; Pepe, R.; Estupinian, R.; Aboelatta, M.M.; Buddhadev, S.; Tarabichi, S.; Lee, M.; Li, S.; Medina, D.J.; Giurini, E.F.; Gupta, K.H.; Guevara-Aleman, G.; Rossi, M.; Nowicki, C.; Abed, A.; Goldufsky, J.W.; Broucek, J.R.; Redondo, R.E.; Rotter, D.; Jhawar, S.R.; Wang, S.J.; Kohlhapp, F.J.; Kaufman, H.L.; Thomas, P.G.; Gupta, V.; Kuzel, T.M.; Reiser, J.; Paras, J.; Kane, M.P.; Singer, E.A.; Malhotra, J.; Denzin, L.K.; Sant’Angelo, D.B.; Rabson, A.B.; Lee, L.Y.; Lasfar, A.; Langenfeld, J.; Schenkel, J.M.; Fidler, M.J.; Ruiz, E.S.; Marzo, A.L.; Rudra, J.S.; Silk, A.W.; Zloza, A. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc. Natl. Acad. Sci., 2020, 117(2), 1119-1128.
[http://dx.doi.org/10.1073/pnas.1904022116] [PMID: 31888983]
[26]
Noman, M.Z.; Parpal, S.; Van Moer, K.; Xiao, M.; Yu, Y.; Viklund, J.; De Milito, A.; Hasmim, M.; Andersson, M.; Amaravadi, R.K.; Martinsson, J.; Berchem, G.; Janji, B. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci. Adv., 2020, 6(18), eaax7881.
[http://dx.doi.org/10.1126/sciadv.aax7881] [PMID: 32494661]
[27]
Thyagarajan, A.; Alshehri, M.S.A.; Miller, K.L.R.; Sherwin, C.M.; Travers, J.B.; Sahu, R.P. Myeloid-derived suppressor cells and pancreatic cancer: Implications in novel therapeutic approaches. Cancers (Basel), 2019, 11(11), E1627.
[http://dx.doi.org/10.3390/cancers11111627] [PMID: 31652904]
[28]
Wang, Y.; Jia, A.; Bi, Y.; Wang, Y.; Yang, Q.; Cao, Y.; Li, Y.; Liu, G. Targeting myeloid-derived suppressor cells in cancer immunotherapy. Cancers (Basel), 2020, 12(9), E2626.
[http://dx.doi.org/10.3390/cancers12092626] [PMID: 32942545]
[29]
Li, B.H.; Garstka, M.A.; Li, Z.F. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol. Immunol., 2020, 117, 201-215.
[http://dx.doi.org/10.1016/j.molimm.2019.11.014] [PMID: 31835202]
[30]
Mohammadpour, H.; MacDonald, C.R.; Qiao, G.; Chen, M.; Dong, B.; Hylander, B.L.; McCarthy, P.L.; Abrams, S.I.; Repasky, E.A. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Invest., 2019, 129(12), 5537-5552.
[http://dx.doi.org/10.1172/JCI129502] [PMID: 31566578]
[31]
Xiao, P.; Wan, X.; Cui, B.; Liu, Y.; Qiu, C.; Rong, J.; Zheng, M.; Song, Y.; Chen, L.; He, J.; Tan, Q.; Wang, X.; Shao, X.; Liu, Y.; Cao, X.; Wang, Q. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. OncoImmunology, 2015, 5(1), e1063772.
[http://dx.doi.org/10.1080/2162402X.2015.1063772] [PMID: 26942079]
[32]
Fleming, V.; Hu, X.; Weber, R.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol., 2018, 9, 398.
[http://dx.doi.org/10.3389/fimmu.2018.00398] [PMID: 29552012]
[33]
Nam, S.; Lee, A.; Lim, J.; Lim, J.S. Analysis of the expression and regulation of pd-1 protein on the surface of Myeloid-Derived Suppressor Cells (MDSCs). Biomol. Ther. (Seoul), 2019, 27(1), 63-70.
[http://dx.doi.org/10.4062/biomolther.2018.201] [PMID: 30521746]
[34]
Yang, Y.; Li, C.; Liu, T.; Dai, X.; Bazhin, A.V. Myeloid-derived suppressor cells in tumors: From mechanisms to antigen specificity and microenvironmental regulation. Front. Immunol., 2020, 11, 1371.
[http://dx.doi.org/10.3389/fimmu.2020.01371] [PMID: 32793192]
[35]
Groth, C.; Hu, X.; Weber, R.; Fleming, V.; Altevogt, P.; Utikal, J.; Umansky, V. Immunosuppression mediated by Myeloid-Derived Suppressor Cells (MDSCs) during tumour progression. Br. J. Cancer, 2019, 120(1), 16-25.
[http://dx.doi.org/10.1038/s41416-018-0333-1] [PMID: 30413826]
[36]
Alissafi, T.; Hatzioannou, A.; Mintzas, K.; Barouni, R.M.; Banos, A.; Sormendi, S.; Polyzos, A.; Xilouri, M.; Wielockx, B.; Gogas, H.; Verginis, P. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J. Clin. Invest., 2018, 128(9), 3840-3852.
[http://dx.doi.org/10.1172/JCI120888] [PMID: 29920188]
[37]
Baumann, T.; Dunkel, A.; Schmid, C.; Schmitt, S.; Hiltensperger, M.; Lohr, K.; Laketa, V.; Donakonda, S.; Ahting, U.; Lorenz-Depiereux, B.; Heil, J.E.; Schredelseker, J.; Simeoni, L.; Fecher, C.; Körber, N.; Bauer, T.; Hüser, N.; Hartmann, D.; Laschinger, M.; Eyerich, K.; Eyerich, S.; Anton, M.; Streeter, M.; Wang, T.; Schraven, B.; Spiegel, D.; Assaad, F.; Misgeld, T.; Zischka, H.; Murray, P.J.; Heine, A.; Heikenwälder, M.; Korn, T.; Dawid, C.; Hofmann, T.; Knolle, P.A.; Höchst, B. Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal. Nat. Immunol., 2020, 21(5), 555-566.
[http://dx.doi.org/10.1038/s41590-020-0666-9] [PMID: 32327756]
[38]
Pang, B.; Zhen, Y.; Hu, C.; Ma, Z.; Lin, S.; Yi, H. Myeloid-derived suppressor cells shift Th17/Treg ratio and promote systemic lupus erythematosus progression through arginase-1/miR-322-5p/TGF-β pathway. Clin. Sci. (Lond.), 2020, 134(16), 2209-2222.
[http://dx.doi.org/10.1042/CS20200799] [PMID: 32808653]
[39]
Ji, J.; Xu, J.; Zhao, S.; Liu, F.; Qi, J.; Song, Y.; Ren, J.; Wang, T.; Dou, H.; Hou, Y. Myeloid-derived suppressor cells contribute to systemic lupus erythaematosus by regulating differentiation of Th17 cells and Tregs. Clin. Sci. (Lond.), 2016, 130(16), 1453-1467.
[http://dx.doi.org/10.1042/CS20160311] [PMID: 27231253]
[40]
Jaufmann, J.; Lelis, F.J.N.; Teschner, A.C.; Fromm, K.; Rieber, N.; Hartl, D.; Beer-Hammer, S. Human monocytic myeloid-derived suppressor cells impair B-cell phenotype and function in vitro. Eur. J. Immunol., 2020, 50(1), 33-47.
[http://dx.doi.org/10.1002/eji.201948240] [PMID: 31557313]
[41]
Yan, L.; Liang, M.; Yang, T.; Ji, J.; Jose Kumar Sreena, G.S.; Hou, X.; Cao, M.; Feng, Z. The immunoregulatory role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis. Front. Immunol., 2020, 11, 568362.
[http://dx.doi.org/10.3389/fimmu.2020.568362] [PMID: 33042149]
[42]
Lee-Chang, C.; Rashidi, A.; Miska, J.; Zhang, P.; Pituch, K.C.; Hou, D.; Xiao, T.; Fischietti, M.; Kang, S.J.; Appin, C.L.; Horbinski, C.; Platanias, L.C.; Lopez-Rosas, A.; Han, Y.; Balyasnikova, I.V.; Lesniak, M.S. Myeloid-derived suppressive cells promote B cell-mediated immunosuppression via transfer of PD-L1 in glioblastoma. Cancer Immunol. Res., 2019, 7(12), 1928-1943.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0240] [PMID: 31530559]
[43]
Nakamura, T.; Ushigome, H. Myeloid-derived suppressor cells as a regulator of immunity in organ transplantation. Int. J. Mol. Sci., 2018, 19(8), E2357.
[http://dx.doi.org/10.3390/ijms19082357] [PMID: 30103447]
[44]
Naik, S.I.; Young, L.S.; Saade, G.; Kujore, A.; Charlton, H.M.; Clayton, R.N. Role of GnRH in the regulation of pituitary GnRH receptors in female mice. J. Reprod. Fertil., 1985, 74(2), 605-614.
[http://dx.doi.org/10.1530/jrf.0.0740605] [PMID: 2995657]
[45]
Sarkar, R.; Mathew, A.; Sehrawat, S. Myeloid-derived suppressor cells confer infectious tolerance to dampen virus-induced tissue immunoinflammation. J. Immunol., 2019, 203(5), 1325-1337.
[http://dx.doi.org/10.4049/jimmunol.1900142] [PMID: 31331972]
[46]
Wang, L.; Zhao, J.; Ren, J.P.; Wu, X.Y.; Morrison, Z.D.; Elgazzar, M.A.; Ning, S.B.; Moorman, J.P.; Yao, Z.Q. Expansion of myeloid-derived suppressor cells promotes differentiation of regulatory T cells in HIV-1+ individuals. AIDS, 2016, 30(10), 1521-1531.
[http://dx.doi.org/10.1097/QAD.0000000000001083] [PMID: 26959508]
[47]
Lee, C.R.; Kwak, Y.; Yang, T.; Han, J.H.; Park, S.H.; Ye, M.B.; Lee, W.; Sim, K.Y.; Kang, J.A.; Kim, Y.C.; Mazmanian, S.K.; Park, S.G. Myeloid-derived suppressor cells are controlled by regulatory t cells via tgf-β during murine colitis. Cell Rep., 2016, 17(12), 3219-3232.
[http://dx.doi.org/10.1016/j.celrep.2016.11.062] [PMID: 28009291]
[48]
Zhao, Y.; Wu, T.; Shao, S.; Shi, B.; Zhao, Y. Phenotype, development, and biological function of myeloid-derived suppressor cells. OncoImmunology, 2015, 5(2), e1004983.
[http://dx.doi.org/10.1080/2162402X.2015.1004983] [PMID: 27057424]
[49]
Hsieh, D.P. Biological reactive intermediates of mycotoxins. Adv. Exp. Med. Biol., 1986, 197, 597-610.
[http://dx.doi.org/10.1007/978-1-4684-5134-4_56] [PMID: 3094340]
[50]
Yang, X.; Lu, Y.; Hang, J.; Zhang, J.; Zhang, T.; Huo, Y.; Liu, J.; Lai, S.; Luo, D.; Wang, L.; Hua, R.; Lin, Y. Lactate-modulated immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer. Cancer Immunol. Res., 2020, 8(11), 1440-1451.
[http://dx.doi.org/10.1158/2326-6066.CIR-20-0111] [PMID: 32917658]
[51]
Lin, Q.; Ren, L.; Jian, M.; Xu, P.; Li, J.; Zheng, P.; Feng, Q.; Yang, L.; Ji, M.; Wei, Y.; Xu, J. The mechanism of the premetastatic niche facilitating colorectal cancer liver metastasis generated from myeloid-derived suppressor cells induced by the S1PR1-STAT3 signaling pathway. Cell Death Dis., 2019, 10(10), 693.
[http://dx.doi.org/10.1038/s41419-019-1922-5] [PMID: 31534132]
[52]
Ibrahim, M.L.; Lu, C.; Klement, J.D.; Redd, P.S.; Yang, D.; Smith, A.D.; Liu, K. Expression profiles and function of IL6 in polymorphonuclear myeloid-derived suppressor cells. Cancer Immunol. Immunother., 2020, 69(11), 2233-2245.
[http://dx.doi.org/10.1007/s00262-020-02620-w] [PMID: 32488308]
[53]
Dar, A.A.; Patil, R.S.; Pradhan, T.N.; Chaukar, D.A.; D’Cruz, A.K.; Chiplunkar, S.V. Myeloid-derived suppressor cells impede T cell functionality and promote Th17 differentiation in oral squamous cell carcinoma. Cancer Immunol. Immunother., 2020, 69(6), 1071-1086.
[http://dx.doi.org/10.1007/s00262-020-02523-w] [PMID: 32103293]
[54]
Li, X.; Wang, J.; Wu, W.; Gao, H.; Liu, N.; Zhan, G.; Li, L.; Han, L.; Guo, X. Myeloid-derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/p-STAT3 signalling pathway. FEBS J., 2020, 287(23), 5218-5235.
[http://dx.doi.org/10.1111/febs.15311] [PMID: 32239647]
[55]
Trovato, R.; Fiore, A.; Sartori, S.; Canè, S.; Giugno, R.; Cascione, L.; Paiella, S.; Salvia, R.; De Sanctis, F.; Poffe, O.; Anselmi, C.; Hofer, F.; Sartoris, S.; Piro, G.; Carbone, C.; Corbo, V.; Lawlor, R.; Solito, S.; Pinton, L.; Mandruzzato, S.; Bassi, C.; Scarpa, A.; Bronte, V.; Ugel, S. Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J. Immunother. Cancer, 2019, 7(1), 255.
[http://dx.doi.org/10.1186/s40425-019-0734-6] [PMID: 31533831]
[56]
Liu, Y.F.; Zhuang, K.H.; Chen, B.; Li, P.W.; Zhou, X.; Jiang, H.; Zhong, L.M.; Liu, F.B. Expansion and activation of monocytic-myeloid-derived suppressor cell via STAT3/arginase-I signaling in patients with ankylosing spondylitis. Arthritis Res. Ther., 2018, 20(1), 168.
[http://dx.doi.org/10.1186/s13075-018-1654-4] [PMID: 30075733]
[57]
Alkhateeb, T.; Kumbhare, A.; Bah, I.; Youssef, D.; Yao, Z.Q.; McCall, C.E.; El Gazzar, M. S100A9 maintains myeloid-derived suppressor cells in chronic sepsis by inducing miR-21 and miR-181b. Mol. Immunol., 2019, 112, 72-81.
[http://dx.doi.org/10.1016/j.molimm.2019.04.019] [PMID: 31078118]
[58]
Thakuri, B.K.C.; Zhang, J.; Zhao, J.; Nguyen, L.N.; Nguyen, L.N.T.; Schank, M.; Khanal, S.; Dang, X.; Cao, D.; Lu, Z.; Wu, X.Y.; Jiang, Y.; El Gazzar, M.; Ning, S.; Wang, L.; Moorman, J.P.; Yao, Z.Q. HCV-Associated exosomes upregulate runxor and runx1 expressions to promote MDSC expansion and suppressive functions through STAT3-miR124 Axis. Cells, 2020, 9(12), E2715.
[http://dx.doi.org/10.3390/cells9122715] [PMID: 33353065]
[59]
Dong, G.; Yao, X.; Yan, F.; Zhang, H.; Zhu, Y.; Yang, Y.; Shi, H.; Zhang, J.; Ning, Z.; Wang, C.; Cheng, P.; Hu, Y.; Ma, Q.; Dai, J.; Li, Z.; Li, C.; Ming, J.; Li, X.; Si, C.; Xiong, H. Ligation of CD180 contributes to endotoxic shock by regulating the accumulation and immunosuppressive activity of myeloid-derived suppressor cells through STAT3. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(3), 535-546.
[http://dx.doi.org/10.1016/j.bbadis.2018.12.013] [PMID: 30557700]
[60]
Lee, B.R.; Kwon, B.E.; Hong, E.H.; Shim, A.; Song, J.H.; Kim, H.M.; Chang, S.Y.; Kim, Y.J.; Kweon, M.N.; Youn, J.I.; Ko, H.J. Interleukin-10 attenuates tumour growth by inhibiting interleukin-6/signal transducer and activator of transcription 3 signalling in myeloid-derived suppressor cells. Cancer Lett., 2016, 381(1), 156-164.
[http://dx.doi.org/10.1016/j.canlet.2016.07.012] [PMID: 27431309]
[61]
Huang, X.; Zuo, Y.; Wang, X.; Wu, X.; Tan, H.; Fan, Q.; Dong, B.; Xue, W.; Chen, G.Q.; Cheng, J. SUMO-specific protease 1 is critical for myeloid-derived suppressor cell development and function. Cancer Res., 2019, 79(15), 3891-3902.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3497] [PMID: 31186231]
[62]
Zhang, J.; Thakuri, B.K.C.; Zhao, J.; Nguyen, L.N.; Nguyen, L.N.T.; Cao, D.; Dang, X.; Khanal, S.; Schank, M.; Lu, Z.; Wu, X.Y.; Morrison, Z.D.; Gazzar, M.E.; Li, Z.; Jiang, Y.; Ning, S.; Wang, L.; Moorman, J.P.; Yao, Z.Q. Long noncoding RNA HOTAIRM1 promotes myeloid-derived suppressor cell expansion and suppressive functions through up-regulating HOXA1 expression during latent HIV infection. AIDS, 2020, 34(15), 2211-2221.
[http://dx.doi.org/10.1097/QAD.0000000000002700] [PMID: 33048872]
[63]
Zhang, J.; Thakuri, B.K.C.; Zhao, J.; Nguyen, L.N.; Nguyen, L.N.T.; Khanal, S.; Cao, D.; Dang, X.; Schank, M.; Lu, Z.; Wu, X.Y.; Morrison, Z.D.; El Gazzar, M.; Jiang, Y.; Ning, S.; Wang, L.; Moorman, J.P.; Yao, Z.Q. Long Noncoding rna runxor promotes myeloid-derived suppressor cell expansion and functions via enhancing immunosuppressive molecule expressions during latent HIV infection. J. Immunol., 2021, 206(9), 2052-2060.
[http://dx.doi.org/10.4049/jimmunol.2001008] [PMID: 33820854]
[64]
Guha, P.; Gardell, J.; Darpolor, J.; Cunetta, M.; Lima, M.; Miller, G.; Espat, N.J.; Junghans, R.P.; Katz, S.C. STAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Oncogene, 2019, 38(4), 533-548.
[http://dx.doi.org/10.1038/s41388-018-0449-z] [PMID: 30158673]
[65]
Su, X.; Xu, Y.; Fox, G.C.; Xiang, J.; Kwakwa, K.A.; Davis, J.L.; Belle, J.I.; Lee, W.C.; Wong, W.H.; Fontana, F.; Hernandez-Aya, L.F.; Kobayashi, T.; Tomasson, H.M.; Su, J.; Bakewell, S.J.; Stewart, S.A.; Egbulefu, C.; Karmakar, P.; Meyer, M.A.; Veis, D.J.; DeNardo, D.G.; Lanza, G.M.; Achilefu, S.; Weilbaecher, K.N. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment. J. Clin. Invest., 2021, 131(20), e145296.
[http://dx.doi.org/10.1172/JCI145296] [PMID: 34520398]
[66]
Garg, A.; Spector, S.A. HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity. J. Infect. Dis., 2014, 209(3), 441-451.
[http://dx.doi.org/10.1093/infdis/jit469] [PMID: 23999600]
[67]
Weber, R.; Riester, Z.; Hüser, L.; Sticht, C.; Siebenmorgen, A.; Groth, C.; Hu, X.; Altevogt, P.; Utikal, J.S.; Umansky, V. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J. Immunother. Cancer, 2020, 8(2), e000949.
[http://dx.doi.org/10.1136/jitc-2020-000949] [PMID: 32788238]
[68]
Jiang, M.; Chen, J.; Zhang, W.; Zhang, R.; Ye, Y.; Liu, P.; Yu, W.; Wei, F.; Ren, X.; Yu, J. Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front. Immunol., 2017, 8, 1840.
[http://dx.doi.org/10.3389/fimmu.2017.01840] [PMID: 29326716]
[69]
Weber, R.; Groth, C.; Lasser, S.; Arkhypov, I.; Petrova, V.; Altevogt, P.; Utikal, J.; Umansky, V. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell. Immunol., 2021, 359, 104254.
[http://dx.doi.org/10.1016/j.cellimm.2020.104254] [PMID: 33296753]
[70]
Xu, M.; Zhao, Z.; Song, J.; Lan, X.; Lu, S.; Chen, M.; Wang, Z.; Chen, W.; Fan, X.; Wu, F.; Chen, L.; Tu, J.; Ji, J. Interactions between interleukin-6 and myeloid-derived suppressor cells drive the chemoresistant phenotype of hepatocellular cancer. Exp. Cell Res., 2017, 351(2), 142-149.
[http://dx.doi.org/10.1016/j.yexcr.2017.01.008] [PMID: 28109867]
[71]
Jing, B.; Wang, T.; Sun, B.; Xu, J.; Xu, D.; Liao, Y.; Song, H.; Guo, W.; Li, K.; Hu, M.; Zhang, S.; Ling, J.; Kuang, Y.; Zhang, T.; Zhou, B.P.; Yao, F.; Deng, J. IL6/STAT3 Signaling orchestrates premetastatic niche formation and immunosuppressive traits in lung. Cancer Res., 2020, 80(4), 784-797.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-2013] [PMID: 31848193]
[72]
Xu, Z.; Li, L.; Qian, Y.; Song, Y.; Qin, L.; Duan, Y.; Wang, M.; Li, P.; Jiang, B.; Ma, C.; Shao, C.; Gong, Y. Upregulation of IL-6 in CUL4B-deficient myeloid-derived suppressive cells increases the aggressiveness of cancer cells. Oncogene, 2019, 38(30), 5860-5872.
[http://dx.doi.org/10.1038/s41388-019-0847-x] [PMID: 31235785]
[73]
Tsukamoto, H.; Nishikata, R.; Senju, S.; Nishimura, Y. Myeloid-derived suppressor cells attenuate TH1 development through IL-6 production to promote tumor progression. Cancer Immunol. Res., 2013, 1(1), 64-76.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0030] [PMID: 24777249]
[74]
Mondanelli, G.; Bianchi, R.; Pallotta, M.T.; Orabona, C.; Albini, E.; Iacono, A.; Belladonna, M.L.; Vacca, C.; Fallarino, F.; Macchiarulo, A.; Ugel, S.; Bronte, V.; Gevi, F.; Zolla, L.; Verhaar, A.; Peppelenbosch, M.; Mazza, E.M.C.; Bicciato, S.; Laouar, Y.; Santambrogio, L.; Puccetti, P.; Volpi, C.; Grohmann, U. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity, 2017, 46(2), 233-244.
[http://dx.doi.org/10.1016/j.immuni.2017.01.005] [PMID: 28214225]
[75]
Mondanelli, G.; Iacono, A.; Allegrucci, M.; Puccetti, P.; Grohmann, U. Immunoregulatory interplay between arginine and tryptophan metabolism in health and disease. Front. Immunol., 2019, 10, 1565.
[http://dx.doi.org/10.3389/fimmu.2019.01565] [PMID: 31354721]
[76]
Jayaraman, P.; Parikh, F.; Lopez-Rivera, E.; Hailemichael, Y.; Clark, A.; Ma, G.; Cannan, D.; Ramacher, M.; Kato, M.; Overwijk, W.W.; Chen, S.H.; Umansky, V.Y.; Sikora, A.G. Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J. Immunol., 2012, 188(11), 5365-5376.
[http://dx.doi.org/10.4049/jimmunol.1103553] [PMID: 22529296]
[77]
Markowitz, J.; Wang, J.; Vangundy, Z.; You, J.; Yildiz, V.; Yu, L.; Foote, I.P.; Branson, O.E.; Stiff, A.R.; Brooks, T.R.; Biesiadecki, B.; Olencki, T.; Tridandapani, S.; Freitas, M.A.; Papenfuss, T.; Phelps, M.A.; Carson, W.E. Nitric oxide mediated inhibition of antigen presentation from DCs to CD4+ T cells in cancer and measurement of STAT1 nitration. Sci. Rep., 2017, 7(1), 15424.
[http://dx.doi.org/10.1038/s41598-017-14970-0] [PMID: 29133913]
[78]
Stiff, A.; Trikha, P.; Mundy-Bosse, B.; McMichael, E.; Mace, T.A.; Benner, B.; Kendra, K.; Campbell, A.; Gautam, S.; Abood, D.; Landi, I.; Hsu, V.; Duggan, M.; Wesolowski, R.; Old, M.; Howard, J.H.; Yu, L.; Stasik, N.; Olencki, T.; Muthusamy, N.; Tridandapani, S.; Byrd, J.C.; Caligiuri, M.; Carson, W.E. Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin. Cancer Res., 2018, 24(8), 1891-1904.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0691] [PMID: 29363526]
[79]
Biffi, G.; Oni, T.E.; Spielman, B.; Hao, Y.; Elyada, E.; Park, Y.; Preall, J.; Tuveson, D.A. IL1-induced JAK/STAT signaling is antagonized by tgfβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov., 2019, 9(2), 282-301.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0710] [PMID: 30366930]
[80]
Wang, H.; Li, S.; Wang, Q.; Jin, Z.; Shao, W.; Gao, Y.; Li, L.; Lin, K.; Zhu, L.; Wang, H.; Liao, X.; Wang, D. Tumor immunological phenotype signature-based high-throughput screening for the discovery of combination immunotherapy compounds. Sci. Adv., 2021, 7(4), eabd7851.
[http://dx.doi.org/10.1126/sciadv.abd7851] [PMID: 33523948]
[81]
Deng, L.J.; Qi, M.; Li, N.; Lei, Y.H.; Zhang, D.M.; Chen, J.X. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J. Leukoc. Biol., 2020, 108(2), 493-508.
[http://dx.doi.org/10.1002/JLB.3MR0320-444R] [PMID: 32678943]
[82]
Garg, M.; Shanmugam, M.K.; Bhardwaj, V.; Goel, A.; Gupta, R.; Sharma, A.; Baligar, P.; Kumar, A.P.; Goh, B.C.; Wang, L.; Sethi, G. The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Med. Res. Rev., 2020. [Online Ahead of Print]
[PMID: 33289118]
[83]
Pan, P.; Huang, Y.W.; Oshima, K.; Yearsley, M.; Zhang, J.; Arnold, M.; Yu, J.; Wang, L.S. The immunomodulatory potential of natural compounds in tumor-bearing mice and humans. Crit. Rev. Food Sci. Nutr., 2019, 59(6), 992-1007.
[http://dx.doi.org/10.1080/10408398.2018.1537237] [PMID: 30795687]
[84]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[85]
Tu, S.P.; Jin, H.; Shi, J.D.; Zhu, L.M.; Suo, Y.; Lu, G.; Liu, A.; Wang, T.C.; Yang, C.S. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev. Res. (Phila.), 2012, 5(2), 205-215.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0247] [PMID: 22030090]
[86]
Liu, D.; You, M.; Xu, Y.; Li, F.; Zhang, D.; Li, X.; Hou, Y. Inhibition of curcumin on myeloid-derived suppressor cells is requisite for controlling lung cancer. Int. Immunopharmacol., 2016, 39, 265-272.
[http://dx.doi.org/10.1016/j.intimp.2016.07.035] [PMID: 27497194]
[87]
Biedermann, D.; Vavříková, E.; Cvak, L.; Křen, V. Chemistry of silybin. Nat. Prod. Rep., 2014, 31(9), 1138-1157.
[http://dx.doi.org/10.1039/C3NP70122K] [PMID: 24977260]
[88]
Wu, T.; Liu, W.; Guo, W.; Zhu, X. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells. Biomed. Pharmacother., 2016, 81, 460-467.
[http://dx.doi.org/10.1016/j.biopha.2016.04.039] [PMID: 27261626]
[89]
Santilli, G.; Piotrowska, I.; Cantilena, S.; Chayka, O.; D’Alicarnasso, M.; Morgenstern, D.A.; Himoudi, N.; Pearson, K.; Anderson, J.; Thrasher, A.J.; Sala, A. Polyphenon [corrected] E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin. Cancer Res., 2013, 19(5), 1116-1125.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2528] [PMID: 23322899]
[90]
Xu, P.; Yan, F.; Zhao, Y.; Chen, X.; Sun, S.; Wang, Y.; Ying, L. Green tea polyphenol egcg attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model. Nutrients, 2020, 12(4), E1042.
[http://dx.doi.org/10.3390/nu12041042] [PMID: 32290071]
[91]
Kadhim, S.; Singh, N.P.; Zumbrun, E.E.; Cui, T.; Chatterjee, S.; Hofseth, L.; Abood, A.; Nagarkatti, P.; Nagarkatti, M. Resveratrol-mediated attenuation of Staphylococcus aureus enterotoxin b-induced acute liver injury is associated with regulation of microrna and induction of myeloid-derived suppressor cells. Front. Microbiol., 2018, 9, 2910.
[http://dx.doi.org/10.3389/fmicb.2018.02910] [PMID: 30619104]
[92]
Zhao, Y.; Shao, Q.; Zhu, H.; Xu, H.; Long, W.; Yu, B.; Zhou, L.; Xu, H.; Wu, Y.; Su, Z. Resveratrol ameliorates Lewis lung carcinoma-bearing mice development, decreases granulocytic myeloid-derived suppressor cell accumulation and impairs its suppressive ability. Cancer Sci., 2018, 109(9), 2677-2686.
[http://dx.doi.org/10.1111/cas.13720] [PMID: 29959821]
[93]
Ma, Z.; Xia, Y.; Hu, C.; Yu, M.; Yi, H. Quercetin promotes the survival of granulocytic myeloid-derived suppressor cells via the ESR2/STAT3 signaling pathway. Biomed. Pharmacother., 2020, 125, 109922.
[http://dx.doi.org/10.1016/j.biopha.2020.109922] [PMID: 32007919]
[94]
Forghani, P.; Khorramizadeh, M.R.; Waller, E.K. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer. Cancer Med., 2014, 3(2), 215-224.
[http://dx.doi.org/10.1002/cam4.186] [PMID: 24574320]
[95]
Tao, H.; Liu, M.; Wang, Y.; Luo, S.; Xu, Y.; Ye, B.; Zheng, L.; Meng, K.; Li, L. Icaritin induces anti-tumor immune responses in hepatocellular carcinoma by inhibiting splenic myeloid-derived suppressor cell generation. Front. Immunol., 2021, 12, 609295.
[http://dx.doi.org/10.3389/fimmu.2021.609295] [PMID: 33717093]
[96]
Zhang, Y.S.; Wang, F.; Cui, S.X.; Qu, X.J. Natural dietary compound naringin prevents azoxymethane/dextran sodium sulfate-induced chronic colorectal inflammation and carcinogenesis in mice. Cancer Biol. Ther., 2018, 19(8), 735-744.
[http://dx.doi.org/10.1080/15384047.2018.1453971] [PMID: 29580144]
[97]
Li, D.; Shi, G.; Wang, J.; Zhang, D.; Pan, Y.; Dou, H.; Hou, Y. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloid-derived suppressor cells. Arthritis Res. Ther., 2019, 21(1), 105.
[http://dx.doi.org/10.1186/s13075-019-1876-0] [PMID: 31023362]
[98]
Sinha, P.; Ostrand-Rosenberg, S. Myeloid-derived suppressor cell function is reduced by Withaferin A, a potent and abundant component of Withania somnifera root extract. Cancer Immunol. Immunother., 2013, 62(11), 1663-1673.
[http://dx.doi.org/10.1007/s00262-013-1470-2] [PMID: 23982485]
[99]
Lee, Y.H.; Lee, Y.R.; Park, C.S.; Im, S.A.; Song, S.; Hong, J.T.; Whang, B.Y.; Kim, K.; Lee, C.K. Baccatin III, a precursor for the semisynthesis of paclitaxel, inhibits the accumulation and suppressive activity of myeloid-derived suppressor cells in tumor-bearing mice. Int. Immunopharmacol., 2014, 21(2), 487-493.
[http://dx.doi.org/10.1016/j.intimp.2014.06.012] [PMID: 24957690]
[100]
Radwan, F.F.; Hossain, A.; God, J.M.; Leaphart, N.; Elvington, M.; Nagarkatti, M.; Tomlinson, S.; Haque, A. Reduction of myeloid-derived suppressor cells and lymphoma growth by a natural triterpenoid. J. Cell. Biochem., 2015, 116(1), 102-114.
[http://dx.doi.org/10.1002/jcb.24946] [PMID: 25142864]
[101]
Liu, W.; Wu, T.C.; Hong, D.M.; Hu, Y.; Fan, T.; Guo, W.J.; Xu, Q. Carnosic acid enhances the anti-lung cancer effect of cisplatin by inhibiting myeloid-derived suppressor cells. Chin. J. Nat. Med., 2018, 16(12), 907-915.
[http://dx.doi.org/10.1016/S1875-5364(18)30132-8] [PMID: 30595215]
[102]
Horlad, H.; Fujiwara, Y.; Takemura, K.; Ohnishi, K.; Ikeda, T.; Tsukamoto, H.; Mizuta, H.; Nishimura, Y.; Takeya, M.; Komohara, Y. Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Mol. Nutr. Food Res., 2013, 57(6), 1046-1054.
[http://dx.doi.org/10.1002/mnfr.201200610] [PMID: 23417831]
[103]
Liu, Y.; Liu, X.; Zhang, N.; Yin, M.; Dong, J.; Zeng, Q.; Mao, G.; Song, D.; Liu, L.; Deng, H. Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm. Sin. B, 2020, 10(12), 2299-2312.
[http://dx.doi.org/10.1016/j.apsb.2020.06.014] [PMID: 33354502]
[104]
Kuroda, H.; Mabuchi, S.; Kozasa, K.; Yokoi, E.; Matsumoto, Y.; Komura, N.; Kawano, M.; Hashimoto, K.; Sawada, K.; Kimura, T. PM01183 inhibits myeloid-derived suppressor cells in vitro and in vivo. Immunotherapy, 2017, 9(10), 805-817.
[http://dx.doi.org/10.2217/imt-2017-0046] [PMID: 28877631]
[105]
Song, J.H.; Eum, D.Y.; Park, S.Y.; Jin, Y.H.; Shim, J.W.; Park, S.J.; Kim, M.Y.; Park, S.J.; Heo, K.; Choi, Y.J. Inhibitory effect of ginsenoside Rg3 on cancer stemness and mesenchymal transition in breast cancer via regulation of myeloid-derived suppressor cells. PLoS One, 2020, 15(10), e0240533.
[http://dx.doi.org/10.1371/journal.pone.0240533] [PMID: 33091036]
[106]
Tobin, R.P.; Jordan, K.R.; Robinson, W.A.; Davis, D.; Borges, V.F.; Gonzalez, R.; Lewis, K.D.; McCarter, M.D. Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. Int. Immunopharmacol., 2018, 63, 282-291.
[http://dx.doi.org/10.1016/j.intimp.2018.08.007] [PMID: 30121453]
[107]
Szeto, G.L.; Finley, S.D. Integrative approaches to cancer immunotherapy. Trends Cancer, 2019, 5(7), 400-410.
[http://dx.doi.org/10.1016/j.trecan.2019.05.010] [PMID: 31311655]
[108]
Arulraj, T.; Barik, D. Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling. PLoS One, 2018, 13(10), e0206232.
[http://dx.doi.org/10.1371/journal.pone.0206232] [PMID: 30356330]
[109]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[110]
Kamps, R.; Brandão, R.D.; Bosch, B.J.; Paulussen, A.D.; Xanthoulea, S.; Blok, M.J.; Romano, A. Next-generation sequencing in oncology: Genetic diagnosis, risk prediction and cancer classification. Int. J. Mol. Sci., 2017, 18(2), E308.
[http://dx.doi.org/10.3390/ijms18020308] [PMID: 28146134]
[111]
Yi, J.; Chen, L.; Xiao, Y.; Zhao, Z.; Su, X. Investigations of sequencing data and sample type on HLA class Ia typing with different computational tools. Brief. Bioinform., 2021, 22(3), bbaa143.
[http://dx.doi.org/10.1093/bib/bbaa143] [PMID: 32662817]
[112]
Nielsen, M.; Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med., 2016, 8(1), 33.
[http://dx.doi.org/10.1186/s13073-016-0288-x] [PMID: 27029192]
[113]
Sturm, G.; Finotello, F.; Petitprez, F.; Zhang, J.D.; Baumbach, J.; Fridman, W.H.; List, M.; Aneichyk, T. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics, 2019, 35(14), i436-i445.
[http://dx.doi.org/10.1093/bioinformatics/btz363] [PMID: 31510660]
[114]
Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M., III; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; Hoffman, P.; Stoeckius, M.; Papalexi, E.; Mimitou, E.P.; Jain, J.; Srivastava, A.; Stuart, T.; Fleming, L.M.; Yeung, B.; Rogers, A.J.; McElrath, J.M.; Blish, C.A.; Gottardo, R.; Smibert, P.; Satija, R. Integrated analysis of multimodal single-cell data. Cell, 2021, 184(13), 3573-3587.e29.
[http://dx.doi.org/10.1016/j.cell.2021.04.048] [PMID: 34062119]
[115]
Akavia, U.D.; Litvin, O.; Kim, J.; Sanchez-Garcia, F.; Kotliar, D.; Causton, H.C.; Pochanard, P.; Mozes, E.; Garraway, L.A.; Pe’er, D. An integrated approach to uncover drivers of cancer. Cell, 2010, 143(6), 1005-1017.
[http://dx.doi.org/10.1016/j.cell.2010.11.013] [PMID: 21129771]
[116]
Liu, C.; Zhao, J.; Lu, W.; Dai, Y.; Hockings, J.; Zhou, Y.; Nussinov, R.; Eng, C.; Cheng, F. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes. PLOS Comput. Biol., 2020, 16(2), e1007701.
[http://dx.doi.org/10.1371/journal.pcbi.1007701] [PMID: 32101536]
[117]
Dimitrakopoulos, C.M.; Beerenwinkel, N. Computational approaches for the identification of cancer genes and pathways. Wiley Interdiscip. Rev. Syst. Biol. Med., 2017, 9(1), e1364.
[http://dx.doi.org/10.1002/wsbm.1364] [PMID: 27863091]
[118]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[119]
Nicassio, P.; Bootzin, R. A comparison of progressive relaxation and autogenic training as treatments for insomnia. J. Abnorm. Psychol., 1974, 83(3), 253-260.
[http://dx.doi.org/10.1037/h0036729] [PMID: 4844912]
[120]
Alshetaiwi, H.; Pervolarakis, N.; McIntyre, L.L.; Ma, D.; Nguyen, Q.; Rath, J.A.; Nee, K.; Hernandez, G.; Evans, K.; Torosian, L.; Silva, A.; Walsh, C.; Kessenbrock, K. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol., 2020, 5(44), eaay6017.
[http://dx.doi.org/10.1126/sciimmunol.aay6017] [PMID: 32086381]
[121]
DaSilva, N.A.; Barlock, B.J.; Guha, P.; Ghosh, C.C.; Trebino, C.E.; Camberg, J.L.; Katz, S.C.; Rowley, D.C. Proteomic signatures of myeloid derived suppressor cells from liver and lung metastases reveal functional divergence and potential therapeutic targets. Cell Death Discov., 2021, 7(1), 232.
[http://dx.doi.org/10.1038/s41420-021-00621-x] [PMID: 34482371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy