Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Functionalized Nanostructured Bioactive Carriers: Nanoliposomes, Quantum Dots, Tocosome, and Theranostic Approach

Author(s): Mehrnoush Mehrarya*, Behnaz Gharehchelou, Zeinab Kabarkouhi, Sara Ataei, Fahime Nasr Esfahani, Milint Neleptchenko Wintrasiri and M. R. Mozafari*

Volume 19, Issue 10, 2022

Published on: 27 May, 2022

Page: [1001 - 1011] Pages: 11

DOI: 10.2174/1567201819666220324092933

Price: $65

Abstract

Background: Lipid nanocarriers have great potential for the encapsulation and delivery of numerous bioactive compounds. They have demonstrated significant benefits over traditional disease management and conventional therapy. The benefits associated with the particular properties of lipid nanocarriers include site-specific drug deposition, improved pharmacokinetics and pharmacodynamics, enhanced internalization and intracellular transport, biodegradability, and decreased biodistribution. These properties result in the alleviation of the harmful consequences of conventional treatment protocols.

Materials & Methods: The administration of various bioactive molecules has been extensively investigated using nanostructured lipid carriers. In this article, theranostic applications of novel formulations of lipid nanocarriers combined or complexed with quantum dots, certain polymers, such as chitosan, and metallic nanoparticles (particularly gold) are reviewed. These formulations have demonstrated better controlled release features, improved drug loading capability, as well as a lower burst release rate. As a recent innovation in drug delivery, tocosomes and their unique advantages are also explained in the final section of this review.

Results and Conclusion: Theranostic medicine requires nanocarriers with improved target-specific accumulation and bio-distribution. To this end, lipid-based nanocarrier systems and tocosomes combined with unique properties of quantum dots, biocompatible polymers, and metallic nanoparticles seem to be ideal candidates to be considered for safe and efficient drug delivery.

Keywords: Chitosan, encapsulation, lipidic carriers, liposome, nanoliposome, quantum dots, theranostics, tocosome.

Next »
Graphical Abstract
[1]
Bangham, A.D. Surrogate cells or trojan horses. The discovery of liposomes. BioEssays, 1995, 17(12), 1081-1088.
[http://dx.doi.org/10.1002/bies.950171213] [PMID: 8634070]
[2]
Elmeshad, A.N.; Mortazavi, S.M.; Mozafari, M.R. Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. J. Liposome Res., 2014, 24(1), 1-9.
[http://dx.doi.org/10.3109/08982104.2013.810644] [PMID: 23834067]
[3]
Mozafari, M.R.; Pardakhty, A.; Azarmi, S.; Jazayeri, J.A.; Nokhodchi, A.; Omri, A. Role of nanocarrier systems in cancer nanotherapy. J. Liposome Res., 2009, 19(4), 310-321.
[http://dx.doi.org/10.3109/08982100902913204] [PMID: 19863166]
[4]
Pandey, H.; Rani, R.; Agarwal, V. Liposome and their applications in cancer therapy. Braz. Arch. Biol. Technol., 2016, 59(0), 59.
[http://dx.doi.org/10.1590/1678-4324-2016150477]
[5]
Layek, B.; Gidwani, B.; Tiwari, S.; Joshi, V.; Jain, V.; Vyas, A. Recent advances in lipid-based nanodrug delivery systems in cancer therapy. Curr. Pharm. Des., 2020, 26(27), 3218-3233.
[http://dx.doi.org/10.2174/1381612826666200622133407] [PMID: 32568015]
[6]
Pillai, G. Nanotechnology toward treating cancer: A comprehensive review. Appl. Targeted Nano Drugs Delivery Syst, 2019, 221-56.
[7]
Detappe, A.; Bustoros, M.; Mouhieddine, T.H.; Ghoroghchian, P.P. Advancements in nanomedicine for multiple myeloma. Trends Mol. Med., 2018, 24(6), 560-574.
[http://dx.doi.org/10.1016/j.molmed.2018.04.005] [PMID: 29773319]
[8]
Salehi, B.; Selamoglu, Z.S.; Mileski, K.; Pezzani, R.; Redaelli, M.C.; Cho, W. Liposomal cytarabine as cancer therapy: From chemistry to medicine. Biomolecules, 2019, 9(12), 773.
[http://dx.doi.org/10.3390/biom9120773]
[9]
Salehi, B.; Mishra, A.P.; Nigam, M.; Kobarfard, F.; Javed, Z.; Rajabi, S.; Khan, K.; Ashfaq, H.A.; Ahmad, T.; Pezzani, R.; Ramírez-Alarcón, K.; Martorell, M.; Cho, W.C.; Ayatollahi, S.A.; Sharifi-Rad, J. Multivesicular liposome (depofoam) in human diseases. Iran. J. Pharm. Res., 2020, 19(2), 9-21.
[PMID: 33224207]
[10]
Bangal, M.; Ashtaputer, S.; Marathe, S.; Ethiraj, A.; Hebalkar, N.; Gosavi, S. Semiconductor nanoparticles. IWNMS 2004; Springer, 2005, pp. 81-94.
[http://dx.doi.org/10.1007/3-540-29194-6_7]
[11]
Alivisatos, A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem., 1996, 100(31), 13226-13239.
[http://dx.doi.org/10.1021/jp9535506]
[12]
Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N.; Kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett., 2012, 7(1), 480.
[http://dx.doi.org/10.1186/1556-276X-7-480] [PMID: 22929008]
[13]
Walling, M.A.; Novak, J.A.; Shepard, J.R. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci., 2009, 10(2), 441-491.
[http://dx.doi.org/10.3390/ijms10020441] [PMID: 19333416]
[14]
Weller, H. Colloidal semiconductor q‐particles: Chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. Engl., 1993, 32(1), 41-53.
[http://dx.doi.org/10.1002/anie.199300411]
[15]
Weller, H. Quantized semiconductor particles: A novel state of matter for materials science. Adv. Mater., 1993, 5(2), 88-95.
[http://dx.doi.org/10.1002/adma.19930050204]
[16]
Talapin, D.V.; Lee, J-S.; Kovalenko, M.V.; Shevchenko, E.V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev., 2010, 110(1), 389-458.
[http://dx.doi.org/10.1021/cr900137k] [PMID: 19958036]
[17]
Chan, W.C.; Maxwell, D.J.; Gao, X.; Bailey, R.E.; Han, M.; Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol., 2002, 13(1), 40-46.
[http://dx.doi.org/10.1016/S0958-1669(02)00282-3] [PMID: 11849956]
[18]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[19]
Michalet, X; Pinaud, FF; Bentolila, LA; Tsay, JM; Doose, S; Li, JJ Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-44.
[PMID: 15681376]
[20]
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 2008, 5(9), 763-775.
[http://dx.doi.org/10.1038/nmeth.1248] [PMID: 18756197]
[21]
Pickett, N.L.; O’Brien, P. Syntheses of semiconductor nanoparticles using single-molecular precursors. Chem. Rec., 2001, 1(6), 467-479.
[http://dx.doi.org/10.1002/tcr.10002] [PMID: 11933252]
[22]
Lewinski, N; Colvin, V; Drezek, R. Cytotoxicity of nanoparticles. Small, 2008, 4(1), 26-49.
[PMID: 18165959]
[23]
Karakoti, A.S.; Shukla, R.; Shanker, R.; Singh, S. Surface functionalization of quantum dots for biological applications. Adv. Colloid Interface Sci., 2015, 215, 28-45.
[http://dx.doi.org/10.1016/j.cis.2014.11.004] [PMID: 25467038]
[24]
Wegner, K.D.; Hildebrandt, N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev., 2015, 44(14), 4792-4834.
[http://dx.doi.org/10.1039/C4CS00532E] [PMID: 25777768]
[25]
Clarke, S.J.; Hollmann, C.A.; Zhang, Z.; Suffern, D.; Bradforth, S.E.; Dimitrijevic, N.M.; Minarik, W.G.; Nadeau, J.L. Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat. Mater., 2006, 5(5), 409-417.
[http://dx.doi.org/10.1038/nmat1631] [PMID: 16617348]
[26]
Smith, A.M.; Duan, H.; Rhyner, M.N.; Ruan, G.; Nie, S. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys. Chem. Chem. Phys., 2006, 8(33), 3895-3903.
[http://dx.doi.org/10.1039/b606572b] [PMID: 19817050]
[27]
Tian, B.; Al-Jamal, W.T.; Al-Jamal, K.T.; Kostarelos, K. Doxorubicin-loaded lipid-quantum dot hybrids: Surface topography and release properties. Int. J. Pharm., 2011, 416(2), 443-447.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.057] [PMID: 21315141]
[28]
Tian, B.; Kostarelos, K. The engineering of doxorubicin-loaded liposome-quantum dot hybrids for cancer theranostics. Chin. Phys. B, 2014, 23(8), 087805.
[http://dx.doi.org/10.1088/1674-1056/23/8/087805]
[29]
Muthu, M.S.; Kulkarni, S.A.; Raju, A.; Feng, S-S. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials, 2012, 33(12), 3494-3501.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.036] [PMID: 22306020]
[30]
Wen, C-J.; Zhang, L-W.; Al-Suwayeh, S.A.; Yen, T-C.; Fang, J-Y. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int. J. Nanomedicine, 2012, 7, 1599-1611.
[PMID: 22619515]
[31]
Olerile, L.D.; Liu, Y.; Zhang, B.; Wang, T.; Mu, S.; Zhang, J.; Selotlegeng, L.; Zhang, N. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf. B Biointerfaces, 2017, 150, 121-130.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.032] [PMID: 27907859]
[32]
Al-Jamal, W.T.; Al-Jamal, K.T.; Cakebread, A.; Halket, J.M.; Kostarelos, K. Blood circulation and tissue biodistribution of lipid-quantum dot (L-QD) hybrid vesicles intravenously administered in mice. Bioconjug. Chem., 2009, 20(9), 1696-1702.
[http://dx.doi.org/10.1021/bc900047n] [PMID: 19655725]
[33]
Weng, K.C.; Noble, C.O.; Papahadjopoulos-Sternberg, B.; Chen, F.F.; Drummond, D.C.; Kirpotin, D.B.; Wang, D.; Hom, Y.K.; Hann, B.; Park, J.W. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett., 2008, 8(9), 2851-2857.
[http://dx.doi.org/10.1021/nl801488u] [PMID: 18712930]
[34]
Sailor, M.J.; Park, J.H. Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater., 2012, 24(28), 3779-3802.
[http://dx.doi.org/10.1002/adma.201200653] [PMID: 22610698]
[35]
Rengan, A.K.; Bukhari, A.B.; Pradhan, A.; Malhotra, R.; Banerjee, R.; Srivastava, R.; De, A. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett., 2015, 15(2), 842-848.
[http://dx.doi.org/10.1021/nl5045378] [PMID: 25554860]
[36]
Vargas, K.M.; Shon, Y-S. Hybrid lipid-nanoparticle complexes for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(5), 695-708.
[http://dx.doi.org/10.1039/C8TB03084G] [PMID: 30740226]
[37]
Al-Jamal, W.T.; Kostarelos, K. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res., 2011, 44(10), 1094-1104.
[http://dx.doi.org/10.1021/ar200105p] [PMID: 21812415]
[38]
McGrath, A.J.; Chien, Y-H.; Cheong, S.; Herman, D.A.; Watt, J.; Henning, A.M.; Gloag, L.; Yeh, C.S.; Tilley, R.D. Gold over branched palladium nanostructures for photothermal cancer therapy. ACS Nano, 2015, 9(12), 12283-12291.
[http://dx.doi.org/10.1021/acsnano.5b05563] [PMID: 26549201]
[39]
Mathiyazhakan, M.; Wiraja, C.; Xu, C. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett., 2018, 10(1), 10.
[http://dx.doi.org/10.1007/s40820-017-0166-0] [PMID: 30393659]
[40]
Xing, S.; Zhang, X.; Luo, L.; Cao, W.; Li, L.; He, Y.; An, J.; Gao, D. Doxorubicin/gold nanoparticles coated with liposomes for chemo-photothermal synergetic antitumor therapy. Nanotechnology, 2018, 29(40), 405101.
[http://dx.doi.org/10.1088/1361-6528/aad358] [PMID: 30004030]
[41]
Kunjiappan, S.; Panneerselvam, T.; Somasundaram, B.; Arunachalam, S.; Sankaranarayanan, M.; Parasuraman, P. Preparation of liposomes encapsulated epirubicin-gold nanoparticles for tumor specific delivery and release. Biomed. Phys. Eng. Express, 2018, 4(4), 045027.
[http://dx.doi.org/10.1088/2057-1976/aac9ec]
[42]
Sarkar, A.; Carvalho, E.; D’souza, A.A.; Banerjee, R. Liposome-encapsulated fish oil protein-tagged gold nanoparticles for intra-articular therapy in osteoarthritis. Nanomedicine (Lond.), 2019, 14(7), 871-887.
[http://dx.doi.org/10.2217/nnm-2018-0221] [PMID: 30895865]
[43]
Dorjsuren, B.; Chaurasiya, B.; Ye, Z.; Liu, Y.; Li, W.; Wang, C.; Shi, D.; Evans, C.E.; Webster, T.J.; Shen, Y. Cetuximab-coated thermo-sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-expressing breast cancer combined therapy. Int. J. Nanomedicine, 2020, 15, 8201-8215.
[http://dx.doi.org/10.2147/IJN.S261671] [PMID: 33122906]
[44]
Zhang, L.; Granick, S. How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett., 2006, 6(4), 694-698.
[http://dx.doi.org/10.1021/nl052455y] [PMID: 16608266]
[45]
Hasan, M.; Elkhoury, K.; Belhaj, N.; Kahn, C.; Tamayol, A.; Barberi-Heyob, M.; Arab-Tehrany, E.; Linder, M. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Mar. Drugs, 2020, 18(4), 217.
[http://dx.doi.org/10.3390/md18040217] [PMID: 32316578]
[46]
Quagliariello, V.; Masarone, M.; Armenia, E.; Giudice, A.; Barbarisi, M.; Caraglia, M.; Barbarisi, A.; Persico, M. Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells. Oncol. Rep., 2019, 41(3), 1476-1486.
[PMID: 30569138]
[47]
Zhang, X.; Liu, Y.; Luo, L.; Li, L.; Xing, S.; Yin, T.; Bian, K.; Zhu, R.; Gao, D. A chemo-photothermal synergetic antitumor drug delivery system: Gold nanoshell coated wedelolactone liposome. Mater. Sci. Eng. C, 2019, 101, 505-512.
[http://dx.doi.org/10.1016/j.msec.2019.04.006] [PMID: 31029345]
[48]
Liu, Y.; Zhang, X.; Liu, Z.; Wang, L.; Luo, L.; Wang, M.; Wang, Q.; Gao, D. Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomedicine, 2017, 13(6), 1891-1900.
[http://dx.doi.org/10.1016/j.nano.2017.03.012] [PMID: 28363771]
[49]
Chen, Y.; Bose, A.; Bothun, G.D. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano, 2010, 4(6), 3215-3221.
[http://dx.doi.org/10.1021/nn100274v] [PMID: 20507153]
[50]
Malekar, S.A.; Sarode, A.L.; Bach, A.C., II; Bose, A.; Bothun, G.; Worthen, D.R. Radio frequency- activated nanoliposomes for controlled combination drug delivery. AAPS PharmSciTech, 2015, 16(6), 1335-1343.
[http://dx.doi.org/10.1208/s12249-015-0323-z] [PMID: 25899799]
[51]
Amstad, E.; Kohlbrecher, J.; Müller, E.; Schweizer, T.; Textor, M.; Reimhult, E. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett., 2011, 11(4), 1664-1670.
[http://dx.doi.org/10.1021/nl2001499] [PMID: 21351741]
[52]
Bao, Q-Y.; Zhang, N.; Geng, D-D.; Xue, J-W.; Merritt, M.; Zhang, C.; Ding, Y. The enhanced longevity and liver targetability of paclitaxel by hybrid liposomes encapsulating paclitaxel-conjugated gold nanoparticles. Int. J. Pharm., 2014, 477(1-2), 408-415.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.040] [PMID: 25455782]
[53]
Zhang, N.; Chen, H.; Liu, A-Y.; Shen, J-J.; Shah, V.; Zhang, C.; Hong, J.; Ding, Y. Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials, 2016, 74, 280-291.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.004] [PMID: 26461120]
[54]
Kautzka, Z.; Clement, S.; Goldys, E.M.; Deng, W. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity. Int. J. Nanomedicine, 2017, 12, 969-977.
[http://dx.doi.org/10.2147/IJN.S126553] [PMID: 28203076]
[55]
Gianello, R.; Libinaki, R.; Azzi, A.; Gavin, P.D.; Negis, Y.; Zingg, J-M.; Holt, P.; Keah, H.H.; Griffey, A.; Smallridge, A.; West, S.M.; Ogru, E. α-tocopheryl phosphate: A novel, natural form of vitamin E. Free Radic. Biol. Med., 2005, 39(7), 970-976.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.05.016] [PMID: 16140216]
[56]
Zingg, J.M.; Meydani, M.; Azzi, A. α-Tocopheryl phosphate--an active lipid mediator? Mol. Nutr. Food Res., 2010, 54(5), 679-692.
[http://dx.doi.org/10.1002/mnfr.200900404] [PMID: 20169583]
[57]
Zingg, J-M. Modulation of signal transduction by vitamin E. Mol. Aspects Med., 2007, 28(5-6), 481-506.
[http://dx.doi.org/10.1016/j.mam.2006.12.009] [PMID: 17320164]
[58]
Zondlo Fiume, M. Final report on the safety assessment of tocopherol, tocopheryl acetate, tocopheryl linoleate, tocopheryl linoleate/oleate, tocopheryl nicotinate, tocopheryl succinate, dioleyl tocopheryl methylsilanol, potassium ascorbyl tocopheryl phosphate, and tocophersolan. Int. J. Toxicol., 2002, 21(Suppl. 3), 51-116.
[PMID: 12537931]
[59]
Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic. Biol. Med., 2014, 66, 3-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.022] [PMID: 23557727]
[60]
Zingg, J.M.; Meydani, M.; Azzi, A. α-Tocopheryl phosphate-an activated form of vitamin E important for angiogenesis and vasculogenesis? Biofactors, 2012, 38(1), 24-33.
[http://dx.doi.org/10.1002/biof.198] [PMID: 22281871]
[61]
Gavin, P.D.; El-Tamimy, M.; Keah, H.H.; Boyd, B.J. Tocopheryl phosphate mixture (TPM) as a novel lipid-based transdermal drug delivery carrier: Formulation and evaluation. Drug Deliv. Transl. Res., 2017, 7(1), 53-65.
[http://dx.doi.org/10.1007/s13346-016-0331-x] [PMID: 27672079]
[62]
Saitoh, Y.; Yumoto, A.; Miwa, N. α-tocopheryl phosphate suppresses tumor invasion concurrently with dynamic morphological changes and delocalization of cortactin from invadopodia. Int. J. Oncol., 2009, 35(6), 1277-1288.
[PMID: 19885550]
[63]
Negis, Y.; Meydani, M.; Zingg, J.M.; Azzi, A. Molecular mechanism of α-tocopheryl-phosphate transport across the cell membrane. Biochem. Biophys. Res. Commun., 2007, 359(2), 348-353.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.094] [PMID: 17537406]
[64]
Zarrabi, A.; Alipoor Amro Abadi, M.; Khorasani, S.; Mohammadabadi, M.R.; Jamshidi, A.; Torkaman, S.; Taghavi, E.; Mozafari, M.R.; Rasti, B. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules, 2020, 25(3), 638.
[http://dx.doi.org/10.3390/molecules25030638] [PMID: 32024189]
[65]
Mozafari, M.R.; Javanmard, R.; Raji, M. Tocosome: Novel drug delivery system containing phospholipids and tocopheryl phosphates. Int. J. Pharm., 2017, 528(1-2), 381-382.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.037] [PMID: 28619450]
[66]
Colas, J.C.; Shi, W.; Rao, V.S.; Omri, A.; Mozafari, M.R.; Singh, H. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 2007, 38(8), 841-847.
[http://dx.doi.org/10.1016/j.micron.2007.06.013] [PMID: 17689087]
[67]
Suntres, Z.E.; Shek, P.N. Alleviation of paraquat-induced lung injury by pretreatment with bifunctional liposomes containing α-tocopherol and glutathione. Biochem. Pharmacol., 1996, 52(10), 1515-1520.
[http://dx.doi.org/10.1016/S0006-2952(96)89626-2] [PMID: 8937465]
[68]
Marsanasco, M.; Márquez, A.L.; Wagner, J.R. Alonso, SdV; Chiaramoni, N.S. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res. Int., 2011, 44(9), 3039-3046.
[http://dx.doi.org/10.1016/j.foodres.2011.07.025]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy