Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Self-assembled Nucleic Acid Nanostructures for Biomedical Applications

Author(s): Xu Chang, Qi Yang, Jungyeon Lee and Fei Zhang*

Volume 22, Issue 8, 2022

Published on: 25 April, 2022

Page: [652 - 667] Pages: 16

DOI: 10.2174/1568026622666220321140729

Price: $65

Abstract

Structural DNA nanotechnology has been developed into a powerful method for creating self-assembled nanomaterials. Their compatibility with biosystems, nanoscale addressability, and programmable dynamic features make them appealing candidates for biomedical research. This review paper focuses on DNA self-assembly strategies and designer nanostructures with custom functions for biomedical applications. Specifically, we review the development of DNA self-assembly methods, from simple DNA motifs consisting of a few DNA strands to complex DNA architectures assembled by DNA origami. Three advantages are discussed using structural DNA nanotechnology for biomedical applications: (1) precise spatial control, (2) molding and guiding other biomolecules, and (3) using reconfigurable DNA nanodevices to overcome biomedical challenges. Finally, we discuss the challenges and opportunities of employing DNA nanotechnology for biomedical applications, emphasizing diverse assembly strategies to create a custom DNA nanostructure with desired functions.

Keywords: Nucleic acid nanotechnology, Self-assembly, DNA origami, Reconfiguration, Nanomaterials, Biomedical application, Nanostructures.

Graphical Abstract
[1]
Thubagere, A.J.; Li, W.; Johnson, R.F.; Chen, Z.; Doroudi, S.; Lee, Y.L.; Izatt, G.; Wittman, S.; Srinivas, N.; Woods, D.; Winfree, E.; Qian, L. A cargo-sorting DNA robot. Science, 2017, 357(6356), eaan6558.
[http://dx.doi.org/10.1126/science.aan6558] [PMID: 28912216]
[2]
Maune, H.T.; Han, S-P.; Barish, R.D.; Bockrath, M.; Goddard, W.A., III; Rothemund, P.W.K.; Winfree, E. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol., 2010, 5(1), 61-66.
[http://dx.doi.org/10.1038/nnano.2009.311] [PMID: 19898497]
[3]
Choueiri, R.M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E.M.; Querejeta-Fernández, A.; Han, L.; Xin, H.L.; Gang, O.; Zhulina, E.B.; Rubinstein, M.; Kumacheva, E. Surface patterning of nanoparticles with polymer patches. Nature, 2016, 538(7623), 79-83.
[http://dx.doi.org/10.1038/nature19089] [PMID: 27556943]
[4]
Yang, Y.R.; Liu, Y.; Yan, H. DNA nanostructures as programmable biomolecular scaffolds. Bioconjug. Chem., 2015, 26(8), 1381-1395.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00194] [PMID: 25961418]
[5]
Kong, G.; Xiong, M.; Liu, L.; Hu, L.; Meng, H-M.; Ke, G.; Zhang, X-B.; Tan, W. DNA origami-based protein networks: From basic construction to emerging applications. Chem. Soc. Rev., 2021, 50(3), 1846-1873.
[http://dx.doi.org/10.1039/D0CS00255K] [PMID: 33306073]
[6]
Keller, A.; Linko, V. Challenges and perspectives of DNA nanostructures in biomedicine. Angew. Chem. Int. Ed. Engl., 2020, 59(37), 15818-15833.
[http://dx.doi.org/10.1002/anie.201916390] [PMID: 32112664]
[7]
Ramezani, H.; Dietz, H. Building machines with DNA molecules. Nat. Rev. Genet., 2020, 21(1), 5-26.
[http://dx.doi.org/10.1038/s41576-019-0175-6] [PMID: 31636414]
[8]
Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: Scaffolds for creating higher order structures. Chem. Rev., 2017, 117(20), 12584-12640.
[http://dx.doi.org/10.1021/acs.chemrev.6b00825] [PMID: 28605177]
[9]
Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol., 1982, 99(2), 237-247.
[http://dx.doi.org/10.1016/0022-5193(82)90002-9] [PMID: 6188926]
[10]
Fu, T.J.; Seeman, N.C. DNA double-crossover molecules. Biochemistry, 1993, 32(13), 3211-3220.
[http://dx.doi.org/10.1021/bi00064a003] [PMID: 8461289]
[11]
Winfree, E.; Liu, F.; Wenzler, L.A.; Seeman, N.C. Design and self-assembly of two-dimensional DNA crystals. Nature, 1998, 394(6693), 539-544.
[http://dx.doi.org/10.1038/28998] [PMID: 9707114]
[12]
Yan, H.; Park, S.H.; Finkelstein, G.; Reif, J.H.; LaBean, T.H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 2003, 301(5641), 1882-1884.
[http://dx.doi.org/10.1126/science.1089389] [PMID: 14512621]
[13]
He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A.E.; Jiang, W.; Mao, C. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 2008, 452(7184), 198-201.
[http://dx.doi.org/10.1038/nature06597] [PMID: 18337818]
[14]
Zhang, F.; Liu, Y.; Yan, H. Complex Archimedean tiling self-assembled from DNA nanostructures. J. Am. Chem. Soc., 2013, 135(20), 7458-7461.
[http://dx.doi.org/10.1021/ja4035957] [PMID: 23651321]
[15]
Liu, L.; Li, Z.; Li, Y.; Mao, C. Rational design and self-assembly of two-dimensional, dodecagonal DNA Quasicrystals. J. Am. Chem. Soc., 2019, 141(10), 4248-4251.
[http://dx.doi.org/10.1021/jacs.9b00843] [PMID: 30827097]
[16]
Ke, Y.; Ong, L.L.; Shih, W.M.; Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science, 2012, 338(6111), 1177-1183.
[http://dx.doi.org/10.1126/science.1227268] [PMID: 23197527]
[17]
Ong, L.L.; Hanikel, N.; Yaghi, O.K.; Grun, C.; Strauss, M.T.; Bron, P.; Lai-Kee-Him, J.; Schueder, F.; Wang, B.; Wang, P.; Kishi, J.Y.; Myhrvold, C.; Zhu, A.; Jungmann, R.; Bellot, G.; Ke, Y.; Yin, P. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature, 2017, 552(7683), 72-77.
[http://dx.doi.org/10.1038/nature24648] [PMID: 29219968]
[18]
Sharma, J.; Chhabra, R.; Liu, Y.; Ke, Y.; Yan, H. DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed., 2006, 45(5), 730-735.
[http://dx.doi.org/10.1002/anie.200503208] [PMID: 16365843]
[19]
Williams, B.A.R.; Lund, K.; Liu, Y.; Yan, H.; Chaput, J.C. Self-assembled peptide nanoarrays: An approach to studying protein-protein interactions. Angew. Chem. Int. Ed., 2007, 46(17), 3051-3054.
[http://dx.doi.org/10.1002/anie.200603919] [PMID: 17361972]
[20]
Chhabra, R.; Sharma, J.; Ke, Y.; Liu, Y.; Rinker, S.; Lindsay, S.; Yan, H. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc., 2007, 129(34), 10304-10305.
[http://dx.doi.org/10.1021/ja072410u] [PMID: 17676841]
[21]
Shih, W.M.; Quispe, J.D.; Joyce, G.F.A. 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 2004, 427(6975), 618-621.
[http://dx.doi.org/10.1038/nature02307] [PMID: 14961116]
[22]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[23]
Andersen, E.S.; Dong, M.; Nielsen, M.M.; Jahn, K.; Lind-Thomsen, A.; Mamdouh, W.; Gothelf, K.V.; Besenbacher, F.; Kjems, J. DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano, 2008, 2(6), 1213-1218.
[http://dx.doi.org/10.1021/nn800215j] [PMID: 19206339]
[24]
Qian, L.; Wang, Y.; Zhang, Z.; Zhao, J.; Pan, D.; Zhang, Y.; Liu, Q.; Fan, C.; Hu, J.; He, L. Analogic China map constructed by DNA. Chin. Sci. Bull., 2006, 51(24), 2973-2976.
[http://dx.doi.org/10.1007/s11434-006-2223-9]
[25]
Andersen, E.S.; Dong, M.; Nielsen, M.M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M.M.; Sander, B.; Stark, H.; Oliveira, C.L.P.; Pedersen, J.S.; Birkedal, V.; Besenbacher, F.; Gothelf, K.V.; Kjems, J. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 2009, 459(7243), 73-76.
[http://dx.doi.org/10.1038/nature07971] [PMID: 19424153]
[26]
Douglas, S.M.; Marblestone, A.H.; Teerapittayanon, S.; Vazquez, A.; Church, G.M.; Shih, W.M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res., 2009, 37(15), 5001-5006.
[http://dx.doi.org/10.1093/nar/gkp436] [PMID: 19531737]
[27]
Douglas, S.M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W.M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 2009, 459(7245), 414-418.
[http://dx.doi.org/10.1038/nature08016] [PMID: 19458720]
[28]
Ke, Y.; Voigt, N.V.; Gothelf, K.V.; Shih, W.M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc., 2012, 134(3), 1770-1774.
[http://dx.doi.org/10.1021/ja209719k] [PMID: 22187940]
[29]
Dietz, H.; Douglas, S.M.; Shih, W.M. Folding DNA into twisted and curved nanoscale shapes. Science, 2009, 325(5941), 725-730.
[http://dx.doi.org/10.1126/science.1174251] [PMID: 19661424]
[30]
Han, D.; Pal, S.; Yang, Y.; Jiang, S.; Nangreave, J.; Liu, Y.; Yan, H. DNA gridiron nanostructures based on four-arm junctions. Science, 2013, 339(6126), 1412-1415.
[http://dx.doi.org/10.1126/science.1232252] [PMID: 23520107]
[31]
Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA rendering of polyhedral meshes at the nanoscale. Nature, 2015, 523(7561), 441-444.
[http://dx.doi.org/10.1038/nature14586] [PMID: 26201596]
[32]
Zhang, F.; Jiang, S.; Wu, S.; Li, Y.; Mao, C.; Liu, Y.; Yan, H. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol., 2015, 10(9), 779-784.
[http://dx.doi.org/10.1038/nnano.2015.162] [PMID: 26192207]
[33]
Veneziano, R.; Ratanalert, S.; Zhang, K.; Zhang, F.; Yan, H.; Chiu, W.; Bathe, M. Designer nanoscale DNA assemblies programmed from the top down. Science, 2016, 352(6293), 1534.
[http://dx.doi.org/10.1126/science.aaf4388] [PMID: 27229143]
[34]
Jun, H.; Zhang, F.; Shepherd, T.; Ratanalert, S.; Qi, X.; Yan, H.; Bathe, M. Autonomously designed free-form 2D DNA origami. Sci. Adv., 2019, 5(1), eaav0655.
[http://dx.doi.org/10.1126/sciadv.aav0655] [PMID: 30613779]
[35]
Geary, C.; Rothemund, P.W.K.; Andersen, E.S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science, 2014, 345(6198), 799-804.
[http://dx.doi.org/10.1126/science.1253920] [PMID: 25124436]
[36]
Horiya, S.; Li, X.; Kawai, G.; Saito, R.; Katoh, A.; Kobayashi, K.; Harada, K. RNA LEGO; Magnesium-dependent formation of specific RNA assemblies through kissing interactions. Chem. Biol., 2003, 10(7), 645-654.
[http://dx.doi.org/10.1016/S1074-5521(03)00146-7] [PMID: 12890538]
[37]
Han, D.; Qi, X.; Myhrvold, C.; Wang, B.; Dai, M.; Jiang, S.; Bates, M.; Liu, Y.; An, B.; Zhang, F.; Yan, H.; Yin, P. Single-stranded DNA and RNA origami. Science, 2017, 358(6369), eaao2648.
[http://dx.doi.org/10.1126/science.aao2648] [PMID: 29242318]
[38]
Qi, X.; Zhang, F.; Su, Z.; Jiang, S.; Han, D.; Ding, B.; Liu, Y.; Chiu, W.; Yin, P.; Yan, H. Programming molecular topologies from single-stranded nucleic acids. Nat. Commun., 2018, 9(1), 4579.
[http://dx.doi.org/10.1038/s41467-018-07039-7] [PMID: 30389935]
[39]
Zhang, H.; Chao, J.; Pan, D.; Liu, H.; Huang, Q.; Fan, C. Folding super-sized DNA origami with scaffold strands from long-range PCR. Chem. Commun. (Camb.), 2012, 48(51), 6405.
[http://dx.doi.org/10.1039/c2cc32204h] [PMID: 22618197]
[40]
Marchi, A.N.; Saaem, I.; Vogen, B.N.; Brown, S.; LaBean, T.H. Toward larger DNA origami. Nano Lett., 2014, 14(10), 5740-5747.
[http://dx.doi.org/10.1021/nl502626s] [PMID: 25179827]
[41]
Liu, W.; Zhong, H.; Wang, R.; Seeman, N.C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. Engl., 2011, 50(1), 264-267.
[http://dx.doi.org/10.1002/anie.201005911] [PMID: 21053236]
[42]
Iinuma, R.; Ke, Y.; Jungmann, R.; Schlichthaerle, T.; Woehrstein, J.B.; Yin, P. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science, 2014, 344(6179), 65-69.
[http://dx.doi.org/10.1126/science.1250944] [PMID: 24625926]
[43]
Woo, S.; Rothemund, P.W.K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem., 2011, 3(8), 620-627.
[http://dx.doi.org/10.1038/nchem.1070] [PMID: 21778982]
[44]
Tikhomirov, G.; Petersen, P.; Qian, L. Programmable disorder in random DNA tilings. Nat. Nanotechnol., 2017, 12(3), 251-259.
[http://dx.doi.org/10.1038/nnano.2016.256] [PMID: 27893729]
[45]
Tikhomirov, G.; Petersen, P.; Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature, 2017, 552(7683), 67-71.
[http://dx.doi.org/10.1038/nature24655] [PMID: 29219965]
[46]
Zhang, F.; Hong, F.; Yan, H. DNA origami tiles: Nanoscale mazes. Nat. Nanotechnol., 2017, 12(3), 189-190.
[http://dx.doi.org/10.1038/nnano.2016.263] [PMID: 27893728]
[47]
Gerling, T.; Wagenbauer, K.F.; Neuner, A.M.; Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science, 2015, 347(6229), 1446-1452.
[http://dx.doi.org/10.1126/science.aaa5372] [PMID: 25814577]
[48]
Wagenbauer, K.F.; Sigl, C.; Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature, 2017, 552(7683), 78-83.
[http://dx.doi.org/10.1038/nature24651] [PMID: 29219966]
[49]
Stephanopoulos, N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem, 2020, 6(2), 364-405.
[http://dx.doi.org/10.1016/j.chempr.2020.01.012]
[50]
Rinker, S.; Ke, Y.; Liu, Y.; Chhabra, R.; Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotechnol., 2008, 3(7), 418-422.
[http://dx.doi.org/10.1038/nnano.2008.164] [PMID: 18654566]
[51]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[52]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[53]
Zhou, Y.; Qi, X.; Liu, Y.; Zhang, F.; Yan, H. DNA-Nanoscaffold-assisted selection of femtomolar bivalent human α-thrombin aptamers with potent anticoagulant activity. ChemBioChem, 2019, 20(19), 2494-2503.
[http://dx.doi.org/10.1002/cbic.201900265] [PMID: 31083763]
[54]
Fu, J.; Liu, M.; Liu, Y.; Woodbury, N.W.; Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc., 2012, 134(12), 5516-5519.
[http://dx.doi.org/10.1021/ja300897h] [PMID: 22414276]
[55]
Hariadi, R.F.; Sommese, R.F.; Adhikari, A.S.; Taylor, R.E.; Sutton, S.; Spudich, J.A.; Sivaramakrishnan, S. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments. Nat. Nanotechnol., 2015, 10(8), 696-700.
[http://dx.doi.org/10.1038/nnano.2015.132] [PMID: 26149240]
[56]
Shaw, A.; Lundin, V.; Petrova, E.; Fördős, F.; Benson, E.; Al-Amin, A.; Herland, A.; Blokzijl, A.; Högberg, B.; Teixeira, A.I. Spatial control of membrane receptor function using ligand nanocalipers. Nat. Methods, 2014, 11(8), 841-846.
[http://dx.doi.org/10.1038/nmeth.3025] [PMID: 24997862]
[57]
Kwon, P.S.; Ren, S.; Kwon, S-J.; Kizer, M.E.; Kuo, L.; Xie, M.; Zhu, D.; Zhou, F.; Zhang, F.; Kim, D.; Fraser, K.; Kramer, L.D.; Seeman, N.C.; Dordick, J.S.; Linhardt, R.J.; Chao, J.; Wang, X. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem., 2020, 12(1), 26-35.
[http://dx.doi.org/10.1038/s41557-019-0369-8] [PMID: 31767992]
[58]
Berger, R.M.L.; Weck, J.M.; Kempe, S.M.; Hill, O.; Liedl, T.; Rädler, J.O.; Monzel, C.; Heuer-Jungemann, A. Nanoscale FasL organization on DNA origami to decipher apoptosis signal activation in cells. Small, 2021, 17(26), e2101678.
[http://dx.doi.org/10.1002/smll.202101678] [PMID: 34057291]
[59]
Wang, Y.; Baars, I.; Fördös, F.; Högberg, B. Clustering of death receptor for apoptosis using nanoscale patterns of peptides. ACS Nano, 2021, 15(6), 9614-9626.
[http://dx.doi.org/10.1021/acsnano.0c10104] [PMID: 34019379]
[60]
Sigl, C.; Willner, E.M.; Engelen, W.; Kretzmann, J.A.; Sachenbacher, K.; Liedl, A.; Kolbe, F.; Wilsch, F.; Aghvami, S.A.; Protzer, U.; Hagan, M.F.; Fraden, S.; Dietz, H. Programmable icosahedral shell system for virus trapping. Nat. Mater., 2021, 20(9), 1281-1289.
[http://dx.doi.org/10.1038/s41563-021-01020-4] [PMID: 34127822]
[61]
Jasinski, D.; Haque, F.; Binzel, D.W.; Guo, P. Advancement of the emerging field of RNA nanotechnology. ACS Nano, 2017, 11(2), 1142-1164.
[http://dx.doi.org/10.1021/acsnano.6b05737] [PMID: 28045501]
[62]
Paige, J.S.; Wu, K.Y.; Jaffrey, S.R. RNA mimics of green fluorescent protein. Science, 2011, 333(6042), 642-646.
[http://dx.doi.org/10.1126/science.1207339] [PMID: 21798953]
[63]
Krissanaprasit, A.; Key, C.; Fergione, M.; Froehlich, K.; Pontula, S.; Hart, M.; Carriel, P.; Kjems, J.; Andersen, E.S.; LaBean, T.H. Genetically encoded, functional single-strand RNA origami. Anticoagulant. Adv. Mater., 2019, 31(21), e1808262.
[http://dx.doi.org/10.1002/adma.201808262] [PMID: 30972819]
[64]
Ganesan, S.; Ameer-Beg, S.M.; Ng, T.T.C.; Vojnovic, B.; Wouters, F.S. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 4089-4094.
[http://dx.doi.org/10.1073/pnas.0509922103] [PMID: 16537489]
[65]
Selnihhin, D.; Sparvath, S.M.; Preus, S.; Birkedal, V.; Andersen, E.S. Multifluorophore DNA origami beacon as a biosensing platform. ACS Nano, 2018, 12(6), 5699-5708.
[http://dx.doi.org/10.1021/acsnano.8b01510] [PMID: 29763544]
[66]
Jepsen, M.D.E.; Sparvath, S.M.; Nielsen, T.B.; Langvad, A.H.; Grossi, G.; Gothelf, K.V.; Andersen, E.S. Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat. Commun., 2018, 9(1), 18.
[http://dx.doi.org/10.1038/s41467-017-02435-x]
[67]
Schreiber, R.; Kempter, S.; Holler, S.; Schüller, V.; Schiffels, D.; Simmel, S.S.; Nickels, P.C.; Liedl, T. DNA origami-templated growth of arbitrarily shaped metal nanoparticles. Small, 2011, 7(13), 1795-1799.
[http://dx.doi.org/10.1002/smll.201100465] [PMID: 21608127]
[68]
Sun, W.; Boulais, E.; Hakobyan, Y.; Wang, W.L.; Guan, A.; Bathe, M.; Yin, P. Casting inorganic structures with DNA molds. Science, 2014, 346(6210), 1258361-1258361.
[http://dx.doi.org/10.1126/science.1258361] [PMID: 25301973]
[69]
Helmi, S.; Ziegler, C.; Kauert, D.J.; Seidel, R. Shape-controlled synthesis of gold nanostructures using DNA origami molds. Nano Lett., 2014, 14(11), 6693-6698.
[http://dx.doi.org/10.1021/nl503441v] [PMID: 25275962]
[70]
Krissanaprasit, A.; Madsen, M.; Knudsen, J.B.; Gudnason, D.; Surareungchai, W.; Birkedal, V.; Gothelf, K.V. Programmed switching of single polymer conformation on DNA origami. ACS Nano, 2016, 10(2), 2243-2250.
[http://dx.doi.org/10.1021/acsnano.5b06894] [PMID: 26766635]
[71]
Hannewald, N.; Winterwerber, P.; Zechel, S.; Ng, D.Y.W.; Hager, M.D.; Weil, T.; Schubert, U.S. DNA origami meets polymers: A powerful tool for the design of defined nanostructures. Angew. Chem. Int. Ed. Engl., 2021, 60(12), 6218-6229.
[http://dx.doi.org/10.1002/anie.202005907] [PMID: 32649033]
[72]
Yang, Y.; Wang, J.; Shigematsu, H.; Xu, W.; Shih, W.M.; Rothman, J.E.; Lin, C. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem., 2016, 8(5), 476-483.
[http://dx.doi.org/10.1038/nchem.2472] [PMID: 27102682]
[73]
Zhang, Z.; Yang, Y.; Pincet, F.; Llaguno, M.C.; Lin, C. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem., 2017, 9(7), 653-659.
[http://dx.doi.org/10.1038/nchem.2802] [PMID: 28644472]
[74]
Zhao, Z.; Zhang, M.; Hogle, J.M.; Shih, W.M.; Wagner, G.; Nasr, M.L. DNA-corralled nanodiscs for the structural and functional characterization of membrane proteins and viral entry. J. Am. Chem. Soc., 2018, 140(34), 10639-10643.
[http://dx.doi.org/10.1021/jacs.8b04638] [PMID: 30094995]
[75]
Franquelim, H.G.; Khmelinskaia, A.; Sobczak, J-P.; Dietz, H.; Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun., 2018, 9(1), 811.
[http://dx.doi.org/10.1038/s41467-018-03198-9] [PMID: 29476101]
[76]
Udomprasert, A.; Bongiovanni, M.N.; Sha, R.; Sherman, W.B.; Wang, T.; Arora, P.S.; Canary, J.W.; Gras, S.L.; Seeman, N.C. Amyloid fibrils nucleated and organized by DNA origami constructions. Nat. Nanotechnol., 2014, 9(7), 537-541.
[http://dx.doi.org/10.1038/nnano.2014.102] [PMID: 24880222]
[77]
Fisher, P.D.E.; Shen, Q.; Akpinar, B.; Davis, L.K.; Chung, K.K.H.; Baddeley, D.; Šarić, A.; Melia, T.J.; Hoogenboom, B.W.; Lin, C.; Lusk, C.P. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement. ACS Nano, 2018, 12(2), 1508-1518.
[http://dx.doi.org/10.1021/acsnano.7b08044] [PMID: 29350911]
[78]
Ketterer, P.; Ananth, A.N.; Laman Trip, D.S.; Mishra, A.; Bertosin, E.; Ganji, M.; van der Torre, J.; Onck, P.; Dietz, H.; Dekker, C. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nat. Commun., 2018, 9(1), 902.
[http://dx.doi.org/10.1038/s41467-018-03313-w] [PMID: 29500415]
[79]
Zhou, K.; Ke, Y.; Wang, Q. Selective in situ assembly of viral protein onto DNA origami. J. Am. Chem. Soc., 2018, 140(26), 8074-8077.
[http://dx.doi.org/10.1021/jacs.8b03914] [PMID: 29932333]
[80]
Zhou, K.; Zhou, Y.; Pan, V.; Wang, Q.; Ke, Y. Programming dynamic assembly of viral proteins with DNA origami. J. Am. Chem. Soc., 2020, 142(13), 5929-5932.
[http://dx.doi.org/10.1021/jacs.9b13773] [PMID: 32191463]
[81]
Funck, T.; Nicoli, F.; Kuzyk, A.; Liedl, T. Sensing picomolar concentrations of rna using switchable plasmonic chirality. angew. chem. int. ed. engl., 2018, 57(41), 13495-13498.
[http://dx.doi.org/10.1002/anie.201807029] [PMID: 30084527]
[82]
Douglas, S.M.; Bachelet, I.; Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335(6070), 831-834.
[http://dx.doi.org/10.1126/science.1214081] [PMID: 22344439]
[83]
Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G.J.; Han, J-Y.; Chang, Y.; Liu, Y.; Zhang, C.; Chen, L.; Zhou, G.; Nie, G.; Yan, H.; Ding, B.; Zhao, Y. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol., 2018, 36(3), 258-264.
[http://dx.doi.org/10.1038/nbt.4071] [PMID: 29431737]
[84]
Yurke, B.; Turberfield, A.J.; Mills, A.P., Jr; Simmel, F.C.; Neumann, J.L. A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406(6796), 605-608.
[http://dx.doi.org/10.1038/35020524] [PMID: 10949296]
[85]
Zhang, D.Y.; Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc., 2009, 131(47), 17303-17314.
[http://dx.doi.org/10.1021/ja906987s] [PMID: 19894722]
[86]
Valero, J.; Pal, N.; Dhakal, S.; Walter, N.G.; Famulok, M. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks. Nat. Nanotechnol., 2018, 13(6), 496-503.
[http://dx.doi.org/10.1038/s41565-018-0109-z] [PMID: 29632399]
[87]
Yin, P.; Yan, H.; Daniell, X.G.; Turberfield, A.J.; Reif, J.H. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Ed., 2004, 43(37), 4906-4911.
[http://dx.doi.org/10.1002/anie.200460522] [PMID: 15372637]
[88]
Liu, M.; Fu, J.; Hejesen, C.; Yang, Y.; Woodbury, N.W.; Gothelf, K.; Liu, Y.; Yan, H. A DNA tweezer-actuated enzyme nanoreactor. Nat. Commun., 2013, 4(1), 2127.
[http://dx.doi.org/10.1038/ncomms3127] [PMID: 23820332]
[89]
Yin, P.; Choi, H.M.T.; Calvert, C.R.; Pierce, N.A. Programming biomolecular self-assembly pathways. Nature, 2008, 451(7176), 318-322.
[http://dx.doi.org/10.1038/nature06451] [PMID: 18202654]
[90]
Yan, H.; Zhang, X.; Shen, Z.; Seeman, N.C. A robust DNA mechanical device controlled by hybridization topology. Nature, 2002, 415(6867), 62-65.
[http://dx.doi.org/10.1038/415062a] [PMID: 11780115]
[91]
Song, J.; Li, Z.; Wang, P.; Meyer, T.; Mao, C.; Ke, Y. Reconfiguration of DNA molecular arrays driven by information relay. Science, 2017, 357(6349), eaan3377.
[http://dx.doi.org/10.1126/science.aan3377] [PMID: 28642234]
[92]
Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Reconfigurable DNA origami to generate quasifractal patterns. Nano Lett., 2012, 12(6), 3290-3295.
[http://dx.doi.org/10.1021/nl301399z] [PMID: 22559073]
[93]
Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Komiyama, M. Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat. Commun., 2011, 2(1), 449.
[http://dx.doi.org/10.1038/ncomms1452] [PMID: 21863016]
[94]
Kuzyk, A.; Schreiber, R.; Zhang, H.; Govorov, A.O.; Liedl, T.; Liu, N. Reconfigurable 3D plasmonic metamolecules. Nat. Mater., 2014, 13(9), 862-866.
[http://dx.doi.org/10.1038/nmat4031] [PMID: 24997737]
[95]
Castro, C.E.; Su, H-J.; Marras, A.E.; Zhou, L.; Johnson, J. Mechanical design of DNA nanostructures. Nanoscale, 2015, 7(14), 5913-5921.
[http://dx.doi.org/10.1039/C4NR07153K] [PMID: 25655237]
[96]
Ke, Y.; Meyer, T.; Shih, W.M.; Bellot, G. Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator. Nat. Commun., 2016, 7(1), 10935.
[http://dx.doi.org/10.1038/ncomms10935] [PMID: 26988942]
[97]
Grossi, G.; Dalgaard Ebbesen Jepsen, M.; Kjems, J.; Andersen, E.S. Control of enzyme reactions by a reconfigurable DNA nanovault. Nat. Commun., 2017, 8(1), 992.
[http://dx.doi.org/10.1038/s41467-017-01072-8] [PMID: 29051565]
[98]
Liu, S.; Jiang, Q.; Zhao, X.; Zhao, R.; Wang, Y.; Wang, Y.; Liu, J.; Shang, Y.; Zhao, S.; Wu, T.; Zhang, Y.; Nie, G.; Ding, B. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater., 2021, 20(3), 421-430.
[http://dx.doi.org/10.1038/s41563-020-0793-6] [PMID: 32895504]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy