Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Novel Post-translational Modifications in Human Serum Albumin

Author(s): Surya Kannan, Roopesh Krishnankutty and Serhiy Souchelnytskyi*

Volume 29, Issue 5, 2022

Published on: 02 June, 2022

Page: [473 - 484] Pages: 12

DOI: 10.2174/0929866529666220318152509

Price: $65

Abstract

Aim: This study aims to identify novel post-translational modifications in human serum albumin by mass spectrometry.

Background: Serum albumin is the most abundant protein in plasma, has many physiological functions, and is in contact with most of the cells and tissues of the human body. Post-translational modifications (PTMs) may affect functions, stability, and localization of albumin.

Methods: Human serum albumin (HSA) was used for tryptic digestion in-solution or in-gel. Mass spectrometry was applied to identify PTMs in HSA. 3-dimensional modeling was applied to explore the potential impact of PTMs on known functions of albumin.

Results: Here, we report the identification of 61 novel PTMs of human serum albumin. Phosphorylation, glycosylation, nitrosylation, deamidation, methylation, acetylation, palmitoylation, geranylation, and farnesylation are some examples of the identified PTMs. Mass spectrometry was used for the identification of PTMs in a purified HSA and HSA from the human plasma. Threedimensional modeling of albumin with selected PTMs showed the location of these PTMs in the regions involved in albumin interactions with drugs, metals, and fatty acids. The location of PTMs in these regions may modify the binding capacity of albumin.

Conclusion: This report adds 61 novel PTMs to the catalog of human albumin.

Keywords: Human serum albumin, post-translational modifications, proteomics, mass spectrometry, 3-dimensional modeling, plasma.

« Previous
Graphical Abstract
[1]
Caraceni, P.; Tufoni, M.; Bonavita, M.E. Clinical use of albumin. Blood Transfus., 2013, 11(Suppl. 4), s18-s25.
[http://dx.doi.org/10.2450/2013.005s] [PMID: 24333308]
[2]
Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albumin-more than just a serum protein. Front. Physiol., 2014, 5, 299.
[http://dx.doi.org/10.3389/fphys.2014.00299] [PMID: 25161624]
[3]
Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Aspects Med., 2012, 33(3), 209-290.
[http://dx.doi.org/10.1016/j.mam.2011.12.002] [PMID: 22230555]
[4]
Nicholson, J.P.; Wolmarans, M.R.; Park, G.R. The role of albumin in critical illness. Br. J. Anaesth., 2000, 85(4), 599-610.
[http://dx.doi.org/10.1093/bja/85.4.599] [PMID: 11064620]
[5]
Qiu, H.; Jin, L.; Chen, J.; Shi, M.; Shi, F.; Wang, M.; Li, D.; Xu, X.; Su, X.; Yin, X.; Li, W.; Zhou, X.; Linhardt, R.J.; Wang, Z.; Chi, L.; Zhang, Q. Comprehensive glycomic analysis reveals that human serum albumin glycation specifically affects the pharmacokinetics and efficacy of different anticoagulant drugs in diabetes. Diabetes, 2020, 69(4), 760-770.
[http://dx.doi.org/10.2337/db19-0738] [PMID: 31974145]
[6]
Anguizola, J.; Matsuda, R.; Barnaby, O.S.; Hoy, K.S.; Wa, C.; DeBolt, E.; Koke, M.; Hage, D.S. Review: Glycation of human serum albumin. Clin. Chim. Acta, 2013, 425, 64-76.
[http://dx.doi.org/10.1016/j.cca.2013.07.013] [PMID: 23891854]
[7]
Otagiri, M.; Chuang, V.T.C. Pharmaceutically important pre- and posttranslational modifications on human serum albumin. Biol. Pharm. Bull., 2009, 32(4), 527-534.
[http://dx.doi.org/10.1248/bpb.32.527] [PMID: 19336879]
[8]
Naldi, M.; Baldassarre, M.; Domenicali, M.; Bartolini, M.; Caraceni, P. Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. J. Pharm. Biomed. Anal., 2017, 144, 138-153.
[http://dx.doi.org/10.1016/j.jpba.2017.04.023] [PMID: 28465079]
[9]
Bhat, S.; Jagadeeshaprasad, M.G.; Venkatasubramani, V.; Kulkarni, M.J. Abundance matters: Role of albumin in diabetes, a proteomics perspective. Expert Rev. Proteomics, 2017, 14(8), 677-689.
[http://dx.doi.org/10.1080/14789450.2017.1352473] [PMID: 28689445]
[10]
Martin, S.C.; Ekman, P. In vitro phosphorylation of serum albumin by two protein kinases: A potential pitfall in protein phosphorylation reactions. Anal. Biochem., 1986, 154(2), 395-399.
[http://dx.doi.org/10.1016/0003-2697(86)90004-7] [PMID: 3460368]
[11]
Giglio, R.V.; Lo Sasso, B.; Agnello, L.; Bivona, G.; Maniscalco, R.; Ligi, D.; Mannello, F.; Ciaccio, M. Recent updates and advances in the use of glycated albumin for the diagnosis and monitoring of diabetes and renal, cerebro- and cardio-metabolic diseases. J. Clin. Med., 2020, 9(11), 3634.
[http://dx.doi.org/10.3390/jcm9113634] [PMID: 33187372]
[12]
Morris, M.A.; Preddy, L. Glycosylation accelerates albumin degradation in normal and diabetic dogs. Biochem. Med. Metab. Biol., 1986, 35(3), 267-270.
[http://dx.doi.org/10.1016/0885-4505(86)90082-4] [PMID: 3521682]
[13]
Ferraro, G; Massai, L; Messari, L; Merlino, A Cisplatin binding to human serum albumin: A structural study., 2015, 51, 9436-9439.
[http://dx.doi.org/10.1039/C5CC01751C]
[14]
Curry, S.; Mandelkow, H.; Brick, P.; Franks, N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol., 1998, 5(9), 827-835.
[http://dx.doi.org/10.1038/1869] [PMID: 9731778]
[15]
Ishima, Y.; Sawa, T.; Kragh-Hansen, U.; Miyamoto, Y.; Matsushita, S.; Akaike, T.; Otagiri, M. S-Nitrosylation of human variant albumin Liprizzi (R410C) confers potent antibacterial and cytoprotective properties. J. Pharmacol. Exp. Ther., 2007, 320(3), 969-977.
[http://dx.doi.org/10.1124/jpet.106.114959] [PMID: 17135341]
[16]
Marcus, K.; Lelong, C.; Rabilloud, T. What room for two-dimensional gel-based proteomics in a shotgun proteomics world? Proteomes, 2020, 8(3), 17.
[http://dx.doi.org/10.3390/proteomes8030017] [PMID: 32781532]
[17]
Virág, D.; Dalmadi-Kiss, B.; Vékey, K.; Drahos, L.; Klebovich, I.; Antal, I.; Ludányi, K. Current trends in the analysis of post-translational modifications. Chromatographia, 2020, 83(1), 1-10.
[http://dx.doi.org/10.1007/s10337-019-03796-9]
[18]
Bhaskaran, N.; Iwahana, H.; Bergquist, J.; Hellman, U.; Souchelnytskyi, S. Novel post-translational modifications of Smad2 identified by mass spectrometry. Open Life Sci., 2008, 3(4), 359-370.
[http://dx.doi.org/10.2478/s11535-008-0045-2]
[19]
Wilkins, M.R.; Gasteiger, E.; Gooley, A.A.; Herbert, B.R.; Molloy, M.P.; Binz, P.A.; Ou, K.; Sanchez, J.C.; Bairoch, A.; Williams, K.L.; Hochstrasser, D.F. High-throughput mass spectrometric discovery of protein post-translational modifications. J. Mol. Biol., 1999, 289(3), 645-657.
[http://dx.doi.org/10.1006/jmbi.1999.2794] [PMID: 10356335]
[20]
Ramazi, S.; Zahiri, J. Posttranslational modifications in proteins: Resources, tools and prediction methods. Database (Oxford), 2021, 2021, 1-20.
[http://dx.doi.org/10.1093/database/baab012] [PMID: 33826699]
[21]
Lee, P.; Wu, X. Review: Modifications of human serum albumin and their binding effect. Curr. Pharm. Des., 2015, 21(14), 1862-1865.
[http://dx.doi.org/10.2174/1381612821666150302115025] [PMID: 25732553]
[22]
Yang, F.; Zhang, Y.; Liang, H. Interactive association of drugs binding to human serum albumin. Int. J. Mol. Sci., 2014, 15(3), 3580-3595.
[http://dx.doi.org/10.3390/ijms15033580] [PMID: 24583848]
[23]
Mares-Sámano, S.; Garduño-Juárez, R. Computational modeling of the interactions of drugs with human serum albumin (HSA). Comput. Sist., 2018, 22(4), 1123-1135.
[http://dx.doi.org/10.13053/cys-22-4-3085]
[24]
Oran, I.; Oran, B. Ischemia-modified albumin as a marker of acute coronary syndrome: The case for revising the concept of “N-Terminal Modification” to “Fatty Acid Occupation” of albumin. Dis. Markers, 2017, 2017, 5692583.
[http://dx.doi.org/10.1155/2017/5692583] [PMID: 28356609]
[25]
Carter, D.C.; He, X.M.; Munson, S.H.; Twigg, P.D.; Gernert, K.M.; Broom, M.B.; Miller, T.Y. Three-dimensional structure of human serum albumin. Science, 1989, 244(4909), 1195-1198.
[http://dx.doi.org/10.1126/science.2727704] [PMID: 2727704]
[26]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[http://dx.doi.org/10.1038/358209a0] [PMID: 1630489]
[27]
Woksepp, H.; Saini, R.K.R.; Zakharchenko, O.; Gautier, A.; Souchelnytskyi, N.; Souchelnytskyi, S. Proteomics of transforming growth factor β1 (TGF β1) signaling in 184A1 human breast epithelial cells suggests the involvement of casein kinase 2α in TGF β1-dependent p53 phosphorylation at Ser392. Exp. Oncol., 2019, 41(4), 304-311.
[http://dx.doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-4.13853] [PMID: 31868330]
[28]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook; Walker, John M; Hyumana Press, 2005.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[29]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci., 2021, 30(1), 70-82.
[http://dx.doi.org/10.1002/pro.3943] [PMID: 32881101]
[30]
Rhode, H.; Muckova, P.; Büchler, R.; Wendler, S.; Tautkus, B.; Vogel, M.; Moore, T.; Grosskreutz, J.; Klemm, A.; Nabity, M. A next generation setup for pre-fractionation of non-denatured proteins reveals diverse albumin proteoforms each carrying several post-translational modifications. Sci. Rep., 2019, 9(1), 11733.
[http://dx.doi.org/10.1038/s41598-019-48278-y] [PMID: 31409882]
[31]
Warnecke, A.; Sandalova, T.; Achour, A.; Harris, R.A. PyTMs: A useful PyMOL plugin for modeling common post-translational modifications. BMC Bioinformatics, 2014, 15(1), 370.
[http://dx.doi.org/10.1186/s12859-014-0370-6] [PMID: 25431162]
[32]
Audagnotto, M.; Dal Peraro, M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput. Struct. Biotechnol. J., 2017, 15, 307-319.
[http://dx.doi.org/10.1016/j.csbj.2017.03.004] [PMID: 28458782]
[33]
Li, F.; Fan, C.; Marquez-Lago, T.T.; Leier, A.; Revote, J.; Jia, C.; Zhu, Y.; Smith, A.I.; Webb, G.I.; Liu, Q.; Wei, L.; Li, J.; Song, J. PRISMOID: A comprehensive 3D structure database for post-translational modifications and mutations with functional impact. Brief. Bioinform., 2020, 21(3), 1069-1079.
[http://dx.doi.org/10.1093/bib/bbz050] [PMID: 31161204]
[34]
Ramos-Fernández, E.; Tajes, M.; Palomer, E.; Ill-Raga, G.; Bosch-Morató, M.; Guivernau, B.; Román-Dégano, I.; Eraso-Pichot, A.; Alcolea, D.; Fortea, J.; Nuñez, L.; Paez, A.; Alameda, F.; Fernández-Busquets, X.; Lleó, A.; Elosúa, R.; Boada, M.; Valverde, M.A.; Muñoz, F.J. Posttranslational nitro-glycative modifications of albumin in Alzheimer’s disease: Implications in cytotoxicity and amyloid-β peptide aggregation. J. Alzheimers Dis., 2014, 40(3), 643-657.
[http://dx.doi.org/10.3233/JAD-130914] [PMID: 24503620]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy