Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Comparative Review of Effects of Pien Tze Huang and AnGong NiuHuang Pill and their Potential on Treatment of Central Nervous System Diseases

Author(s): Congsheng Liu, Zhiliang Chen, Sharon L.Y. Wu, Tony C.H. Chow, Rufina S.Y. Cheng, Jocy T.C. Lee and David T. Yew*

Volume 22, Issue 18, 2022

Published on: 17 May, 2022

Page: [2350 - 2360] Pages: 11

DOI: 10.2174/1389557522666220318111730

Price: $65

Abstract

The ancient composite formulae Angong Niuhuang pill and Pien Tze Huang, which were used a few hundred years ago to treat febrile disease and inflammation, respectively, are found to exert effects benefiting other neurological diseases and conditions. This short review introduces the main constituents of the two formulae, looking into both the cumulative synergetic and possible individual effects of each herb or animal apcoien. In essence, the main effects of Angong Niuhuang pill include anti-inflammation, antioxidation, anti-cell death, anticonvulsion, antiedema, antipyretic, antithrombotic, antimicrobial (bacteria, viruses, fungi), neuroprotective effects, and cardiovascular protection. The main effects of Pien Tze Huang include anti-inflammation, antioxidation, anti-cell death, antithrombotic, antimicrobial, neuroprotective effects, and cardiovascular protection. Comparing both composites, similarities in the effects and part of the components are found, showing some pharmacological evidence. This review casts light on research on the effects of neuroprotective and cardiovascular protective mechanisms as well as treatment mechanisms for cerebral accidents from the integrative medicine perspective.

Keywords: Composite formula, central nervous system, neuroprotection, cardioprotection, Calculus bovis, Moschus.

Graphical Abstract
[1]
Lü, L.; Wai, M.S.; Yew, D.T.; Mak, Y.T. Pien Tze Huang, a composite Chinese traditional herbal extract, affects survival of neuroblastoma cells. Int. J. Neurosci., 2009, 119(2), 255-262.
[http://dx.doi.org/10.1080/00207450802324770] [PMID: 19125378]
[2]
Zhang, L.; Lam, W.P.; Lü, L.; Wang, C.; Wong, Y.W.; Lam, L.H.; Tang, H.C.; Wai, M.S.; Wang, M.; Kwong, W.H.; Ngai, S.M.; Mak, Y.T.; Yew, D.T. Protective effects and potential mechanisms of Pien Tze Huang on cerebral chronic ischemia and hypertensive stroke. Chin. Med., 2010, 5(1), 35.
[http://dx.doi.org/10.1186/1749-8546-5-35] [PMID: 20955558]
[3]
Zhang, X.; Zhang, Y.; Tang, S.; Yu, L.; Zhao, Y.; Ren, Q.; Huang, X.; Xu, W.; Huang, M.; Peng, J. Pien-Tze-Huang protects cerebral ischemic injury by inhibiting neuronal apoptosis in acute ischemic stroke rats. J. Ethnopharmacol., 2018, 219, 117-125.
[http://dx.doi.org/10.1016/j.jep.2018.03.018] [PMID: 29550579]
[4]
Qian, L.; Xiyan, H.; Lingqun, Z. Effect of Pien Tze Huang on aquaporin-4 express in focal cerebral infarction rats. China. J Integr Med Cardio/cerebrovasc Dis, 2013, (11), 59-61.
[5]
Liu, Y.; Liu, J.; Zhang, Y. Effect of Angong Niuhuang Pills on cerebral edema and deficit of neurological function after acute intracerebral hemorrhage in spontaneously hypertension rats. Zhonghua Zhongyiyao Zazhi, 2011, 26(3), 473-476.
[6]
Xing, W.D.; Zhang, H.T. The Effects of serum ADMA in patients with cerebral hemorrhage by using Angong Niuhuang Pill. China Practi-cal Medical, 2011, 6(23), 144-145.
[7]
Wang, D.Q.; Carey, M.C. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review. World J. Gastroenterol., 2014, 20(29), 9952-9975.
[http://dx.doi.org/10.3748/wjg.v20.i29.9952] [PMID: 25110425]
[8]
Tsoi, B.; Chen, X.; Gao, C.; Wang, S.; Yuen, S.C.; Yang, D.; Shen, J. Neuroprotective effects and hepatorenal toxicity of angong niuhuang wan against ischemia-reperfusion brain injury in rats. Front. Pharmacol., 2019, 10, 593.
[http://dx.doi.org/10.3389/fphar.2019.00593] [PMID: 31191319]
[9]
Guo, Y.; Yan, S.; Xu, L.; Zhu, G.; Yu, X.; Tong, X. Use of angong niuhuang in treating central nervous system diseases and related re-search. Evid. Based Complement. Alternat. Med., 2014, 2014, 346918.
[http://dx.doi.org/10.1155/2014/346918] [PMID: 25587341]
[10]
Lee, K.K.; Kwong, W.H.; Chau, F.T.; Yew, D.T.; Chan, W.Y. Pien Tze Huang protects the liver against carbon tetrachloride-induced dama-ge. Pharmacol. Toxicol., 2002, 91(4), 185-192.
[http://dx.doi.org/10.1034/j.1600-0773.2002.910406.x] [PMID: 12530469]
[11]
Yang, Y.; Chen, Z.; Deng, L.; Yu, J.; Wang, K.; Zhang, X.; Ji, G.; Li, F. Pien Tze Huang ameliorates liver injury by inhibiting the PERK/eIF2α signaling pathway in alcohol and high-fat diet rats. Acta Histochem., 2018, 120(6), 578-585.
[http://dx.doi.org/10.1016/j.acthis.2018.06.006] [PMID: 30005895]
[12]
Chan, W.Y.; Chau, F.T.; Lee, K.K.; Kwong, W.H.; Yew, D.T. Substitution for natural musk in Pien Tze Huang does not affect its hepato-protective activities. Hum. Exp. Toxicol., 2004, 23(1), 35-47.
[http://dx.doi.org/10.1191/0960327104ht414oa] [PMID: 15027814]
[13]
Lyu-Yu, D.; Feng-Hua, L.; Guang, J.; Yan-Chun, C.; Xing, Z. Effect study of Pien Tze Huang on nonalcoholic fatty liver disease in rats. Zhongguo Shiyan Fangjixue Zazhi, 2015, 124-128.
[14]
Zheng, H.; Wang, X.; Zhang, Y.; Chen, L.; Hua, L.; Xu, W. Pien-Tze-Huang ameliorates hepatic fibrosis via suppressing NF-κB pathway and promoting HSC apoptosis. J. Ethnopharmacol., 2019, 244, 111856.
[http://dx.doi.org/10.1016/j.jep.2019.111856] [PMID: 30959141]
[15]
Qiu, X.; Luo, H.; Liu, X.; Guo, Q.; Zheng, K.; Fan, D.; Shen, J.; Lu, C.; He, X.; Zhang, G.; Lu, A. Therapeutic potential of pien tze huang on experimental autoimmune encephalomyelitis rat. J. Immunol. Res., 2018, 2018, 2952471.
[http://dx.doi.org/10.1155/2018/2952471] [PMID: 29682587]
[16]
Qiu, X.; Guo, Q.; Liu, X.; Luo, H.; Fan, D.; Deng, Y.; Cui, H.; Lu, C.; Zhang, G.; He, X.; Lu, A. Pien tze huang alleviates relapsing-remitting experimental autoimmune encephalomyelitis mice by regulating Th1 and Th17 cells. Front. Pharmacol., 2018, 9, 1237.
[http://dx.doi.org/10.3389/fphar.2018.01237] [PMID: 30429789]
[17]
Hong, F.; Chen, Z.; Tang, H.C.; Wu, S.L.; Yang, J.; Yew, D.T. In: Microscopy and Imaging Science: Practical Approaches to Applied Re-search and Education; Méndez-Vilas, A., Ed.; Formatex Research Center: Spain, 2017, pp. 175-182.
[18]
Chinese Pharmacopoeia. Pharmacopoeia of the People’s Republic of China; Chinese Medical Science and Technology Press: Beijing, 2015.
[19]
Zahir, F.; Rabbani, G.; Khan, R.H.; Rizvi, S.J.; Jamal, M.S.; Abuzenadah, A.M. The pharmacological features of bilirubin: The question of the century. Cell. Mol. Biol. Lett., 2015, 20(3), 418-447.
[http://dx.doi.org/10.1515/cmble-2015-0012] [PMID: 26208389]
[20]
Sedlak, T.W.; Snyder, S.H. Bilirubin benefits: Cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics, 2004, 113(6), 1776-1782.
[http://dx.doi.org/10.1542/peds.113.6.1776] [PMID: 15173506]
[21]
Han, T.Q.; Zhang, S.D.; Tang, W.H.; Jiang, Z.Y. Bile acids in serum and bile of patients with cholesterol gallstone. World J. Gastroenterol., 1998, 4(1), 82-84.
[http://dx.doi.org/10.3748/wjg.v4.i1.82] [PMID: 11819241]
[22]
Beuers, U. Drug insight: Mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol., 2006, 3(6), 318-328.
[http://dx.doi.org/10.1038/ncpgasthep0521] [PMID: 16741551]
[23]
O’Dwyer, A.M.; Lajczak, N.K.; Keyes, J.A.; Ward, J.B.; Greene, C.M.; Keely, S.J. Ursodeoxycholic acid inhibits TNFα-induced IL-8 re-lease from monocytes. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 311(2), G334-G341.
[http://dx.doi.org/10.1152/ajpgi.00406.2015] [PMID: 27340129]
[24]
Ishizaki, K.; Iwaki, T.; Kinoshita, S.; Koyama, M.; Fukunari, A.; Tanaka, H.; Tsurufuji, M.; Sakata, K.; Maeda, Y.; Imada, T.; Chiba, K. Ursodeoxycholic acid protects concanavalin A-induced mouse liver injury through inhibition of intrahepatic tumor necrosis factor-alpha and macrophage inflammatory protein-2 production. Eur. J. Pharmacol., 2008, 578(1), 57-64.
[http://dx.doi.org/10.1016/j.ejphar.2007.08.031] [PMID: 17888421]
[25]
Ward, J.B.J.; Lajczak, N.K.; Kelly, O.B.; O’Dwyer, A.M.; Giddam, A.K.; Ní Gabhann, J.; Franco, P.; Tambuwala, M.M.; Jefferies, C.A.; Keely, S.; Roda, A.; Keely, S.J. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(6), G550-G558.
[http://dx.doi.org/10.1152/ajpgi.00256.2016] [PMID: 28360029]
[26]
Shi, J.; Wu, C.; Lin, Y.; Chen, Y.X.; Zhu, L.; Xie, W.F. Long-term effects of mid-dose ursodeoxycholic acid in primary biliary cirrhosis: A meta-analysis of randomized controlled trials. Am. J. Gastroenterol., 2006, 101(7), 1529-1538.
[http://dx.doi.org/10.1111/j.1572-0241.2006.00634.x] [PMID: 16863557]
[27]
Ðanić, M.; Stanimirov, B.; Pavlović, N.; Goločorbin-Kon, S.; Al-Salami, H.; Stankov, K.; Mikov, M. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front. Pharmacol., 2018, 9, 1382.
[http://dx.doi.org/10.3389/fphar.2018.01382] [PMID: 30559664]
[28]
Chai, J.; Zou, L.; Li, X.; Han, D.; Wang, S.; Hu, S.; Guan, J. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass. Int. J. Clin. Exp. Pathol., 2015, 8(12), 15778-15785.
[PMID: 26884847]
[29]
Chiang, J.Y.L. Bile acid metabolism and signaling in liver disease and therapy. Liver Res., 2017, 1(1), 3-9.
[http://dx.doi.org/10.1016/j.livres.2017.05.001] [PMID: 29104811]
[30]
Fiorucci, S.; Biagioli, M.; Zampella, A.; Distrutti, E. Bile acids activated receptors regulate innate immunity. Front. Immunol., 2018, 9, 1853.
[http://dx.doi.org/10.3389/fimmu.2018.01853] [PMID: 30150987]
[31]
Hofmann, A.F.; Eckmann, L. How bile acids confer gut mucosal protection against bacteria. Proc. Natl. Acad. Sci. USA, 2006, 103(12), 4333-4334.
[http://dx.doi.org/10.1073/pnas.0600780103] [PMID: 16537368]
[32]
Yanovsky, Y.; Schubring, S.R.; Yao, Q.; Zhao, Y.; Li, S.; May, A.; Haas, H.L.; Lin, J.S.; Sergeeva, O.A. Waking action of ursodeoxycholic acid (UDCA) involves histamine and GABAA receptor block. PLoS One, 2012, 7(8), e42512.
[http://dx.doi.org/10.1371/journal.pone.0042512] [PMID: 22880010]
[33]
Morishita, S.; Mishima, Y.; Shoji, M. Pharmacological properties of musk. Gen. Pharmacol., 1987, 18(3), 253-261.
[34]
Government document. State Food and Drug Administration, China. [Increase control of Moschus as Chinese drug]. 2012. Available from: https://web.archive.org/web/20120422062008/ www.sda.gov.cn/WS01/CL0237/69370.html
[35]
Chen, Z. Pien Tze Huang (PZH) as a multifunction medicinal agent in traditional Chinese medicine (TCM): A review on cellular, molecular and physiological mechanisms. Cancer Cell Int., 2021, 21(1), 146.
[http://dx.doi.org/10.1186/s12935-021-01785-3] [PMID: 33658028]
[36]
Kaur, A.; Kumar, S. Plants and plant products with potential antipsoriatic activity--a review. Pharm. Biol., 2012, 50(12), 1573-1591.
[http://dx.doi.org/10.3109/13880209.2012.690430] [PMID: 22971237]
[37]
Xia, X.H.; Li, Q.; Liu, M. Neuroprotective effect of a formula, moschus combined with borneolum synthcticum, from traditional Chinese medicine on ischemia stroke in rats. Evid. Based Complement. Alternat. Med., 2014, 2014, 157938.
[http://dx.doi.org/10.1155/2014/157938] [PMID: 24782904]
[38]
Kamat, V.P.; Hagiwara, H.; Katsumi, T.; Hoshi, T.; Suzuki, T.; Ando, M. Ring closing metathesis directed synthesis of (R)-(−)-muscone from (+)-citronellal. Tetrahedron, 2000, 56(26), 4397-4403.
[http://dx.doi.org/10.1016/S0040-4020(00)00333-1]
[39]
Knopff, O.; Kuhne, J.; Fehr, C. Enantioselective intramolecular aldol addition/dehydration reaction of a macrocyclic diketone: Synthesis of the musk odorants (R)-muscone and (R,Z)-5-muscenone. Angew. Chem. Int. Ed., 2007, 46(8), 1307-1310.
[http://dx.doi.org/10.1002/anie.200604518] [PMID: 17211908]
[40]
Liu, R.; Wang, M.; Duan, J.A.; Guo, J.M.; Tang, Y.P. Purification and identification of three novel antioxidant peptides from Cornu Bubali (water buffalo horn). Peptides, 2010, 31(5), 786-793.
[http://dx.doi.org/10.1016/j.peptides.2010.02.016] [PMID: 20206218]
[41]
Liu, R.; Wang, M.; Duan, J.A. Antipyretic and antioxidant activities of the aqueous extract of Cornu bubali (water buffalo horn). Am. J. Chin. Med., 2010, 38(2), 293-306.
[http://dx.doi.org/10.1142/S0192415X10007853] [PMID: 20387226]
[42]
Revathi, S.; Malathy, N.S. Antibacterial activity of rhizome of curcuma aromatica and partial purification of active compounds. Indian J. Pharm. Sci., 2013, 75(6), 732-735.
[PMID: 24591751]
[43]
Peana, A.T.; Moretti, M.D.; Manconi, V.; Desole, G.; Pippia, P. Anti-inflammatory activity of aqueous extracts and steroidal sapogenins of Agave americana. Planta Med., 1997, 63(3), 199-202.
[http://dx.doi.org/10.1055/s-2006-957652] [PMID: 9225599]
[44]
Wang, J.; Wang, L.; Lou, G.H.; Zeng, H.R.; Hu, J.; Huang, Q.W.; Peng, W.; Yang, X.B. Coptidis Rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm. Biol., 2019, 57(1), 193-225.
[http://dx.doi.org/10.1080/13880209.2019.1577466] [PMID: 30963783]
[45]
Zhao, Q.; Chen, X.Y.; Martin, C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. (Beijing), 2016, 61(18), 1391-1398.
[http://dx.doi.org/10.1007/s11434-016-1136-5] [PMID: 27730005]
[46]
Chen, L.; Li, M.; Yang, Z.; Tao, W.; Wang, P.; Tian, X.; Li, X.; Wang, W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemis-try, and pharmacological and industrial applications of an important traditional Chinese medicine. J. Ethnopharmacol., 2020, 257, 112829.
[http://dx.doi.org/10.1016/j.jep.2020.112829] [PMID: 32311486]
[47]
Cheng, C.; Liu, X.W.; Du, F.F.; Li, M.J.; Xu, F.; Wang, F.Q.; Liu, Y.; Li, C.; Sun, Y. Sensitive assay for measurement of volatile borneol, isoborneol, and the metabolite camphor in rat pharmacokinetic study of Borneolum (Bingpian) and Borneolum syntheticum (synthetic Bingpian). Acta Pharmacol. Sin., 2013, 34(10), 1337-1348.
[http://dx.doi.org/10.1038/aps.2013.86] [PMID: 23974515]
[48]
Dong, T.; Chen, N.; Ma, X.; Wang, J.; Wen, J.; Xie, Q.; Ma, R. The protective roles of L-borneolum, D-borneolum and synthetic borneol in cerebral ischaemia via modulation of the neurovascular unit. Biomed. Pharmacother., 2018, 102, 874-883.
[http://dx.doi.org/10.1016/j.biopha.2018.03.087] [PMID: 29728011]
[49]
Zhang, Q.; Wu, D.; Wu, J.; Ou, Y.; Mu, C.; Han, B.; Zhang, Q. Improved blood-brain barrier distribution: Effect of borneol on the brain pharmacokinetics of kaempferol in rats by in vivo microdialysis sampling. J. Ethnopharmacol., 2015, 162, 270-277.
[http://dx.doi.org/10.1016/j.jep.2015.01.003] [PMID: 25582491]
[50]
Chen, X.H.; Lin, Z.Z.; Liu, A.M.; Ye, J.T.; Luo, Y.; Luo, Y.Y.; Mao, X.X.; Liu, P.Q.; Pi, R.B. The orally combined neuroprotective effects of sodium ferulate and borneol against transient global ischaemia in C57 BL/6J mice. J. Pharm. Pharmacol., 2010, 62(7), 915-923.
[http://dx.doi.org/10.1211/jpp.62.07.0013] [PMID: 20636880]
[51]
Wang, L.; Liang, Q.; Lin, A.; Wu, Y.; Min, H.; Song, S.; Wang, Y.; Wang, H.; Yi, L.; Gao, Q. Borneol alleviates brain injury in sepsis mice by blocking neuronal effect of endotoxin. Life Sci., 2019, 232, 116647.
[http://dx.doi.org/10.1016/j.lfs.2019.116647] [PMID: 31301416]
[52]
Zhao, J.Y.; Lu, Y.; Du, S.Y.; Song, X.; Bai, J.; Wang, Y. Comparative pharmacokinetic studies of borneol in mouse plasma and brain by different administrations. J. Zhejiang Univ. Sci. B, 2012, 13(12), 990-996.
[http://dx.doi.org/10.1631/jzus.B1200142] [PMID: 23225854]
[53]
Yu, B.; Ruan, M.; Dong, X.; Yu, Y.; Cheng, H. The mechanism of the opening of the blood-brain barrier by borneol: A pharmacodyna-mics and pharmacokinetics combination study. J. Ethnopharmacol., 2013, 150(3), 1096-1108.
[http://dx.doi.org/10.1016/j.jep.2013.10.028] [PMID: 24432371]
[54]
Cai, Z.; Hou, S.; Li, Y.; Zhao, B.; Yang, Z.; Xu, S.; Pu, J. Effect of borneol on the distribution of gastrodin to the brain in mice via oral administration. J. Drug Target., 2008, 16(2), 178-184.
[http://dx.doi.org/10.1080/10611860701794395] [PMID: 18274938]
[55]
Gao, C.; Li, X.; Li, Y.; Wang, L.; Xue, M. Pharmacokinetic interaction between puerarin and edaravone, and effect of borneol on the brain distribution kinetics of puerarin in rats. J. Pharm. Pharmacol., 2010, 62(3), 360-367.
[http://dx.doi.org/10.1211/jpp.62.03.0011] [PMID: 20487220]
[56]
Li, Y.; Ren, M.; Wang, J.; Ma, R.; Chen, H.; Xie, Q.; Li, H.; Li, J.; Wang, J. Progress in borneol intervention for ischemic stroke: A syste-matic review. Front. Pharmacol., 2021, 12, 606682.
[http://dx.doi.org/10.3389/fphar.2021.606682] [PMID: 34017247]
[57]
Xue, X.; Qu, X.J.; Yang, Y.; Sheng, X.H.; Cheng, F.; Jiang, E.N.; Wang, J.H.; Bu, W.; Liu, Z.P. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor κB p65 activation. Biochem. Biophys. Res. Commun., 2010, 403(3-4), 398-404.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.042] [PMID: 21093411]
[58]
Tu, X.K.; Yang, W.Z.; Liang, R.S.; Shi, S.S.; Chen, J.P.; Chen, C.M.; Wang, C.H.; Xie, H.S.; Chen, Y.; Ouyang, L.Q. Effect of baicalin on matrix metalloproteinase-9 expression and blood-brain barrier permeability following focal cerebral ischemia in rats. Neurochem. Res., 2011, 36(11), 2022-2028.
[http://dx.doi.org/10.1007/s11064-011-0526-y] [PMID: 21678122]
[59]
Cao, Y.; Liang, L.; Xu, J.; Wu, J.; Yan, Y.; Lin, P.; Chen, Q.; Zheng, F.; Wang, Q.; Ren, Q.; Gou, Z.; Du, Y. The effect of Scutellaria baica-lensis stem-leaf flavonoids on spatial learning and memory in chronic cerebral ischemia-induced vascular dementia of rats. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(5), 437-446.
[http://dx.doi.org/10.1093/abbs/gmw024] [PMID: 27118553]
[60]
Shang, Y.; Ding, S. Flavonoids from Scutellaria baicalensis georgi stems and leaves regulate the brain tau hyperphosphorylation at multi-ple sites induced by composited Aβ in rats. CNS Neurol. Disord. Drug Targets, 2022, 21(4), 367-374.
[PMID: 34455972]
[61]
Wang, H.H.; Liao, J.F.; Chen, C.F. Anticonvulsant effect of water extract of Scutellariae radix in mice. J. Ethnopharmacol., 2000, 73(1-2), 185-190.
[http://dx.doi.org/10.1016/S0378-8741(00)00300-7] [PMID: 11025155]
[62]
Liu, Y.F.; Gao, F.; Li, X.W.; Jia, R.H.; Meng, X.D.; Zhao, R.; Jing, Y.Y.; Wang, Y.; Jiang, W. The anticonvulsant and neuroprotective ef-fects of baicalin on pilocarpine-induced epileptic model in rats. Neurochem. Res., 2012, 37(8), 1670-1680.
[http://dx.doi.org/10.1007/s11064-012-0771-8] [PMID: 22528832]
[63]
Luo, J.; Dong, B.; Wang, K.; Cai, S.; Liu, T.; Cheng, X.; Lei, D.; Chen, Y.; Li, Y.; Kong, J.; Chen, Y. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infec-tion model. PLoS One, 2017, 12(4), e0176883.
[http://dx.doi.org/10.1371/journal.pone.0176883] [PMID: 28453568]
[64]
Zhang, Y.; Qi, Z.; Liu, Y.; He, W.; Yang, C.; Wang, Q.; Dong, J.; Deng, X. Baicalin protects mice from lethal infection by enterohemorr-hagic Escherichia coli. Front. Microbiol., 2017, 8, 395.
[http://dx.doi.org/10.3389/fmicb.2017.00395] [PMID: 28337193]
[65]
Guo, M.; Cao, Y.; Wang, T.; Song, X.; Liu, Z.; Zhou, E.; Deng, X.; Zhang, N.; Yang, Z. Baicalin inhibits Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands. Eur. J. Pharmacol., 2014, 723, 481-488.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.032] [PMID: 24211786]
[66]
Slachmuylders, L.; Van Acker, H.; Brackman, G.; Sass, A.; Van Nieuwerburgh, F.; Coenye, T. Elucidation of the mechanism behind the potentiating activity of baicalin against Burkholderia cenocepacia biofilms. PLoS One, 2018, 13(1), e0190533.
[http://dx.doi.org/10.1371/journal.pone.0190533] [PMID: 29293658]
[67]
Liang, A.H.; Shang, M.F. General situation of the study on the toxicity of Cinnabaris. Zhongguo Zhongyao Zazhi, 2005, 30(4), 249-252.
[PMID: 15724396]
[68]
Chen, P.; Xu, R.; Yan, L.; Wu, Z.; Wei, Y.; Zhao, W.; Wang, X.; Xie, Q.; Li, H. Properties of realgar bioleaching using an extremely aci-dophilic bacterium and its antitumor mechanism as an anticancer agent. Biol. Res., 2017, 50(1), 17.
[http://dx.doi.org/10.1186/s40659-017-0122-y] [PMID: 28532516]
[69]
Xing, F.; Li, Q.; Zhang, N. Therapeutic effect of Angong Niuhuang pill in 34 patients with cerebral stroke. Herbs J. Trad. Clin. Med., 2005, 27, 13-14.
[70]
Zhang, L.; Li, L. 90 Cases of cerebral hemorrhage disease using traditional Chinese medicine and Western medicine treatment. China Practical Medical, 2013, 1, 151-152.
[71]
Shen, J. Mechanism of traditional Chinese medicine for neuroprotection and neurogenesis in stroke treatment. Digital Complementary. Chin. Med., 2018, 1, 191-197.
[72]
Liu, T.; Liu, Y.; Sha, D. Impacts of angong niuhuang wan on the expressions of NF-κB and NO around hematoma in the rats with sponta-neous hypertensive cerebral hemorrhage. World J. Integrated Trad. Western Medicine, 2011, 6(1), 19-21.
[73]
Kim, D.H. Chemical diversity of panax ginseng, panax quinquifolium, and panax notoginseng. J. Ginseng Res., 2012, 36(1), 1-15.
[http://dx.doi.org/10.5142/jgr.2012.36.1.1] [PMID: 23717099]
[74]
Wei, J.; Wang, J. Research on flavonoids in panax notoginseng leaves. Chin. J. Trad. Chin. Med., 1987, 11, 33-35.
[75]
Li, S.Y.; Wang, X.G.; Ma, M.M.; Liu, Y.; Du, Y.H.; Lv, X.F.; Zhou, J.G.; Tang, Y.B.; Guan, Y.Y. Ginsenoside-Rd potentiates apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells through the mitochondrial pathway. Apoptosis, 2012, 17(2), 113-120.
[http://dx.doi.org/10.1007/s10495-011-0671-4] [PMID: 22076303]
[76]
Shang, Q.; Xu, H.; Liu, Z.; Chen, K.; Liu, J. Oral panax notoginseng preparation for coronary heart disease: A systematic review of ran-domized controlled trials. Evid. Based Complement. Alternat. Med., 2013, 2013, 940125.
[http://dx.doi.org/10.1155/2013/940125] [PMID: 24023585]
[77]
Su, P.; Du, S.; Li, H.; Li, Z.; Xin, W.; Zhang, W. Notoginsenoside R1 inhibits oxidized low-density lipoprotein induced inflammatory cy-tokines production in human endothelial EA.hy926 cells. Eur. J. Pharmacol., 2016, 770, 9-15.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.040] [PMID: 26607460]
[78]
Liu, H.Z.; Liu, Z.L.; Zhao, S.P.; Sun, C.Z.; Yang, M.S. Protective mechanism of Panax notoginseng saponins on rat hemorrhagic shock model in recovery stage. Cell Biochem. Biophys., 2014, 70(3), 1719-1724.
[http://dx.doi.org/10.1007/s12013-014-0119-x] [PMID: 25012041]
[79]
Sun, B.; Xiao, J.; Sun, X.B.; Wu, Y. Notoginsenoside R1 attenuates cardiac dysfunction in endotoxemic mice: An insight into oestrogen receptor activation and PI3K/Akt signalling. Br. J. Pharmacol., 2013, 168(7), 1758-1770.
[http://dx.doi.org/10.1111/bph.12063] [PMID: 23170834]
[80]
Zhu, D.; Wu, L.; Li, C.R.; Wang, X.W.; Ma, Y.J.; Zhong, Z.Y.; Zhao, H.B.; Cui, J.; Xun, S.F.; Huang, X.L.; Zhou, Z.; Wang, S.Q. Ginseno-side Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J. Cell. Biochem., 2009, 108(1), 117-124.
[http://dx.doi.org/10.1002/jcb.22233] [PMID: 19530220]
[81]
Aronoff, D.M.; Canetti, C.; Peters-Golden, M. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J. Immunol., 2004, 173(1), 559-565.
[http://dx.doi.org/10.4049/jimmunol.173.1.559] [PMID: 15210817]
[82]
Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-κB, inflammation, and metabolic disease. Cell Metab., 2011, 13(1), 11-22.
[http://dx.doi.org/10.1016/j.cmet.2010.12.008] [PMID: 21195345]
[83]
Yuan, Z.B.; Zhang, H.G.; Jia, Y.; Cheng, Y.Q.; Li, X.H. Temporal expression of cyclooxygenase-2 in peritoneal macrophages of rats and effects of panax notoginseng saponins. Inflamm. Res., 2009, 58(2), 74-80.
[http://dx.doi.org/10.1007/s00011-009-8044-y] [PMID: 19184357]
[84]
Zulkarnain, Z.; Sholikhah, I.Y.M.; Dewi, T.F. In. IOP Conf. Ser. Earth Environ. Sci., 2021, 637.
[85]
Zhang, J.; Fan, Y.; Gong, Y.; Chen, X.; Wan, L.; Zhou, C.; Zhou, J.; Ma, S.; Wei, F.; Chen, J.; Nie, J. Simultaneous determination of nine kinds of dominating bile acids in various snake bile by ultrahigh-performance liquid chromatography with triple quadrupole linear iontrap mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 245-252.
[http://dx.doi.org/10.1016/j.jchromb.2017.09.037] [PMID: 29129604]
[86]
Sung, J.Y.; Shaffer, E.A.; Costerton, J.W. Antibacterial activity of bile salts against common biliary pathogens. Effects of hydrophobicity of the molecule and in the presence of phospholipids. Dig. Dis. Sci., 1993, 38(11), 2104-2112.
[http://dx.doi.org/10.1007/BF01297092] [PMID: 8223087]
[87]
Magnino, S.; Colin, P.; Dei-Cas, E.; Madsen, M.; McLauchlin, J.; Nöckler, K.; Maradona, M.P.; Tsigarida, E.; Vanopdenbosch, E.; Van Peteghem, C. Biological risks associated with consumption of reptile products. Int. J. Food Microbiol., 2009, 134(3), 163-175.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.001] [PMID: 19679367]
[88]
Dharmananda, S. The medical use of snakes in China. Institute for Traditional Medicine, 1997. Available from: http://www.itmonline.org/arts/snakes.htm
[89]
Tang, H.F.; Zhou, W.; Zhao, W.J. [Snake Gall pharmacological study and clinical application of exploration to]. J. Pract. Tradit.Chinese Intern. Med., 2009, 5, 26-28.
[90]
Tang, H.F.; Zhou, W.; Zhao, W.J. Snake Gall Pharmacological Study and Clinical Application of Exploration to J. Pract. Tradit. Chinese Intern. Med., 2009, (5), 26-28.
[91]
Yeh, Y.H.; Wang, D.Y.; Liau, M.Y.; Wu, M.L.; Deng, J.F.; Noguchi, T.; Hwang, D.F. Bile acid composition in snake bile juice and toxicity of snake bile acids to rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2003, 136(3), 277-284.
[http://dx.doi.org/10.1016/S1532-0456(03)00230-8] [PMID: 14659461]
[92]
Lee, M.J.; Jang, M.; Choi, J.; Chang, B.S.; Kim, D.Y.; Kim, S.H.; Kwak, Y.S.; Oh, S.; Lee, J.H.; Chang, B.J.; Nah, S.Y.; Cho, I.H. Korean red ginseng and ginsenoside-Rb1/-Rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol. Neurobiol., 2016, 53(3), 1977-2002.
[http://dx.doi.org/10.1007/s12035-015-9131-4] [PMID: 25846819]
[93]
Poynard, T.; Lebray, P.; Ingiliz, P.; Varaut, A.; Varsat, B.; Ngo, Y.; Norha, P.; Munteanu, M.; Drane, F.; Messous, D.; Bismut, F.I.; Carrau, J.P.; Massard, J.; Ratziu, V.; Giordanella, J.P. Prevalence of liver fibrosis and risk factors in a general population using non-invasive bio-markers (FibroTest). BMC Gastroenterol., 2010, 10(1), 40.
[http://dx.doi.org/10.1186/1471-230X-10-40] [PMID: 20412588]
[94]
Liu, Y.; Meyer, C.; Xu, C.; Weng, H.; Hellerbrand, C.; ten Dijke, P.; Dooley, S. Animal models of chronic liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(5), G449-G468.
[http://dx.doi.org/10.1152/ajpgi.00199.2012] [PMID: 23275613]
[95]
Delire, B.; Stärkel, P.; Leclercq, I. Animal models for fibrotic liver diseases: What we have, what we need, and what is under development. J. Clin. Transl. Hepatol., 2015, 3(1), 53-66.
[http://dx.doi.org/10.14218/JCTH.2014.00035] [PMID: 26357635]
[96]
Cheng, J.Y-K.; Wong, G.L-H. Advances in the diagnosis and treatment of liver fibrosis. Hepatoma Res., 2017, 3(8), 156.
[http://dx.doi.org/10.20517/2394-5079.2017.27]
[97]
Mohammed, S.A.; Abu-Deif, E.E. Animal models for hepatic fibrosis and cirrhosis. CHIJ, 2018, 2(1), 1-4.
[98]
Norton, W.T.; Aquino, D.A.; Hozumi, I.; Chiu, F.C.; Brosnan, C.F. Quantitative aspects of reactive gliosis: A review. Neurochem. Res., 1992, 17(9), 877-885.
[http://dx.doi.org/10.1007/BF00993263] [PMID: 1407275]
[99]
Chiu, C.C.; Liao, Y.E.; Yang, L.Y.; Wang, J.Y.; Tweedie, D.; Karnati, H.K.; Greig, N.H.; Wang, J.Y. Neuroinflammation in animal models of traumatic brain injury. J. Neurosci. Methods, 2016, 272, 38-49.
[http://dx.doi.org/10.1016/j.jneumeth.2016.06.018] [PMID: 27382003]
[100]
Fawcett, J.W.; Asher, R.A. The glial scar and central nervous system repair. Brain Res. Bull., 1999, 49(6), 377-391.
[http://dx.doi.org/10.1016/S0361-9230(99)00072-6] [PMID: 10483914]
[101]
Belay, E.D. Transmissible spongiform encephalopathies in humans. Annu. Rev. Microbiol., 1999, 53(1), 283-314.
[http://dx.doi.org/10.1146/annurev.micro.53.1.283] [PMID: 10547693]
[102]
Rodríguez, J.J.; Olabarria, M.; Chvatal, A.; Verkhratsky, A. Astroglia in dementia and Alzheimer’s disease. Cell Death Differ., 2009, 16(3), 378-385.
[http://dx.doi.org/10.1038/cdd.2008.172] [PMID: 19057621]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy