Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Biology, Significance and Immune Signaling of Mucin 1 in Hepatocellular Carcinoma

Author(s): Ayana R. Kumar, Aswathy R. Devan, Bhagyalakshmi Nair, Reshma Ravindran Nair and Lekshmi R. Nath*

Volume 22, Issue 9, 2022

Published on: 08 June, 2022

Page: [725 - 740] Pages: 16

DOI: 10.2174/1568009622666220317090552

Price: $65

Abstract

Mucin 1 (MUC 1) is a highly glycosylated tumor-associated antigen (TAA) overexpressed in hepatocellular carcinoma (HCC). This protein plays a critical role in various immune-mediated signaling pathways at its transcriptional and post-transcriptional levels, leading to immune evasion and metastasis in HCC. HCC cells maintain an immune-suppressive environment with the help of immunesuppressive tumor-associated antigens, resulting in a metastatic spread of the disease. The development of intense immunotherapeutic strategies to target tumor-associated antigen is critical to overcoming the progression of HCC. MUC 1 remains the most recognized tumor-associated antigen since its discovery over 30 years ago. A few promising immunotherapies targeting MUC 1 are currently under clinical trials, including CAR-T and CAR-pNK-mediated therapies. This review highlights the biosynthesis, significance, and clinical implication of MUC 1 as an immune target in HCC.

Keywords: MUC 1, aberrant glycosylation, hepatocellular carcinoma, immune signaling, immunotherapy, highly glycosylated tumor-associated antigen (TAA).

Graphical Abstract
[1]
Zhao, Y.J.; Ju, Q.; Li, G.C. Tumor markers for hepatocellular carcinoma. Mol. Clin. Oncol., 2013, 1(4), 593-598.
[http://dx.doi.org/10.3892/mco.2013.119] [PMID: 24649215]
[2]
Lancaster, C.A.; Peat, N.; Duhig, T.; Wilson, D.; Taylor-Papadimitriou, J.; Gendler, S.J. Structure and expression of the human polymorphic epithelial mucin gene: An expressed VNTR unit. Biochem. Biophys. Res. Commun., 1990, 173(3), 1019-1029.
[http://dx.doi.org/10.1016/S0006-291X(05)80888-5] [PMID: 2268309]
[3]
Li, Y.; Liu, D.; Chen, D.; Kharbanda, S.; Kufe, D. Human DF3/MUC 1 carcinoma-associated protein functions as an oncogene. Oncogene, 2003, 22(38), 6107-6110.
[http://dx.doi.org/10.1038/sj.onc.1206732] [PMID: 12955090]
[4]
Levitin, F.; Baruch, A.; Weiss, M.; Stiegman, K.; Hartmann, M.L.; Yoeli-Lerner, M.; Ziv, R.; Zrihan-Licht, S.; Shina, S.; Gat, A.; Lifschitz, B.; Simha, M.; Stadler, Y.; Cholostoy, A.; Gil, B.; Greaves, D.; Keydar, I.; Zaretsky, J.; Smorodinsky, N.; Wreschner, D.H. A novel protein derived from the MUC 1 gene by alternative splicing and frameshifting. J. Biol. Chem., 2005, 280(11), 10655-10663.
[http://dx.doi.org/10.1074/jbc.M406943200] [PMID: 15623537]
[5]
Reddish, M.; MacLean, G.D.; Koganty, R.R.; Kan-Mitchell, J.; Jones, V.; Mitchell, M.S.; Longenecker, B.M. Anti-MUC 1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC 1 peptide. Int. J. Cancer, 1998, 76(6), 817-823.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980610)76:6<817::AID-IJC9>3.0.CO;2-0] [PMID: 9626347]
[6]
Baginska, J. Study of the involvement of autophagy in the acquisition of tumor resistance to natural killer-mediated lysis.. Thesis, Université Paris Sud - Paris XI, 2013.
[7]
von Mensdorff-Pouilly, S.; Verstraeten, A.A.; Kenemans, P.; Snijdewint, F.G.; Kok, A.; Van Kamp, G.J.; Paul, M.A.; Van Diest, P.J.; Meijer, S.; Hilgers, J. Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J. Clin. Oncol., 2000, 18(3), 574-583.
[http://dx.doi.org/10.1200/JCO.2000.18.3.574] [PMID: 10653872]
[8]
Lakshminarayanan, V.; Supekar, N.T.; Wei, J.; McCurry, D.B.; Dueck, A.C.; Kosiorek, H.E.; Trivedi, P.P.; Bradley, J.M.; Madsen, C.S.; Pathangey, L.B.; Hoelzinger, D.B.; Wolfert, M.A.; Boons, G.J.; Cohen, P.A.; Gendler, S.J. MUC 1 vaccines comprised of glycosylated or non-glycosylated peptides or tumour-derived MUC 1 can circumvent immunoediting to control tumour growth in MUC 1 transgenic mice. PLoS One, 2016, 11(1), e0145920.
[http://dx.doi.org/10.1371/journal.pone.0145920] [PMID: 26788922]
[9]
Gendler, S.J.; Burchell, J.M.; Duhig, T.; Lamport, D.; White, R.; Parker, M.; Taylor-Papadimitriou, J. Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium. Proc. Natl. Acad. Sci. USA, 1987, 84(17), 6060-6064.
[http://dx.doi.org/10.1073/pnas.84.17.6060] [PMID: 2888110]
[10]
Cascio, S.; Farkas, A.M.; Hughey, R.P.; Finn, O.J. Altered glycosylation of MUC 1 influences its association with CIN85: The role of this novel complex in cancer cell invasion and migration. Oncotarget, 2013, 4(10), 1686-1697.
[http://dx.doi.org/10.18632/oncotarget.1265] [PMID: 24072600]
[11]
Irimura, T.; Denda, K.; Iida, S.; Takeuchi, H.; Kato, K. Diverse glycosylation of MUC 1 and MUC2: Potential significance in tumor immunity. J. Biochem., 1999, 126(6), 975-985.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022565] [PMID: 10578046]
[12]
Tarp, M.A.; Clausen, H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta, 2008, 1780(3), 546-563.
[http://dx.doi.org/10.1016/j.bbagen.2007.09.010] [PMID: 17988798]
[13]
Johnston, M.P.; Khakoo, S.I. Immunotherapy for hepatocellular carcinoma: Current and future. World J. Gastroenterol., 2019, 25(24), 2977-2989.
[http://dx.doi.org/10.3748/wjg.v25.i24.2977] [PMID: 31293335]
[14]
Vimal, D.B.; Khullar, M.; Gupta, S.; Ganguly, N.K. Intestinal mucins: The binding sites for Salmonella typhimurium. Mol. Cell. Biochem., 2000, 204(1-2), 107-117.
[http://dx.doi.org/10.1023/A:1007015312036] [PMID: 10718631]
[15]
Wesseling, J.; van der Valk, S.W.; Vos, H.L.; Sonnenberg, A.; Hilkens, J. Episialin (MUC 1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J. Cell Biol., 1995, 129(1), 255-265.
[http://dx.doi.org/10.1083/jcb.129.1.255] [PMID: 7698991]
[16]
Hanisch, F.G.; Müller, S. MUC 1: The polymorphic appearance of a human mucin. Glycobiology, 2000, 10(5), 439-449.
[http://dx.doi.org/10.1093/glycob/10.5.439] [PMID: 10764832]
[17]
Ratan, C.; Cicily, K.D.; Nair, B.; Nath, L.R. MUC glycoproteins: Potential biomarkers and molecular targets for cancer therapy. Curr. Cancer Drug Targets, 2020.
[PMID: 33200711]
[18]
Hattrup, C.L.; Gendler, S.J. Structure and function of the cell surface (tethered) mucins. Annu. Rev. Physiol., 2008, 70(1), 431-457.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100659] [PMID: 17850209]
[19]
Brayman, M.; Thathiah, A.; Carson, D.D. MUC 1: A multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol., 2004, 2(1), 4.
[http://dx.doi.org/10.1186/1477-7827-2-4] [PMID: 14711375]
[20]
Levitin, F.; Stern, O.; Weiss, M.; Gil-Henn, C.; Ziv, R.; Prokocimer, Z.; Smorodinsky, N.I.; Rubinstein, D.B.; Wreschner, D.H. The MUC 1 SEA module is a self-cleaving domain. J. Biol. Chem., 2005, 280(39), 33374-33386.
[http://dx.doi.org/10.1074/jbc.M506047200] [PMID: 15987679]
[21]
Gendler, S.J.; Lancaster, C.A.; Taylor-Papadimitriou, J.; Duhig, T.; Peat, N.; Burchell, J.; Pemberton, L.; Lalani, E.N.; Wilson, D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem., 1990, 265(25), 15286-15293.
[http://dx.doi.org/10.1016/S0021-9258(18)77254-2] [PMID: 1697589]
[22]
Ligtenberg, M.J.; Kruijshaar, L.; Buijs, F.; van Meijer, M.; Litvinov, S.V.; Hilkens, J. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J. Biol. Chem., 1992, 267(9), 6171-6177.
[http://dx.doi.org/10.1016/S0021-9258(18)42677-4] [PMID: 1556125]
[23]
Parry, S.; Hanisch, F.G.; Leir, S.H.; Sutton-Smith, M.; Morris, H.R.; Dell, A.; Harris, A. N-Glycosylation of the MUC 1 mucin in epithelial cells and secretions. Glycobiology, 2006, 16(7), 623-634.
[http://dx.doi.org/10.1093/glycob/cwj110] [PMID: 16585136]
[24]
Thomsen, A.R.B.; Plouffe, B.; Cahill, T.J., III; Shukla, A.K.; Tarrasch, J.T.; Dosey, A.M.; Kahsai, A.W.; Strachan, R.T.; Pani, B.; Mahoney, J.P.; Huang, L.; Breton, B.; Heydenreich, F.M.; Sunahara, R.K.; Skiniotis, G.; Bouvier, M.; Lefkowitz, R.J. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signalling. Cell, 2016, 166(4), 907-919.
[http://dx.doi.org/10.1016/j.cell.2016.07.004] [PMID: 27499021]
[25]
Carlstedt, I.; Sheehan, J.K.; Corfield, A.P.; Gallagher, J.T. Mucous glycoproteins: A gel of a problem. Essays Biochem., 1985, 20, 40-76.
[PMID: 3896779]
[26]
Baldus, S.E.; Mönig, S.P.; Huxel, S.; Landsberg, S.; Hanisch, F.G.; Engelmann, K.; Schneider, P.M.; Thiele, J.; Hölscher, A.H.; Dienes, H.P. MUC 1 and nuclear β-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin. Cancer Res., 2004, 10(8), 2790-2796.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0163] [PMID: 15102686]
[27]
Li, Q.; Ren, J.; Kufe, D. Interaction of human MUC 1 and β-catenin is regulated by Lck and ZAP-70 in activated Jurkat T cells. Biochem. Biophys. Res. Commun., 2004, 315(2), 471-476.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.075] [PMID: 14766232]
[28]
Pandey, P.; Kharbanda, S.; Kufe, D. Association of the DF3/MUC 1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res., 1995, 55(18), 4000-4003.
[PMID: 7664271]
[29]
Ren, J.; Li, Y.; Kufe, D. Protein kinase C δ regulates function of the DF3/MUC 1 carcinoma antigen in β-catenin signaling. J. Biol. Chem., 2002, 277(20), 17616-17622.
[http://dx.doi.org/10.1074/jbc.M200436200] [PMID: 11877440]
[30]
Julian, J.; Carson, D.D. Formation of MUC 1 metabolic complex is conserved in tumor-derived and normal epithelial cells. Biochem. Biophys. Res. Commun., 2002, 293(4), 1183-1190.
[http://dx.doi.org/10.1016/S0006-291X(02)00352-2] [PMID: 12054500]
[31]
Engelmann, K.; Kinlough, C.L.; Müller, S.; Razawi, H.; Baldus, S.E.; Hughey, R.P.; Hanisch, F.G. Transmembrane and secreted MUC 1 probes show trafficking-dependent changes in O-glycan core profiles. Glycobiology, 2005, 15(11), 1111-1124.
[http://dx.doi.org/10.1093/glycob/cwi099] [PMID: 15972891]
[32]
Wreschner, D.H.; McGuckin, M.A.; Williams, S.J.; Baruch, A.; Yoeli, M.; Ziv, R.; Okun, L.; Zaretsky, J.; Smorodinsky, N.; Keydar, I.; Neophytou, P.; Stacey, M.; Lin, H.H.; Gordon, S. Generation of ligand-receptor alliances by “SEA” module-mediated cleavage of membrane-associated mucin proteins. Protein Sci., 2002, 11(3), 698-706.
[http://dx.doi.org/10.1110/ps.16502] [PMID: 11847293]
[33]
Strous, G.J.; Dekker, J. Crit. Re’. Suppresion of premature termination codon as a therapeutic approach. Biochem. Mol. Biol., 1992, 27, 57.
[34]
Pimental, R.A.; Julian, J.; Gendler, S.J.; Carson, D.D. Synthesis and intracellular trafficking of Muc-1 and mucins by polarized mouse uterine epithelial cells. J. Biol. Chem., 1996, 271(45), 28128-28137.
[http://dx.doi.org/10.1074/jbc.271.45.28128] [PMID: 8910427]
[35]
Li, Y.; Martin, L.D.; Spizz, G.; Adler, K.B. MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. J. Biol. Chem., 2001, 276(44), 40982-40990.
[http://dx.doi.org/10.1074/jbc.M105614200] [PMID: 11533058]
[36]
Vlahopoulos, S.A. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: Molecular mode. Cancer Biol. Med., 2017, 14(3), 254-270.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0029] [PMID: 28884042]
[37]
Singh, P.K.; Hollingsworth, M.A. Cell surface-associated mucins in signal transduction. Trends Cell Biol., 2006, 16(9), 467-476.
[http://dx.doi.org/10.1016/j.tcb.2006.07.006] [PMID: 16904320]
[38]
Kufe, D.W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer, 2009, 9(12), 874-885.
[http://dx.doi.org/10.1038/nrc2761] [PMID: 19935676]
[39]
Horm, T.M.; Schroeder, J.A. MUC 1 and metastatic cancer: Expression, function and therapeutic targeting. Cell Adhes. Migr., 2013, 7(2), 187-198.
[http://dx.doi.org/10.4161/cam.23131] [PMID: 23303343]
[40]
Bafna, S.; Kaur, S.; Batra, S.K. Membrane-bound mucins: The mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 2010, 29(20), 2893-2904.
[http://dx.doi.org/10.1038/onc.2010.87] [PMID: 20348949]
[41]
Brockhausen, I.; Yang, J.M.; Burchell, J.; Whitehouse, C.; Taylor-Papadimitriou, J. Mechanisms underlying aberrant glycosylation of MUC 1 mucin in breast cancer cells. Eur. J. Biochem., 1995, 233(2), 607-617.
[http://dx.doi.org/10.1111/j.1432-1033.1995.607_2.x] [PMID: 7588808]
[42]
Cullen, P.J. Post-translational regulation of signaling mucins. Curr. Opin. Struct. Biol., 2011, 21(5), 590-596.
[http://dx.doi.org/10.1016/j.sbi.2011.08.007] [PMID: 21889329]
[43]
Silverman, H.S.; Sutton-Smith, M.; McDermott, K.; Heal, P.; Leir, S.H.; Morris, H.R.; Hollingsworth, M.A.; Dell, A.; Harris, A. The contribution of tandem repeat number to the O-glycosylation of mucins. Glycobiology, 2003, 13(4), 265-277.
[http://dx.doi.org/10.1093/glycob/cwg028] [PMID: 12626424]
[44]
Martínez-Sáez, N.; Peregrina, J.M.; Corzana, F. Principles of mucin structure: Implications for the rational design of cancer vaccines derived from MUC 1-glycopeptides. Chem. Soc. Rev., 2017, 46(23), 7154-7175.
[http://dx.doi.org/10.1039/C6CS00858E] [PMID: 29022615]
[45]
Altschuler, Y.; Kinlough, C.L.; Poland, P.A.; Bruns, J.B.; Apodaca, G.; Weisz, O.A.; Hughey, R.P. Clathrin-mediated endocytosis of MUC 1 is modulated by its glycosylation state. Mol. Biol. Cell, 2000, 11(3), 819-831.
[http://dx.doi.org/10.1091/mbc.11.3.819] [PMID: 10712502]
[46]
Loomes, K.M.; Senior, H.E.; West, P.M.; Roberton, A.M. Functional protective role for mucin glycosylated repetitive domains. Eur. J. Biochem., 1999, 266(1), 105-111.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00824.x] [PMID: 10542055]
[47]
Tian, E.; Ten Hagen, K.G. Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj. J., 2009, 26(3), 325-334.
[http://dx.doi.org/10.1007/s10719-008-9162-4] [PMID: 18695988]
[48]
Liu, Y.; Liu, H.; Yang, L.; Wu, Q.; Liu, W.; Fu, Q.; Zhang, W.; Zhang, H.; Xu, J.; Gu, J. Loss of n-acetylgalactosaminyltransferase-4 orchestrates oncogenic microRNA-9 in hepatocellular carcinoma. J. Biol. Chem., 2017, 292(8), 3186-3200.
[http://dx.doi.org/10.1074/jbc.M116.751685] [PMID: 28062574]
[49]
Yang, H.Y.; Tatebayashi, K.; Yamamoto, K.; Saito, H. Glycosylation defects activate filamentous growth Kss1 MAPK and inhibit osmoregulatory Hog1 MAPK. EMBO J., 2009, 28(10), 1380-1391.
[http://dx.doi.org/10.1038/emboj.2009.104] [PMID: 19369942]
[50]
Zhang, L.; Ten Hagen, K.G. Dissecting the biological role of mucin-type O-glycosylation using RNA interference in Drosophila cell culture. J. Biol. Chem., 2010, 285(45), 34477-34484.
[http://dx.doi.org/10.1074/jbc.M110.133561] [PMID: 20807760]
[51]
Haltiwanger, R.S. Regulation of signal transduction pathways in development by glycosylation. Curr. Opin. Struct. Biol., 2002, 12(5), 593-598.
[http://dx.doi.org/10.1016/S0959-440X(02)00371-8] [PMID: 12464310]
[52]
Moloney, D.J.; Panin, V.M.; Johnston, S.H.; Chen, J.; Shao, L.; Wilson, R.; Wang, Y.; Stanley, P.; Irvine, K.D.; Haltiwanger, R.S.; Vogt, T.F. Fringe is a glycosyltransferase that modifies Notch. Nature, 2000, 406(6794), 369-375.
[http://dx.doi.org/10.1038/35019000] [PMID: 10935626]
[53]
Hohmann, S.; Krantz, M.; Nordlander, B. Yeast osmoregulation. Methods Enzymol., 2007, 428, 29-45.
[http://dx.doi.org/10.1016/S0076-6879(07)28002-4] [PMID: 17875410]
[54]
Pitoniak, A.; Birkaya, B.; Dionne, H.M.; Vadaie, N.; Cullen, P.J. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol. Biol. Cell, 2009, 20(13), 3101-3114.
[http://dx.doi.org/10.1091/mbc.e08-07-0760] [PMID: 19439450]
[55]
Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci., 2020, 21(3), 1102.
[http://dx.doi.org/10.3390/ijms21031102] [PMID: 32046099]
[56]
Parry, S.; Silverman, H.S.; McDermott, K.; Willis, A.; Hollingsworth, M.A.; Harris, A. Identification of MUC 1 proteolytic cleavage sites in vivo. Biochem. Biophys. Res. Commun., 2001, 283(3), 715-720.
[http://dx.doi.org/10.1006/bbrc.2001.4775] [PMID: 11341784]
[57]
Lillehoj, E.P.; Han, F.; Kim, K.C. Mutagenesis of a Gly-Ser cleavage site in MUC 1 inhibits ectodomain shedding. Biochem. Biophys. Res. Commun., 2003, 307(3), 743-749.
[http://dx.doi.org/10.1016/S0006-291X(03)01260-9] [PMID: 12893286]
[58]
Bork, P.; Patthy, L. The SEA module: A new extracellular domain associated with O-glycosylation. Protein Sci., 1995, 4(7), 1421-1425.
[http://dx.doi.org/10.1002/pro.5560040716] [PMID: 7670383]
[59]
Sadowski, T.; Saftig, P.; Hartmann, D.; Kallen, K.J.; Rose-John, S. Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-alpha converting enzyme/ADAM17. J. Thromb. Haemost., 2007, 5(2), 395-402.
[60]
Thathiah, A.; Carson, D.D. MT1-MMP mediates MUC 1 shedding independent of TACE/ADAM17. Biochem. J., 2004, 382(Pt 1), 363-373.
[http://dx.doi.org/10.1042/BJ20040513] [PMID: 15130087]
[61]
Wen, Y.; Caffrey, T.C.; Wheelock, M.J.; Johnson, K.R.; Hollingsworth, M.A. Nuclear association of the cytoplasmic tail of MUC 1 and β-catenin. J. Biol. Chem., 2003, 278(39), 38029-38039.
[http://dx.doi.org/10.1074/jbc.M304333200] [PMID: 12832415]
[62]
Ren, J.; Bharti, A.; Raina, D.; Chen, W.; Ahmad, R.; Kufe, D. MUC 1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. Oncogene, 2006, 25(1), 20-31.
[http://dx.doi.org/10.1038/sj.onc.1209012] [PMID: 16158055]
[63]
Singh, P.K.; Behrens, M.E.; Eggers, J.P.; Cerny, R.L.; Bailey, J.M.; Shanmugam, K.; Gendler, S.J.; Bennett, E.P.; Hollingsworth, M.A. Phosphorylation of MUC 1 by Met modulates interaction with p53 and MMP1 expression. J. Biol. Chem., 2008, 283(40), 26985-26995.
[http://dx.doi.org/10.1074/jbc.M805036200] [PMID: 18625714]
[64]
Li, Y.; Kuwahara, H.; Ren, J.; Wen, G.; Kufe, D. The c-Src tyrosine kinase regulates signaling of the human DF3/MUC 1 carcinoma-associated antigen with GSK3 β and β-catenin. J. Biol. Chem., 2001, 276(9), 6061-6064.
[http://dx.doi.org/10.1074/jbc.C000754200] [PMID: 11152665]
[65]
Hinoda, Y.; Takahashi, T.; Hayashi, T.; Suwa, T.; Makiguchi, Y.; Itoh, F.; Adachi, M.; Imai, K. Enhancement of reactivity of anti-MUC 1 core protein antibody and killing activity of anti-MUC 1 cytotoxic T cells by deglycosylation of target tissues or cells. J. Gastroenterol., 1998, 33(2), 164-171.
[http://dx.doi.org/10.1007/s005350050065] [PMID: 9605944]
[66]
Vlad, A.M.; Muller, S.; Cudic, M.; Paulsen, H.; Otvos, L., Jr; Hanisch, F.G.; Finn, O.J. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: Processing of tumor antigen MUC 1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J. Exp. Med., 2002, 196(11), 1435-1446.
[http://dx.doi.org/10.1084/jem.20020493] [PMID: 12461079]
[67]
Zaretsky, J.Z.; Sarid, R.; Aylon, Y.; Mittelman, L.A.; Wreschner, D.H.; Keydar, I. Analysis of the promoter of the MUC 1 gene overexpressed in breast cancer. FEBS Lett., 1999, 461(3), 189-195.
[http://dx.doi.org/10.1016/S0014-5793(99)01452-0] [PMID: 10567695]
[68]
Patel, R.; Baker, S.S.; Liu, W.; Desai, S.; Alkhouri, R.; Kozielski, R.; Mastrandrea, L.; Sarfraz, A.; Cai, W.; Vlassara, H.; Patel, M.S.; Baker, R.D.; Zhu, L. Effect of dietary advanced glycation end products on mouse liver. PLoS One, 2012, 7(4), e35143.
[http://dx.doi.org/10.1371/journal.pone.0035143] [PMID: 22496902]
[69]
Lakshminarayanan, V.; Thompson, P.; Wolfert, M.A.; Buskas, T.; Bradley, J.M.; Pathangey, L.B.; Madsen, C.S.; Cohen, P.A.; Gendler, S.J.; Boons, G.J. Immune recognition of tumor-associated mucin MUC 1 is achieved by a fully synthetic aberrantly glycosylated MUC 1 tripartite vaccine. Proc. Natl. Acad. Sci. USA, 2012, 109(1), 261-266.
[http://dx.doi.org/10.1073/pnas.1115166109] [PMID: 22171012]
[70]
Sideras, K.; Bots, S.J.; Biermann, K.; Sprengers, D.; Polak, W.G.; IJzermans, J.N.; de Man, R.A.; Pan, Q.; Sleijfer, S.; Bruno, M.J.; Kwekkeboom, J. Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area. Br. J. Cancer, 2015, 112(12), 1911-1920.
[http://dx.doi.org/10.1038/bjc.2015.92] [PMID: 26057582]
[71]
Caputo, S.; Grioni, M.; Brambillasca, C.S.; Monno, A.; Brevi, A.; Freschi, M.; Piras, I.S.; Elia, A.R.; Pieri, V.; Baccega, T.; Lombardo, A.; Galli, R.; Briganti, A.; Doglioni, C.; Jachetti, E.; Bellone, M. Galectin-3 in prostate cancer stem-like cells is immunosuppressive and drives early metastasis. Front. Immunol., 2020, 11, 1820.
[http://dx.doi.org/10.3389/fimmu.2020.01820] [PMID: 33013832]
[72]
Jonckheere, N.; Van Seuningen, I. The membrane-bound mucins: From cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie, 2010, 92(1), 1-11.
[http://dx.doi.org/10.1016/j.biochi.2009.09.018] [PMID: 19818375]
[73]
Yuan, S.F.; Li, K.Z.; Wang, L.; Dou, K.F.; Yan, Z.; Han, W.; Zhang, Y.Q. Expression of MUC 1 and its significance in hepatocellular and cholangiocarcinoma tissue. World J. Gastroenterol., 2005, 11(30), 4661-4666.
[http://dx.doi.org/10.3748/wjg.v11.i30.4661] [PMID: 16094706]
[74]
Sasaki, M.; Nakanuma, Y. Abnormal expression of MUC 1 apomucin and mature MUC 1 mucin in biliary epithelial cells in various cystic liver diseases. Hepatology, 1996, 24(3), 539-543.
[http://dx.doi.org/10.1002/hep.510240312] [PMID: 8781320]
[75]
Sasaki, M.; Nakanuma, Y. Expression of mucin core protein of mammary type in primary liver cancer. Hepatology, 1994, 20(5), 1192-1197.
[http://dx.doi.org/10.1002/hep.1840200514]
[76]
Cao, Y.; Karsten, U.; Otto, G.; Bannasch, P. Expression of MUC 1, Thomsen-Friedenreich antigen, Tn, sialosyl-Tn, and α2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions. Virchows Arch., 1999, 434(6), 503-509.
[http://dx.doi.org/10.1007/s004280050375] [PMID: 10394884]
[77]
Lin, Y.S.; Jung, S.M.; Yeh, C.N.; Chen, Y.C.; Tsai, F.C.; Shiu, T.F.; Wu, H.H.; Lin, P.J.; Chu, P.H. MUC 1, MUC2 and MUC5AC expression in hepatocellular carcinoma with cardiac metastasis. Mol. Med. Rep., 2009, 2(2), 291-294.
[PMID: 21475827]
[78]
Yi, F.T.; Lu, Q.P. Mucin 1 promotes radioresistance in hepatocellular carcinoma cells through activation of JAK2/STAT3 signaling. Oncol. Lett., 2017, 14(6), 7571-7576.
[http://dx.doi.org/10.3892/ol.2017.7119] [PMID: 29344203]
[79]
Chen, Q.; Li, D.; Ren, J.; Li, C.; Xiao, Z.X. MUC 1 activates JNK1 and inhibits apoptosis under genotoxic stress. Biochem. Biophys. Res. Commun., 2013, 440(1), 179-183.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.055] [PMID: 24055030]
[80]
von Mensdorff-Pouilly, S.; Snijdewint, F.G.; Verstraeten, A.A.; Verheijen, R.H.; Kenemans, P. Human MUC 1 mucin: A multifaceted glycoprotein. Int. J. Biol. Markers, 2000, 15(4), 343-356.
[http://dx.doi.org/10.1177/172460080001500413] [PMID: 11192832]
[81]
Musselli, C.; Ragupathi, G.; Gilewski, T.; Panageas, K.S.; Spinat, Y.; Livingston, P.O. Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC 1. Int. J. Cancer, 2002, 97(5), 660-667.
[http://dx.doi.org/10.1002/ijc.10081] [PMID: 11807794]
[82]
Roy, L.D.; Sahraei, M.; Subramani, D.B.; Besmer, D.; Nath, S.; Tinder, T.L.; Bajaj, E.; Shanmugam, K.; Lee, Y.Y.; Hwang, S.I.; Gendler, S.J.; Mukherjee, P. MUC 1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 2011, 30(12), 1449-1459.
[http://dx.doi.org/10.1038/onc.2010.526] [PMID: 21102519]
[83]
Yamamoto, M.; Bharti, A.; Li, Y.; Kufe, D. Interaction of the DF3/MUC 1 breast carcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem., 1997, 272(19), 12492-12494.
[http://dx.doi.org/10.1074/jbc.272.19.12492] [PMID: 9139698]
[84]
Huang, L.; Chen, D.; Liu, D.; Yin, L.; Kharbanda, S.; Kufe, D. MUC 1 oncoprotein blocks glycogen synthase kinase 3β-mediated phosphorylation and degradation of β-catenin. Cancer Res., 2005, 65(22), 10413-10422.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2474] [PMID: 16288032]
[85]
Wei, X.; Xu, H.; Kufe, D. Human MUC 1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell, 2005, 7(2), 167-178.
[http://dx.doi.org/10.1016/j.ccr.2005.01.008] [PMID: 15710329]
[86]
Raina, D.; Kharbanda, S.; Kufe, D. The MUC 1 oncoprotein activates the anti-apoptotic phosphoinositide 3-kinase/Akt and Bcl-xL pathways in rat 3Y1 fibroblasts. J. Biol. Chem., 2004, 279(20), 20607-20612.
[http://dx.doi.org/10.1074/jbc.M310538200] [PMID: 14999001]
[87]
Kufe, D.W. Functional targeting of the MUC 1 oncogene in human cancers. Cancer Biol. Ther., 2009, 8(13), 1197-1203.
[http://dx.doi.org/10.4161/cbt.8.13.8844] [PMID: 19556858]
[88]
Carraway, K.L.; Hull, S.R. O-glycosylation pathway for mucin-type glycoproteins. BioEssays, 1989, 10(4), 117-121.
[http://dx.doi.org/10.1002/bies.950100406] [PMID: 2658987]
[89]
Rowse, G.J.; Tempero, R.M.; VanLith, M.L.; Hollingsworth, M.A.; Gendler, S.J. Tolerance and immunity to MUC 1 in a human MUC 1 transgenic murine model. Cancer Res., 1998, 58(2), 315-321.
[PMID: 9443411]
[90]
Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med., 2001, 345(11), 784-789.
[http://dx.doi.org/10.1056/NEJMoa001999] [PMID: 11556297]
[91]
Kimura, T.; Finn, O.J. MUC 1 immunotherapy is here to stay. Expert Opin. Biol. Ther., 2013, 13(1), 35-49.
[http://dx.doi.org/10.1517/14712598.2012.725719] [PMID: 22998452]
[92]
Mahla, R.S.; Reddy, M.C.; Prasad, D.V.; Kumar, H. Sweeten PAMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology. Front. Immunol., 2013, 4, 248.
[http://dx.doi.org/10.3389/fimmu.2013.00248] [PMID: 24032031]
[93]
Ueno, K.; Koga, T.; Kato, K.; Golenbock, D.T.; Gendler, S.J.; Kai, H.; Kim, K.C. MUC 1 mucin is a negative regulator of toll-like receptor signaling. Am. J. Respir. Cell Mol. Biol., 2008, 38(3), 263-268.
[http://dx.doi.org/10.1165/rcmb.2007-0336RC] [PMID: 18079492]
[94]
Delneste, Y.; Beauvillain, C.; Jeannin, P. Immuniténaturelle-Structure et fonction des Toll-like receptors. Médecine, 2007, 23(1), 67-74.
[95]
Kim, K.C.; Lillehoj, E.P. MUC 1 mucin: A peacemaker in the lung. Am. J. Respir. Cell Mol. Biol., 2008, 39(6), 644-647.
[http://dx.doi.org/10.1165/rcmb.2008-0169TR] [PMID: 18617677]
[96]
Lu, W.; Hisatsune, A.; Koga, T.; Kato, K.; Kuwahara, I.; Lillehoj, E.P.; Chen, W.; Cross, A.S.; Gendler, S.J.; Gewirtz, A.T.; Kim, K.C. Cutting edge: Enhanced pulmonary clearance of Pseudomonas aeruginosa by MUC 1 knockout mice. J. Immunol., 2006, 176(7), 3890-3894.
[http://dx.doi.org/10.4049/jimmunol.176.7.3890] [PMID: 16547220]
[97]
Kato, K.; Lu, W.; Kai, H.; Kim, K.C. Phosphoinositide 3-kinase is activated by MUC 1 but not responsible for MUC 1-induced suppression of Toll-like receptor 5 signaling. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 293(3), L686-L692.
[http://dx.doi.org/10.1152/ajplung.00423.2006] [PMID: 17586693]
[98]
Hollingsworth, M.A.; Swanson, B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer, 2004, 4(1), 45-60.
[http://dx.doi.org/10.1038/nrc1251] [PMID: 14681689]
[99]
Kumar, A.R.; Devan, A.R.; Nair, B.; Nath, L.R. Anti-VEGF mediated immunomodulatory role of phytochemicals: Scientific exposition for plausible HCC treatment. Curr. Drug Targets, 2021, 22(11), 1288-1316.
[http://dx.doi.org/10.2174/1389450122666210203194036] [PMID: 33538672]
[100]
Nair, B.; Nath, L.R. Inevitable role of TGF-β1 in progression of nonalcoholic fatty liver disease. J. Recept. Signal Transduct., 2020, 40(3), 195-200.
[http://dx.doi.org/10.1080/10799893.2020.1726952] [PMID: 32054379]
[101]
Al Masri, A.; Gendler, S.J. MUC 1 affects c-Src signaling in PyV MT-induced mammary tumorigenesis. Oncogene, 2005, 24(38), 5799-5808.
[http://dx.doi.org/10.1038/sj.onc.1208738] [PMID: 15897873]
[102]
van Kooyk, Y. C-type lectins on dendritic cells: Key modulators for the induction of immune responses. Biochem. Soc. Trans., 2008, 36(Pt 6), 1478-1481.
[http://dx.doi.org/10.1042/BST0361478] [PMID: 19021579]
[103]
Chen, D.; Koido, S.; Li, Y.; Gendler, S.; Gong, J. T cell suppression as a mechanism for tolerance to MUC 1 antigen in MUC 1 transgenic mice. Breast Cancer Res. Treat., 2000, 60(2), 107-115.
[http://dx.doi.org/10.1023/A:1006332009414] [PMID: 10845273]
[104]
Ingale, S.; Wolfert, M.A.; Buskas, T.; Boons, G.J. Increasing the antigenicity of synthetic tumor-associated carbohydrate antigens by targeting Toll-like receptors. ChemBioChem, 2009, 10(3), 455-463.
[http://dx.doi.org/10.1002/cbic.200800596] [PMID: 19145607]
[105]
Kotera, Y.; Fontenot, J.D.; Pecher, G.; Metzgar, R.S.; Finn, O.J. Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res., 1994, 54(11), 2856-2860.
[PMID: 7514493]
[106]
Shental-Bechor, D.; Levy, Y. Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. Proc. Natl. Acad. Sci. USA, 2008, 105(24), 8256-8261.
[http://dx.doi.org/10.1073/pnas.0801340105] [PMID: 18550810]
[107]
Kasprzak, A.; Adamek, A. Mucins: The old, the new and the promising factors in hepatobiliary carcinogenesis. Int. J. Mol. Sci., 2019, 20(6), 1288.
[http://dx.doi.org/10.3390/ijms20061288] [PMID: 30875782]
[108]
Cascio, S.; Zhang, L.; Finn, O.J. MUC 1 protein expression in tumor cells regulates transcription of proinflammatory cytokines by forming a complex with nuclear factor-κB p65 and binding to cytokine promoters: Importance of extracellular domain. J. Biol. Chem., 2011, 286(49), 42248-42256.
[http://dx.doi.org/10.1074/jbc.M111.297630] [PMID: 22021035]
[109]
Park, J.H.; Nishidate, T.; Kijima, K.; Ohashi, T.; Takegawa, K.; Fujikane, T.; Hirata, K.; Nakamura, Y.; Katagiri, T. Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis. Cancer Res., 2010, 70(7), 2759-2769.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3911] [PMID: 20215525]
[110]
Sewell, R.; Bäckström, M.; Dalziel, M.; Gschmeissner, S.; Karlsson, H.; Noll, T.; Gätgens, J.; Clausen, H.; Hansson, G.C.; Burchell, J.; Taylor-Papadimitriou, J. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem., 2006, 281(6), 3586-3594.
[http://dx.doi.org/10.1074/jbc.M511826200] [PMID: 16319059]
[111]
Beatson, R.; Maurstad, G.; Picco, G.; Arulappu, A.; Coleman, J.; Wandell, H.H.; Clausen, H.; Mandel, U.; Taylor-Papadimitriou, J.; Sletmoen, M.; Burchell, J.M. The breast cancer-associated glycoforms of MUC 1, MUC 1-Tn and sialyl-Tn, are expressed in COSMC wild-type cells and bind the C-type lectin MGL. PLoS One, 2015, 10(5), e0125994.
[http://dx.doi.org/10.1371/journal.pone.0125994] [PMID: 25951175]
[112]
Zhang, P.; Lu, X.; Tao, K.; Shi, L.; Li, W.; Wang, G.; Wu, K. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J. Surg. Res., 2015, 194(1), 107-113.
[113]
Tao, L.; Wang, S.; Yang, L.; Jiang, L.; Li, J.; Wang, X. Reduced Siglec-7 expression on NK cells predicts NK cell dysfunction in primary hepatocellular carcinoma. Clin. Exp. Immunol., 2020, 201(2), 161-170.
[http://dx.doi.org/10.1111/cei.13444] [PMID: 32319079]
[114]
Tamaki, N.; Kuno, A.; Matsuda, A.; Tsujikawa, H.; Yamazaki, K.; Yasui, Y.; Tsuchiya, K.; Nakanishi, H.; Itakura, J.; Korenaga, M.; Mizokami, M.; Kurosaki, M.; Sakamoto, M.; Narimatsu, H.; Izumi, N. Serum wisteria floribunda agglutinin-positive sialylated mucin 1 as a marker of progenitor/biliary features in hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 244.
[http://dx.doi.org/10.1038/s41598-017-00357-8] [PMID: 28325920]
[115]
Cascio, S.; Finn, O.J. Intra-and extra-cellular events related to altered glycosylation of MUC 1 promote chronic inflammation, tumor progression, invasion, and metastasis. Biomolecules, 2016, 6(4), 39.
[http://dx.doi.org/10.3390/biom6040039] [PMID: 27754373]
[116]
Cascio, S.; Finn, O.J. Complex of MUC 1, CIN85 and CBL in colon cancer progression and metastasis. Cancers (Basel), 2015, 7(1), 342-352.
[http://dx.doi.org/10.3390/cancers7010342] [PMID: 25675408]
[117]
Koido, S.; Homma, S.; Hara, E.; Mitsunaga, M.; Namiki, Y.; Takahara, A.; Nagasaki, E.; Komita, H.; Sagawa, Y.; Ohkusa, T.; Fujise, K.; Gong, J.; Tajiri, H. In vitro generation of cytotoxic and regulatory T cells by fusions of human dendritic cells and hepatocellular carcinoma cells. J. Transl. Med., 2008, 6(1), 51.
[http://dx.doi.org/10.1186/1479-5876-6-51] [PMID: 18793383]
[118]
Hiltbold, E.M.; Vlad, A.M.; Ciborowski, P.; Watkins, S.C.; Finn, O.J. The mechanism of unresponsiveness to circulating tumor antigen MUC 1 is a block in intracellular sorting and processing by dendritic cells. J. Immunol., 2000, 165(7), 3730-3741.
[http://dx.doi.org/10.4049/jimmunol.165.7.3730] [PMID: 11034378]
[119]
Carlos, C.A.; Dong, H.F.; Howard, O.M.; Oppenheim, J.J.; Hanisch, F.G.; Finn, O.J. Human tumor antigen MUC 1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J. Immunol., 2005, 175(3), 1628-1635.
[http://dx.doi.org/10.4049/jimmunol.175.3.1628] [PMID: 16034102]
[120]
Monti, P.; Leone, B.E.; Zerbi, A.; Balzano, G.; Cainarca, S.; Sordi, V.; Pontillo, M.; Mercalli, A.; Di Carlo, V.; Allavena, P.; Piemonti, L. Tumor-derived MUC 1 mucins interact with differentiating monocytes and induce IL-10highIL-12low regulatory dendritic cell. J. Immunol., 2004, 172(12), 7341-7349.
[http://dx.doi.org/10.4049/jimmunol.172.12.7341] [PMID: 15187110]
[121]
Carrascal, M.A.; Severino, P.F.; Guadalupe Cabral, M.; Silva, M.; Ferreira, J.A.; Calais, F.; Quinto, H.; Pen, C.; Ligeiro, D.; Santos, L.L.; Dall’Olio, F.; Videira, P.A. Sialyl TN-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Mol. Oncol., 2014, 8(3), 753-765.
[http://dx.doi.org/10.1016/j.molonc.2014.02.008] [PMID: 24656965]
[122]
Ichikawa, T.; Yamamoto, T.; Uenishi, T.; Tanaka, H.; Takemura, S.; Ogawa, M.; Tanaka, S.; Suehiro, S.; Hirohashi, K.; Kubo, S. Clinicopathological implications of immunohistochemically demonstrated mucin core protein expression in hepatocellular carcinoma. J. Hepatobiliary Pancreat. Surg., 2006, 13(3), 245-251.
[http://dx.doi.org/10.1007/s00534-005-1070-4] [PMID: 16708303]
[123]
Jandus, C.; Boligan, K.F.; Chijioke, O.; Liu, H.; Dahlhaus, M.; Démoulins, T.; Schneider, C.; Wehrli, M.; Hunger, R.E.; Baerlocher, G.M.; Simon, H.U.; Romero, P.; Münz, C.; von Gunten, S. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. JCI, 2014, 124(4), 1810-1820.
[http://dx.doi.org/10.1172/JCI65899] [PMID: 24569453]
[124]
Bouillez, A.; Rajabi, H.; Jin, C.; Samur, M.; Tagde, A.; Alam, M.; Hiraki, M.; Maeda, T.; Hu, X.; Adeegbe, D.; Kharbanda, S.; Wong, K.K.; Kufe, D. MUC 1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene, 2017, 36(28), 4037-4046.
[http://dx.doi.org/10.1038/onc.2017.47] [PMID: 28288138]
[125]
Bouillez, A.; Adeegbe, D.; Jin, C.; Hu, X.; Tagde, A.; Alam, M.; Rajabi, H.; Wong, K.K.; Kufe, D. MUC 1-C promotes the suppressive immune microenvironment in non-small cell lung cancer. OncoImmunology, 2017, 6(9), e1338998.
[http://dx.doi.org/10.1080/2162402X.2017.1338998] [PMID: 28932637]
[126]
Alsuliman, A.; Colak, D.; Al-Harazi, O.; Fitwi, H.; Tulbah, A.; Al-Tweigeri, T.; Al-Alwan, M.; Ghebeh, H. Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: Significance in claudin-low breast cancer cells. Mol. Cancer, 2015, 14(1), 149.
[http://dx.doi.org/10.1186/s12943-015-0421-2] [PMID: 26245467]
[127]
Noman, M.Z.; Janji, B.; Abdou, A.; Hasmim, M.; Terry, S.; Tan, T.Z.; Mami-Chouaib, F.; Thiery, J.P.; Chouaib, S. The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. OncoImmunology, 2017, 6(1), e1263412.
[http://dx.doi.org/10.1080/2162402X.2016.1263412] [PMID: 28197390]
[128]
Rajabi, H.; Alam, M.; Takahashi, H.; Kharbanda, A.; Guha, M.; Ahmad, R.; Kufe, D. MUC 1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene, 2014, 33(13), 1680-1689.
[http://dx.doi.org/10.1038/onc.2013.114] [PMID: 23584475]
[129]
Alam, M.; Bouillez, A.; Tagde, A.; Ahmad, R.; Rajabi, H.; Maeda, T.; Hiraki, M.; Suzuki, Y.; Kufe, D. MUC 1-C represses the Crumbs complex polarity factor CRB3 and downregulates the Hippo pathway. Mol. Cancer Res., 2016, 14(12), 1266-1276.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0233] [PMID: 27658423]
[130]
Rajabi, H.; Kufe, D. MUC 1-C oncoprotein integrates a program of EMT, epigenetic reprogramming and immune evasion in human carcinomas. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 117-122.
[http://dx.doi.org/10.1016/j.bbcan.2017.03.003] [PMID: 28302417]
[131]
Agrawal, B.; Krantz, M.J.; Reddish, M.A.; Longenecker, B.M. Cancer-associated MUC 1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat. Med., 1998, 4(1), 43-49.
[http://dx.doi.org/10.1038/nm0198-043] [PMID: 9427605]
[132]
Hayes, D.F.; Silberstein, D.S.; Rodrique, S.W.; Kufe, D.W. DF3 antigen, a human epithelial cell mucin, inhibits adhesion of eosinophils to antibody-coated targets. J. Immunol., 1990, 145(3), 962-970.
[PMID: 2373864]
[133]
Acres, B.; Apostolopoulos, V.; Balloul, J.M.; Wreschner, D.; Xing, P.X.; Ali-Hadji, D.; Bizouarne, N.; Kieny, M.P.; McKenzie, I.F. MUC 1-specific immune responses in human MUC 1 transgenic mice immunized with various human MUC 1 vaccines. Cancer Immunol. Immunother., 2000, 48(10), 588-594.
[http://dx.doi.org/10.1007/PL00006677] [PMID: 10630311]
[134]
Koning, N.; Kessen, S.F.; Van Der Voorn, J.P.; Appelmelk, B.J.; Jeurink, P.V.; Knippels, L.M.; Garssen, J.; Van Kooyk, Y.; Van Kooyk, Y. Human milk blocks DC-SIGN-pathogen interaction via MUC 1. Front. Immunol., 2015, 6, 112.
[http://dx.doi.org/10.3389/fimmu.2015.00112] [PMID: 25821450]
[135]
Tanida, S.; Akita, K.; Ishida, A.; Mori, Y.; Toda, M.; Inoue, M.; Ohta, M.; Yashiro, M.; Sawada, T.; Hirakawa, K.; Nakada, H. Binding of the sialic acid-binding lectin, Siglec-9, to the membrane mucin, MUC 1, induces recruitment of β-catenin and subsequent cell growth. J. Biol. Chem., 2013, 288(44), 31842-31852.
[http://dx.doi.org/10.1074/jbc.M113.471318] [PMID: 24045940]
[136]
Rahn, J.J.; Chow, J.W.; Horne, G.J.; Mah, B.K.; Emerman, J.T.; Hoffman, P.; Hugh, J.C. MUC 1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin. Exp. Metastasis, 2005, 22(6), 475-483.
[http://dx.doi.org/10.1007/s10585-005-3098-x] [PMID: 16320110]
[137]
McDermott, K.M.; Crocker, P.R.; Harris, A.; Burdick, M.D.; Hinoda, Y.; Hayashi, T.; Imai, K.; Hollingsworth, M.A. Overexpression of MUC 1 reconfigures the binding properties of tumor cells. Int. J. Cancer, 2001, 94(6), 783-791.
[http://dx.doi.org/10.1002/ijc.1554] [PMID: 11745478]
[138]
Agrawal, B.; Krantz, M.J.; Parker, J.; Longenecker, B.M. Expression of MUC 1 mucin on activated human T cells: Implications for a role of MUC 1 in normal immune regulation. Cancer Res., 1998, 58(18), 4079-4081.
[PMID: 9751614]
[139]
Mukherjee, P.; Tinder, T.L.; Basu, G.D.; Gendler, S.J. MUC 1 (CD227) interacts with LCK tyrosine kinase in Jurkat lymphoma cells and normal T cells. J. Leukoc. Biol., 2005, 77(1), 90-99.
[http://dx.doi.org/10.1189/jlb.0604333] [PMID: 15513966]
[140]
Correa, I.; Plunkett, T.; Vlad, A.; Mungul, A.; Candelora-Kettel, J.; Burchell, J.M.; Taylor-Papadimitriou, J.; Finn, O.J. Form and pattern of MUC 1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration. Immunology, 2003, 108(1), 32-41.
[http://dx.doi.org/10.1046/j.1365-2567.2003.01562.x] [PMID: 12519300]
[141]
Zhao, Q.C. Interaction of Circulating Galectin-3 and Cancer-Associated MUC 1 in Cancer Metastasis; The University of Liverpool: United Kingdom, 2010.
[142]
Díaz-Alvarez, L.; Ortega, E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators Inflamm., 2017, 2017, 9247574.
[http://dx.doi.org/10.1155/2017/9247574]
[143]
Mehla, K.; Singh, P.K. MUC 1: A novel metabolic master regulator. Biochim. Biophys. Acta, 2014, 1845(2), 126-135.
[PMID: 24418575]
[144]
Konowalchuk, J.D.; Agrawal, B. MUC 1 is a novel costimulatory molecule of human T cells and functions in an AP-1-dependent manner. Hum. Immunol., 2012, 73(5), 448-455.
[http://dx.doi.org/10.1016/j.humimm.2012.02.024] [PMID: 22425740]
[145]
Hollingsworth, R.E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines, 2019, 4(1), 7.
[http://dx.doi.org/10.1038/s41541-019-0103-y] [PMID: 30774998]
[146]
Wang, J.; Tai, G. Role of C-Jun N-terminal kinase in hepatocellular carcinoma development. Target. Oncol., 2016, 11(6), 723-738.
[http://dx.doi.org/10.1007/s11523-016-0446-5] [PMID: 27392951]
[147]
Li, Q.; Wang, F.; Liu, G.; Yuan, H.; Chen, T.; Wang, J.; Xie, F.; Zhai, R.; Wang, F.; Guo, Y.; Ni, W.; Tai, G. Impact of Mucin1 knockdown on the phenotypic characteristics of the human hepatocellular carcinoma cell line SMMC-7721. Oncol. Rep., 2014, 31(6), 2811-2819.
[http://dx.doi.org/10.3892/or.2014.3136] [PMID: 24737121]
[148]
Li, Q.; Liu, G.; Shao, D.; Wang, J.; Yuan, H.; Chen, T.; Zhai, R.; Ni, W.; Tai, G. Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells. Int. J. Biochem. Cell Biol., 2015, 59, 116-125.
[http://dx.doi.org/10.1016/j.biocel.2014.11.012] [PMID: 25526895]
[149]
Wang, J.; Liu, G.; Li, Q.; Wang, F.; Xie, F.; Zhai, R.; Guo, Y.; Chen, T.; Zhang, N.; Ni, W.; Yuan, H.; Tai, G. Mucin1 promotes the migration and invasion of hepatocellular carcinoma cells via JNK-mediated phosphorylation of Smad2 at the C-terminal and linker regions. Oncotarget, 2015, 6(22), 19264-19278.
[http://dx.doi.org/10.18632/oncotarget.4267] [PMID: 26057631]
[150]
Wang, J.; Ni, W.H.; Hu, K.B.; Zhai, X.Y.; Xie, F.; Jie, J.; Zhang, N.N.; Jiang, L.N.; Yuan, H.Y.; Tai, G.X. Targeting MUC 1 and JNK by RNA interference and inhibitor inhibit the development of hepatocellular carcinoma. Cancer Sci., 2017, 108(3), 504-511.
[http://dx.doi.org/10.1111/cas.13144] [PMID: 28012230]
[151]
Nagata, H.; Hatano, E.; Tada, M.; Murata, M.; Kitamura, K.; Asechi, H.; Narita, M.; Yanagida, A.; Tamaki, N.; Yagi, S.; Ikai, I.; Matsuzaki, K.; Uemoto, S. Inhibition of c-Jun NH2-terminal kinase switches Smad3 signaling from oncogenesis to tumor- suppression in rat hepatocellular carcinoma. Hepatology, 2009, 49(6), 1944-1953.
[http://dx.doi.org/10.1002/hep.22860] [PMID: 19418558]
[152]
Ma, Y.D.; Wang, Z.; Gong, R.Z.; Li, L.F.; Wu, H.P.; Jin, H.J.; Qian, Q. Specific cytotoxicity of MUC 1 chimeric antigen receptor-engineered Jurkat T cells against hepatocellular carcinoma. Acad. J. Second Mil. Med. Coll., 2014, 35(11), 1177-1182.
[http://dx.doi.org/10.3724/SP.J.1008.2014.01177]
[153]
Mantovani, S.; Oliviero, B.; Varchetta, S.; Mele, D.; Mondelli, M.U. Natural killer cell responses in hepatocellular carcinoma: Implications for novel immunotherapeutic approaches. Cancers (Basel), 2020, 12(4), 926.
[http://dx.doi.org/10.3390/cancers12040926] [PMID: 32283827]
[154]
Oelsner, S.; Friede, M.E.; Zhang, C.; Wagner, J.; Badura, S.; Bader, P.; Ullrich, E.; Ottmann, O.G.; Klingemann, H.; Tonn, T.; Wels, W.S. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy, 2017, 19(2), 235-249.
[http://dx.doi.org/10.1016/j.jcyt.2016.10.009] [PMID: 27887866]
[155]
Klingemann, H.; Boissel, L.; Toneguzzo, F. Natural killer cells for immunotherapy-advantages of the NK-92 cell line over blood NK cells. Front. Immunol., 2016, 7, 91.
[http://dx.doi.org/10.3389/fimmu.2016.00091] [PMID: 27014270]
[156]
Rochigneux, P.; Chanez, B.; De Rauglaudre, B.; Mitry, E.; Chabannon, C.; Gilabert, M. Adoptive cell therapy in hepatocellular carcinoma: Biological rationale and first results in early phase clinical trials. Cancers (Basel), 2021, 13(2), E271.
[http://dx.doi.org/10.3390/cancers13020271] [PMID: 33450845]
[157]
Beatson, R.E.; Taylor-Papadimitriou, J.; Burchell, J.M. MUC 1 immunotherapy. Immunotherapy, 2010, 2(3), 305-327.
[http://dx.doi.org/10.2217/imt.10.17] [PMID: 20635898]
[158]
Hodge, J.W.; Ardiani, A.; Farsaci, B.; Kwilas, A.R.; Gameiro, S.R. The tipping point for combination therapy: Cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin. Oncol., 2012, 39(3), 323-339.
[http://dx.doi.org/10.1053/j.seminoncol.2012.02.006] [PMID: 22595055]
[159]
Siracusano, G.; Tagliamonte, M.; Buonaguro, L.; Lopalco, L. Cell surface proteins in hepatocellular carcinoma: From bench to bedside. Vaccines (Basel), 2020, 8(1), 41.
[http://dx.doi.org/10.3390/vaccines8010041] [PMID: 31991677]
[160]
Jonckheere, N.; Vincent, A.; Neve, B.; Van Seuningen, I. Mucin expression, epigenetic regulation and patient survival: A toolkit of prognostic biomarkers in epithelial cancers. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188538.
[http://dx.doi.org/10.1016/j.bbcan.2021.188538]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy