Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Thuja occidentalis: An Unexplored Phytomedicine with Therapeutic Applications

Author(s): Ankit Srivastava, Bimal Prasad Jit, Rutumbara Dash, Rishi Srivastava and Sameer Srivastava*

Volume 26, Issue 1, 2023

Published on: 15 August, 2022

Page: [3 - 13] Pages: 11

DOI: 10.2174/1386207325666220308153732

Price: $65

Abstract

Background: The recent outbreak of SARS-CoV-2 has received global attention. Due to a lack of recommended treatment regimens, the world faced various limitations resulting in improper management of the disease. Phytomedicines have played a prominent role in the prevention of various epidemics and pandemics in the past.

Objective: Here, we attempt to focus on safe and feasible use of Thuja occidentalis to manage and alleviate the panic of viral respiratory infections, including COVID-19, by strengthening an individual’s immunity. The relevant information was collected from the web-based databases PubMed, Google Scholar, and MEDLINE, as well as other internet sources to review the applicability of T. occidentalis as a phytomedicine in managing respiratory infections and strengthening immunity.

Conclusion: As important phytomedicine, and antipsychotic, T. occidentalis possesses a plethora of immunological properties that can be used effectively in the management of viral respiratory infections and has the potential to prevent further progression of the disease. Importantly, this could be only a part of the approach for treatment during the current outbreak that should be considered along with other measures.

Keywords: Phytomedicine, Thuja occidentalis, COVID-19, antiviral, immunity, upper respiratory infection, immunomodulatory.

Graphical Abstract
[1]
Hui, D.S.; Azhar, I. E.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; Zumla, A.; Petersen, E. The continuing 2019-nCoV epi-demic threat of novel coronaviruses to global health - The lat-est 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, 91, 264-266.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[2]
WHO coronavirus (COVID-19) dashboard | WHO coronavirus (COVID-19) Dashboard with vaccination data. Available from: http://covid19.who.int (Accessed: August 30, 2021).
[3]
Clinical Management Protocol for COVID19. Available from: https://www.mohfw.gov.in/pdf/dated 27062020.pdf (Accessed: June 27, 2020).
[4]
Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ., 2020, 27(5), 1451-1454.
[http://dx.doi.org/10.1038/s41418-020-0530-3] [PMID: 32205856]
[5]
Jit, B.P.; Qazi, S.; Arya, R.; Srivastava, A.; Gupta, N.; Sharma, A. An immune epigenetic insight to COVID-19 infection. Epigenomics, 2021, 13(6), 465-480.
[http://dx.doi.org/10.2217/epi-2020-0349] [PMID: 33685230]
[6]
Yan, G.; Lee, C.K.; Lam, L.T.; Yan, B.; Chua, Y.X.; Lim, A.Y.; Phang, K.F.; Kew, G.S.; Teng, H.; Ngai, C.H.; Lin, L. Covert COVID-19 and false-positive dengue serology in Sin-gapore. Lancet Infect. Dis., 2020, 20(5), 536.
[http://dx.doi.org/10.1016/S1473-3099(20)30158-4] [PMID: 32145189]
[7]
Guo, X.J.; Thomas, P.G. New fronts emerge in the influenza cytokine storm. Semin. Immunopathol., 2017, 39(5), 541-550.
[http://dx.doi.org/10.1007/s00281-017-0636-y] [PMID: 28555383]
[8]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syn-dromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[9]
Bharadwaj, K.K.; Srivastava, A.; Panda, M.K.; Singh, Y.D.; Maharana, R.; Mandal, K.; Singh, B.M.; Singh, D.; Das, M.; Murmu, D.; Kabi, S.K. Computational intelligence in vaccine design against COVID-19. In:Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Studies in Computational Intelligence; Raza, K., Ed.; Springer: Singapore, 2021, 923, pp. 311-329.
[10]
Ben-Zvi, I.; Kivity, S.; Langevitz, P.; Shoenfeld, Y. Hy-droxychloroquine: From malaria to autoimmunity. Clin. Rev. Allergy Immunol., 2012, 42(2), 145-153.
[http://dx.doi.org/10.1007/s12016-010-8243-x] [PMID: 21221847]
[11]
Zhang, L.; Liu, Y. Potential interventions for novel corona-virus in China: A systematic review. J. Med. Virol., 2020, 92(5), 479-490.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[12]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Ef-fective treatment of severe COVID-19 patients with tocili-zumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[13]
Mechineni, A.; Kassab, H.; Manickam, R. Remdesivir for the treatment of COVID 19: Review of the pharmacological prop-erties, safety and clinical effectiveness. Expert Opin. Drug Saf., 2021, 20(11), 1299-1307.
[http://dx.doi.org/10.1080/14740338.2021.1962284] [PMID: 34338121]
[14]
Langarizadeh, M.A.; Ranjbar Tavakoli, M.; Abiri, A.; Ghasempour, A.; Rezaei, M.; Ameri, A. A review on function and side effects of systemic corticosteroids used in high-grade COVID-19 to prevent cytokine storms. EXCLI J., 2021, 20(20), 339-365.
[PMID: 33746666]
[15]
Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung in-jury. Lancet, 2020, 395(10223), 473-475.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[16]
Ullman, D.; Frass, M. A review of homeopathic research in the treatment of respiratory allergies. Altern. Med. Rev., 2010, 15(1), 48-58.
[PMID: 20359268]
[17]
Shah, S.B.; Hariharan, U.; Chawla, R. Common anti-COVID-19 drugs and their anticipated interaction with anesthetic agents. J. Anaesthesiol. Clin. Pharmacol., 2021, 37(2), 160-170.
[http://dx.doi.org/10.4103/joacp.JOACP_461_20] [PMID: 34349362]
[18]
Hasselaar, G.; Nijnatten, W.; Golden, I. A pilot study into the comparative effectiveness and safety in the elderly of a ho-meopathic flu prophylaxis and the regular flu vaccination in the Netherlands. Homœopathic Links, 2016, 29(02), 120-126.
[http://dx.doi.org/10.1055/s-0036-1582468]
[19]
Winston, J. Treatment of epidemics with homeopathy - a history | national center for homeopathy. Available from: https://www.homeopathycenter.org/treatment-epidemics-homeopathy-history (Accessed: February 17, 2020).
[20]
Saine, A. Case management of the influenza and pneumonia patient with homeopathy during the COVID-19 pandemic. AIH Webinar, Available from: http://www.homeopathyusa.org (Accessed: April 4, 2020).
[21]
Mathie, R.T.; Baitson, E.S.; Frye, J.; Nayak, C.; Manchanda, R.K.; Fisher, P. Homeopathic treatment of patients with influ-enza-like illness during the 2009 A/H1N1 influenza pandemic in India. Homeopathy, 2013, 102(3), 187-192.
[http://dx.doi.org/10.1016/j.homp.2013.04.001] [PMID: 23870378]
[22]
Saeed-ul-Hassan, S.; Tariq, I.; Khalid, A.; Karim, S. Com-parative clinical study on the effectiveness of homeopathic combination remedy with standard maintenance therapy for dengue fever. Trop. J. Pharm. Res., 2013, 12(5), 767-770.
[http://dx.doi.org/10.4314/tjpr.v12i5.16]
[23]
Chaudhary, A.; Khurana, A. A review on the role of homoe-opathy in epidemics with some reflections on COVID-19 (SARS-CoV-2). Indian J. Res. Homoeopathy, 2020, 14(2), 100-109.
[http://dx.doi.org/10.4103/ijrh.ijrh_34_20]
[24]
Manvi, M.; Prasad, G. Evaluation of pharmacognostical pa-rameters and hepatoprotective activity in Bryonia alba Linn. J. Chem. Pharm. Res., 2011, 3(6), 99-109.
[25]
Raymond, H. Gelsemicine. C. R. Soc. Biol. Fil., 1937, 126, 1151-1154.
[26]
Derksen, A.; Kühn, J.; Hafezi, W.; Sendker, J.; Ehrhardt, C.; Ludwig, S.; Hensel, A. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attach-ment of influenza A virus. J. Ethnopharmacol., 2016, 188(188), 144-152.
[http://dx.doi.org/10.1016/j.jep.2016.05.016] [PMID: 27178637]
[27]
Kundu, S.N.; Mitra, K.; Khuda Bukhsh, A.R. Efficacy of a potentized homeopathic drug (Arsenicum-Aalbum-30) in re-ducing cytotoxic effects produced by arsenic trioxide in mice: IV. Pathological changes, protein profiles, and content of DNA and RNA. Complement. Ther. Med., 2000, 8(3), 157-165.
[http://dx.doi.org/10.1054/ctim.2000.0390] [PMID: 11068345]
[28]
Siqueira, C.M.; Costa, B.; Amorim, A.M.; Gonçalves, M.; Féo da Veiga, V.; Castelo-Branco, M.; Takyia, C.; Zancan, P.; Câmara, F.P.; Couceiro, J.N.; Holandino, C. H3N2 homeo-pathic influenza virus solution modifies cellular and bio-chemical aspects of MDCK and J774G8 cell lines. Homeopathy, 2013, 102(1), 31-40.
[http://dx.doi.org/10.1016/j.homp.2012.10.003] [PMID: 23290877]
[29]
Dai, L.; Wang, H.; Chen, Y. The immune-enhancing effect of PcG A-A glycoprotein isolated from dried root of Pulsatilla chinensis (Bunge) Regel. Zhongguo Sheng hua Yuan Zazhi, 2000, 21, 230-231.
[30]
Dudgeon, R.E. Hahnemann’s discovery of the prophylactic powers of belladonna in scarlet fever allopathic testimony to this prophylactic.Lectures on the Theory & Practice of Homoeopathy; Dudgeon, R.E., Ed.; B Jain Publishers: New Delhi, 2002, pp. 540-544.
[31]
Saha, S.; Jana, B.; Basu, T. The two inducible responses, SOS and heat-shock, in Escherichia coli act synergistically during Weigle reactivation of the bacteriophage phiX174. Int. J. Radiat. Biol., 2007, 83(7), 463-469.
[http://dx.doi.org/10.1080/09553000701371389] [PMID: 17538796]
[32]
Shuang, L.; Tancheng, D.; Peige, S.; Yufeng, L.; Lin, L. Yig-uo. Synthesis of vitcamphor derivatives of camphor and its preliminary anti-inflammatory activity. Proceedings 2011 International Conference on Human Health and Biomedical Engineering, Jilin, China2011, pp. 88-91.
[http://dx.doi.org/10.1109/HHBE.2011.6027903]
[33]
de Oliveira, C.C.; de Oliveira, S.M.; Godoy, L.M.; Gabardo, J.; Buchi, D.F. Canova, a Brazilian medical formulation, alters oxidative metabolism of mice macrophages. J. Infect., 2006, 52(6), 420-432.
[http://dx.doi.org/10.1016/j.jinf.2005.08.017] [PMID: 16386798]
[34]
Danno, K.; Colas, A.; Masson, J.L.; Bordet, M.F. Homeo-pathic treatment of migraine in children: Results of a prospec-tive, multicenter, observational study. J. Altern. Complement. Med., 2013, 19(2), 119-123.
[http://dx.doi.org/10.1089/acm.2011.0821] [PMID: 22978244]
[35]
Das, D.; De, A.; Dutta, S.; Biswas, R.; Boujedaini, N.; Khuda-Bukhsh, A.R. Potentized homeopathic drug Arsenicum Al-bum 30C positively modulates protein biomarkers and gene expressions in Saccharomyces cerevisae exposed to arsenate. J. Chin. Integr. Med., 2011, 9(7), 752-760.
[http://dx.doi.org/10.3736/jcim20110709] [PMID: 21749826]
[36]
Yao, D.; Vlessidis, A.G.; Gou, Y.; Zhou, X.; Zhou, Y.; Evmiridis, N.P. Chemiluminescence detection of superoxide anion release and superoxide dismutase activity: Modulation effect of Pulsatilla chinensis. Anal. Bioanal. Chem., 2004, 379(1), 171-177.
[http://dx.doi.org/10.1007/s00216-004-2527-z] [PMID: 14985908]
[37]
Society of Homeopaths: Coronavirus COVID- 19. Available from: https://homeopathy-soh.org/coronavirus-covid-19 (Accessed: April 15, 2020).
[38]
Bandyopadhyay, B.; Das, S.; Sengupta, M.; Saha, C.; Das, K.C.; Sarkar, D.; Nayak, C. Decreased intensity of Japanese encephalitis virus infection in chick chorioallantoic mem-brane under influence of ultradiluted Belladonna extract. Am. J. Infect. Dis., 2010, 6(2), 24-28.
[http://dx.doi.org/10.3844/ajidsp.2010.24.28]
[39]
de la Peña, S.S.; Sothern, R.B.; López, F.S.; Lujambio, I.M.; Waizel-Bucay, J.; Sánchez, C.O.; Monroy, C.P.; Betancourt, E.T. Circadian aspects of hyperthermia in mice induced by Aconitum napellus. Pharmacogn. Mag., 2011, 7(27), 234-242.
[http://dx.doi.org/10.4103/0973-1296.84238] [PMID: 21969795]
[40]
Khan, I.; Ahmad, B.; Azam, S.; Hassan, F. Nazish; Aziz, A.; Rehman, N.; Ullah, F.; Liaqat, Z. Pharmacological activities of Justicia adhatoda. Pak. J. Pharm. Sci., 2018, 31(2), 371-377.
[PMID: 29618423]
[41]
Lee, K.J.; Yeo, M.G. Homeopathic Rhus toxicodendron has dual effects on the inflammatory response in the mouse pre-osteoblastic cell line MC3T3-e1. Homeopathy, 2016, 105(1), 42-47.
[http://dx.doi.org/10.1016/j.homp.2015.09.004] [PMID: 26827996]
[42]
Vickers, A.J.; Smith, C. Homoeopathic Oscillococcinum for preventing and treating influenza and influenza-like syn-dromes. Cochrane Database Syst. Rev., 2006, 19(3), D001957.www.cochranelibrary.com
[http://dx.doi.org/10.1002/14651858.CD001957.pub6/full]
[43]
Banerji, P.; Banerji, P.; Das, G.C.; Islam, A.; Mishra, S.K.; Mukhopadhyay, S. Efficacy of Baptisia tinctoria in the treat-ment of typhoid: Its possible role in inducing antibody for-mation. J. Complement. Integr. Med., 2012, 9(1), 15.
[http://dx.doi.org/10.1515/1553-3840.1622] [PMID: 22850071]
[45]
Ping, W.; Su, Z.; Yuan, W.; Deng, G. Li, Shiyou. Phytochemi-cal constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharm. Crop., 2012, 3(1), 99-120.
[http://dx.doi.org/10.2174/2210290601203010099]
[46]
Vermeulen, F.E.; Ary, B.; Constantin, H. Concordant Materia Medica: Allen, Boericke, Boger, Cowperthwaite, Clarke, He-ring, Kent, Lippe, Phatak, Pulford, Vermeulen; Haarlem: Emryss Publishers, 2000.
[47]
Chand, S.K.; Manchanda, R.K.; Batra, S.; Mittal, R. Homeopa-thy in the treatment of tubercular lymphadenitis (TBLN)-an Indian experience. Homeopathy, 2011, 100(3), 157-167.
[http://dx.doi.org/10.1016/j.homp.2010.11.006] [PMID: 21784333]
[48]
Nagore, D.H.; Ghosh, V.K.; Patil, M.J. Evaluation of anti-asthmatic activity of Cassia sophera Linn. Pharmacogn. Mag., 2009, 5(19), 109-118.
[49]
Yadav, J.P.; Arya, V.; Yadav, S.; Panghal, M.; Kumar, S.; Dhankhar, S. Cassia occidentalis L.: A review on its ethno-botany, phytochemical and pharmacological profile. Fitoterapia, 2010, 81(4), 223-230.
[http://dx.doi.org/10.1016/j.fitote.2009.09.008] [PMID: 19796670]
[50]
Joseph, Ep. Bronchitis and pneumonia. The Clinician’s Handbook of Natural Medicine, 3rd ed; Churchill Livingstone, 2016.
[51]
Dasgupta, A. Indian Authorities Propose Use of Homeopathy to Prevent Coronavirus. The Scientist. Available from: https://www.the-scientist.com/news-opinion/indian-authorities-propose-use-of-homeopathy-to-prevent-coronavirus-67075 (Accessed: july 21, 2020).
[52]
Demarque, D.; Jouanny, J.; Poitevin, B.; Saint-Jean, Y. Phar-macology and Homeopathic Materia Medica; 3rd ed; Sainte-Foy-lès- Lyon: CEDH, 2007.
[53]
Offergeld, R.; Reinecker, C.; Gumz, E.; Schrum, S.; Treiber, R.; Neth, R.D.; Gohla, S.H. Mitogenic activity of high molecu-lar polysaccharide fractions isolated from the cuppressaceae Thuja occidentalis L. enhanced cytokine-production by thya-polysaccharide, g-fraction (TPSg). Leukemia, 1992, 6(Suppl. 3), 189S-191S.
[PMID: 1602822]
[54]
Hassan, H.T.; Drize, N.J. Sadovinkova EYu; Gan, O.I.; Gohla, S.; Schrum, S.; Neth, R.D. TPSg, an anti-human im-munodeficiency virus (HIV-1) agent, isolated from the Cu-pressaceae Thuja occidentale L. (Arborvitae) enhances in vivo hemopoietic progenitor cells recovery in sublethally irradiated mice. Immunol. Lett., 1996, 50(1-2), 119-122.
[http://dx.doi.org/10.1016/0165-2478(96)02525-4] [PMID: 8793569]
[55]
Ojeswi, B.K.; Khoobchandani, M.; Hazra, D.K.; Srivastava, M.M. Protective effect of Thuja occidentalis against DMBA-induced breast cancer with reference to oxidative stress. Hum. Exp. Toxicol., 2010, 29(5), 369-375.
[http://dx.doi.org/10.1177/0960327110364150] [PMID: 20200195]
[56]
Madhuri, S.; Pandey, G. Some anticancer medicinal plants of foreign origin. Curr. Sci., 2009, 96(6), 779-783.
[57]
Alves, L.D.; Figueirêdo, C.B.; Silva, C.C.; Marques, G.S.; Ferreira, P.A.; Soares, M.F.; Silva, R.M.; Rolim-Neto, P.J. Thuja occidentalis L.(Cupressaceae): Review of botanical, phytochemical, pharmacological and toxicological aspects. Int. J. Pharm. Sci. Res., 2014, 5(4), 1163.
[58]
Bodinet, C.; Lindequist, U.; Teuscher, E.; Freudenstein, J. Effect of an orally applied herbal immunomodulator on cyto-kine induction and antibody response in normal and immu-nosuppressed mice. Phytomedicine, 2002, 9(7), 606-613.a.
[59]
Silva, I.S.; Nicolau, L.A.D.; Sousa, F.B.M.; Araújo, S.; Oliveira, A.P.; Araújo, T.S.L.; Souza, L.K.M.; Martins, C.S.; Aquino, P.E.A.; Carvalho, L.L.; Silva, R.O.; Rolim-Neto, P.J.; Medeiros, J.V.R. Evaluation of anti-inflammatory potential of aqueous extract and polysaccharide fraction of Thuja occi-dentalis Linn. in mice. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1105-1116.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.142] [PMID: 28751047]
[60]
Naser, B.; Bodinet, C.; Tegtmeier, M.; Lindequist, U. Thuja occidentalis (Arbor vitae): A Review of its pharmaceutical, pharmacological and clinical properties. Evid. Based Complement. Alternat. Med., 2005, 2(1), 69-78.
[http://dx.doi.org/10.1093/ecam/neh065] [PMID: 15841280]
[61]
Remya, V.; Kuttan, G. Homeopathic remedies with antineo-plastic properties have immunomodulatory effects in experi-mental animals. Homeopathy, 2015, 104(3), 211-219.
[http://dx.doi.org/10.1016/j.homp.2014.11.004] [PMID: 26143455]
[62]
Guimarães, F.S.; Abud, A.P.; Oliveira, S.M.; Oliveira, C.C.; César, B.; Andrade, L.F.; Donatti, L.; Gabardo, J.; Trindade, E.S.; Buchi, D.F. Stimulation of lymphocyte anti-melanoma activity by co-cultured macrophages activated by complex homeopathic medication. BMC Cancer, 2009, 9(1), 293.
[http://dx.doi.org/10.1186/1471-2407-9-293] [PMID: 19698142]
[63]
Gohla, S.H.; Zeman, R.A.; Bögel, M.; Jurkiewicz, E.; Schrum, S.; Haubeck, H.D.; Schmitz, H.; Hunsmann, G.; Neth, R.D. Modification of the in vitro replication of the Human Immu-nodeficiency Virus HIV-1 by TPSg, a Polysaccaride Fraction Isolated from the Cupressaceae Thuja occidentalis L. (Ar-borvitae). Haematol. Blood Transfus., 1992, 35, 140-149.
[64]
Bellili, S.; Aouadhi, C.; Dhifi, W.; Ghazghazi, H.; Jlassi, C.; Sadaka, C.; Beyrouthy, M.E.; Maaroufi, A.; Cherif, A.; Mnif, W. The influence of organs on biochemical properties of tu-nisian Thuja occidentalis essential oils. Symmetry (Basel), 2018, 10(11), 649.
[http://dx.doi.org/10.3390/sym10110649]
[65]
Nazir, M.Z.; Chandel, S.; Sehgal, A. In vitro screening of antioxidant potential of Thuja occidentalis. J Chem. Pharm. Sci., 2016, 8, 283-286.
[66]
Stan, M.S.; Voicu, S.N.; Caruntu, S.; Nica, I.C.; Olah, N.K.; Burtescu, R.; Balta, C.; Rosu, M.; Herman, H.; Hermenean, A.; Dinischiotu, A. Antioxidant and anti-inflammatory prop-erties of a Thuja occidentalis mother tincture for the treatment of ulcerative colitis. Antioxidants, 2019, 8(9), 416.
[http://dx.doi.org/10.3390/antiox8090416] [PMID: 31546840]
[67]
Vorberg, G. Bei Erkältung unspezifische Immunabwehr stimulieren. Arztl. Prax., 1984, 36, 97-98.
[68]
Wüstenberg, P.; Henneicke-von Zepelin, H.H.; Köhler, G.; Stammwitz, U. Efficacy and mode of action of an immuno-modulator herbal preparation containing Echinacea, wild indi-go, and white cedar. Adv. Ther., 1999, 16(1), 51-70.
[PMID: 10539093]
[69]
Bodinet, C.; Mentel, R.; Wegner, U.; Lindequist, U.; Teuscher, E.; Freudenstein, J. Effect of oral application of an immuno-modulating plant extract on Influenza virus type A infection in mice. Planta Med., 2002, 68(10), 896-900.
[http://dx.doi.org/10.1055/s-2002-34919] [PMID: 12391552]
[70]
Zimmer, M. Specific conservative treatment of acute sinusitis in the ENT practice. Therapiewoche, 1985, 35, 4024-4028.
[71]
Hauke, W.; Köhler, G.; Henneicke-Von Zepelin, H.H.; Freudenstein, J. Esberitox N as supportive therapy when providing standard antibiotic treatment in subjects with a se-vere bacterial infection (acute exacerbation of chronic bron-chitis). A multicentric, prospective, double-blind, placebo-controlled study. Chemotherapy, 2002, 48(5), 259-266.
[http://dx.doi.org/10.1159/000066763] [PMID: 12476043]
[72]
Zhang, X.W.; Choe, Y.H.; Park, Y.J.; Kim, B.S. Effect of Korean arbor vitae (Thuja koraiensis) extract on antimicrobial and antiviral activity. Afr. J. Pharm. Pharmacol., 2014, 8(10), 274-277.
[http://dx.doi.org/10.5897/AJPP2013.3979]
[73]
Tsiri, D.; Graikou, K. Pobłocka-Olech, L.; Krauze-Baranowska, M.; Spyropoulos, C.; Chinou, I. Chemosystem-atic value of the essential oil composition of Thuja species cultivated in Poland-antimicrobial activity. Molecules, 2009, 14(11), 4707-4715.
[http://dx.doi.org/10.3390/molecules14114707] [PMID: 19935470]
[74]
Witte, L.; Berlin, J.; Wray, V.; Schubert, W.; Kohl, W.; Höfle, G.; Hammer, J. Mono-and diterpenes from cell cultures of Thuja occidentalis. Planta Med., 1983, 49(12), 216-221.
[http://dx.doi.org/10.1055/s-2007-969854] [PMID: 17405056]
[75]
Berlin, J.; Witte, L.; Schubert, W.; Wray, V. Determination and quantification of monoterpenoids secreted into the medi-um of cell cultures of Thuja occidentalis. Phytochemistry, 1984, 23(6), 1277-1279.
[http://dx.doi.org/10.1016/S0031-9422(00)80441-0]
[76]
Sandner, G.; Heckmann, M.; Weghuber, J. Immunomodulato-ry activities of selected essential oils. Biomolecules, 2020, 10(8), 1139.
[http://dx.doi.org/10.3390/biom10081139] [PMID: 32756359]
[77]
Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 2019, 24(13), 2471.
[http://dx.doi.org/10.3390/molecules24132471] [PMID: 31284397]
[78]
de Freitas, B.C.; Queiroz, P.A.; Baldin, V.P.; do Amaral, P.H.; Rodrigues, L.L.; Vandresen, F.; R., Caleffi-Ferracioli K.; de L Scodro, R.B.; Cardoso, R.F.; Siqueira, V.L. (-)-Camphene-based derivatives as potential antibacterial agents against Staphylococcus aureus and Enterococcus spp. Future Microbiol., 2020, 15(16), 1527-1534.
[http://dx.doi.org/10.2217/fmb-2020-0131] [PMID: 33215538]
[79]
Sokolova, A.S.; Putilova, V.P.; Yarovaya, O.I.; Zybkina, A.V.; Mordvinova, E.D.; Zaykovskaya, A.V.; Shcherbakov, D.N.; Orshanskaya, I.R.; Sinegubova, E.O.; Esaulkova, I.L.; Borisevich, S.S.; Bormotov, N.I.; Shishkina, L.N.; Zarubaev, V.V.; Pyankov, O.V.; Maksyutov, R.A.; Salakhutdinov, N.F. Synthesis and antiviral activity of camphene derivatives against different types of viruses. Molecules, 2021, 26(8), 2235.
[http://dx.doi.org/10.3390/molecules26082235] [PMID: 33924393]
[80]
Pessoa, M.L.S.; Silva, L.M.O.; Araruna, M.E.C.; Serafim, C.A.L.; Júnior, E.B.A.; Silva, A.O.; Pessoa, M.M.B.; Neto, H.D.; Lima, E.O.; Batista, L.M. Antifungal activity and anti-diarrheal activity via antimotility mechanisms of (-)-fenchone in experimental models. World J. Gastroenterol., 2020, 26(43), 6795-6809.
[http://dx.doi.org/10.3748/wjg.v26.i43.6795] [PMID: 33268962]
[81]
Caruntu, S.; Ciceu, A.; Olah, N.K.; Don, I.; Hermenean, A.; Cotoraci, C. Thuja occidentalis L. (Cupressaceae): Ethnobot-any, phytochemistry and biological activity. Molecules, 2020, 25(22), 5416.
[http://dx.doi.org/10.3390/molecules25225416] [PMID: 33228192]
[82]
Lappas, C.M.; Lappas, N.T. D-Limonene modulates T lym-phocyte activity and viability. Cell. Immunol., 2012, 279(1), 30-41.
[http://dx.doi.org/10.1016/j.cellimm.2012.09.002] [PMID: 23059811]
[83]
Nagoor Meeran, M.F.; Seenipandi, A.; Javed, H.; Sharma, C.; Hashiesh, H.M.; Goyal, S.N.; Jha, N.K.; Ojha, S. Can limo-nene be a possible candidate for evaluation as an agent or ad-juvant against infection, immunity, and inflammation in COVID-19? Heliyon, 2020, 7(1), e05703.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05703] [PMID: 33490659]
[84]
Sieniawska, E.; Swatko-Ossor, M.; Sawicki, R. Skalicka-Woźniak, K.; Ginalska, G. Natural terpenes influence the ac-tivity of antibiotics against isolated Mycobacterium tubercu-losis. Med. Princ. Pract., 2017, 26(2), 108-112.
[http://dx.doi.org/10.1159/000454680] [PMID: 27883995]
[85]
de Cássia da Silveira e SáR.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules, 2013, 18(1), 1227-1254.
[http://dx.doi.org/10.3390/molecules18011227] [PMID: 23334570]
[86]
Li, L.; Shi, C.; Yin, Z.; Jia, R.; Peng, L.; Kang, S.; Li, Z. Anti-bacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Braz. J. Microbiol., 2015, 45(4), 1409-1413.
[http://dx.doi.org/10.1590/S1517-83822014000400035] [PMID: 25763048]
[87]
Chandrakanthan, M.; Handunnetti, S.M.; Premakumara, G.S.A.; Kathirgamanathar, S. Topical anti-Inflammatory activ-ity of essential oils of Alpinia calcarata Rosc., its main con-stituents, and possible mechanism of action. Evid. Based Complement. Alternat. Med., 2020, 2020, 2035671.
[http://dx.doi.org/10.1155/2020/2035671] [PMID: 32419793]
[88]
Sytar, O.; Brestic, M.; Hajihashemi, S.; Skalicky, M.; Kubeš, J.; Lamilla-Tamayo, L.; Ibrahimova, U.; Ibadullayeva, S.; Landi, M. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules, 2021, 26(3), 727.
[http://dx.doi.org/10.3390/molecules26030727] [PMID: 33573318]
[89]
Kleijnen, J.; Knipschild, P.; ter Riet, G. Clinical trials of ho-moeopathy. BMJ, 1991, 302(6772), 316-323.
[http://dx.doi.org/10.1136/bmj.302.6772.316] [PMID: 1825800]
[90]
Wiesenauer, M.; Häussler, S.; Gaus, W. Pollinosis therapy with Galphimia glauca. Fortschr. Med., 1983, 101(17), 811-814.
[PMID: 6345308]
[91]
Weiser, M.; Gegenheimer, L.H.; Klein, P. A randomized equivalence trial comparing the efficacy and safety of Luffa comp.-Heel nasal spray with cromolyn sodium spray in the treatment of seasonal allergic rhinitis. Forsch. Komplementarmed., 1999, 6(3), 142-148.
[http://dx.doi.org/10.1159/000021239] [PMID: 10460983]
[92]
Lewith, G.T.; Watkins, A.D.; Hyland, M.E.; Shaw, S.; Broom-field, J.A.; Dolan, G.; Holgate, S.T. Use of ultramolecular po-tencies of allergen to treat asthmatic people allergic to house dust mite: Double blind randomised controlled clinical trial. BMJ, 2002, 324(7336), 520.
[http://dx.doi.org/10.1136/bmj.324.7336.520] [PMID: 11872551]
[93]
Chandrakant Nimgulkar, C.; Dattatray Patil, S. Dinesh Ku-mar, B. Anti-asthmatic and anti-anaphylactic activities of Blatta orientalis mother tincture. Homeopathy, 2011, 100(3), 138-143.
[http://dx.doi.org/10.1016/j.homp.2010.08.006] [PMID: 21784330]
[94]
Henneicke-von Zepelin, H.; Hentschel, C.; Schnitker, J.; Kohnen, R.; Köhler, G.; Wüstenberg, P. Efficacy and safety of a fixed combination phytomedicine in the treatment of the common cold (acute viral respiratory tract infection): Results of a randomised, double blind, placebo controlled, multicen-tre study. Curr. Med. Res. Opin., 1999, 15(3), 214-227.
[http://dx.doi.org/10.1185/03007999909114094] [PMID: 10621929]
[95]
Hawke, K.; van Driel, M.L.; Buffington, B.J.; McGuire, T.M.; King, D. Homeopathic medicinal products for preventing and treating acute respiratory tract infections in children. Cochrane Database Syst. Rev., 2018, (4), CD005974.
[http://dx.doi.org/10.1002/14651858.CD005974]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy