Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Performance Analysis of Permanent Magnet Vernier Motor with Surface and Halbach Magnets

Author(s): Mingjie Wang, Shuai Zhang, Sheng Liu* and Pengxiang Ye

Volume 15, Issue 2, 2022

Published on: 14 March, 2022

Page: [104 - 115] Pages: 12

DOI: 10.2174/2352096515666220307152107

Price: $65

Abstract

Background: Surface permanent magnet motors (SPMVM) and dual permanent magnet motors (DPMVM) have broad prospects in direct drive systems, but some problems occur with large magnetic leakage, large torque ripple and large amount of permanent magnets (PMs).

Objective: In order to reduce the torque ripple and magnetic flux leakage of SPMVM and DPMVM, and improve the torque density, a dual permanent magnet vernier machine with Halbach PM array (DHPMVM) is proposed.

Methods: By air gap permeance method, flux density analysis of three kinds of motors was analyzed, and the main harmonics of SPMVM and DHPMVM are investigated with structure parameters. Electromagnetic characteristics of three motors such as no-load back, electromotive force (EMF), torque, and inductance are compared and analyzed by finite element method (FEM).

Results: The study found that under the same size, winding distribution, electrical load and speed conditions, DHPMVM uses Halbach PM array and consequent pole structures to reduce magnetic flux leakage and torque ripple, increase torque density, PM utilization and torque per unit PM volume. Compared with SPMVM and DPMVM, the DHPMVM proposed in this paper has better electromagnetic performance.

Conclusion: The DHPMVM topology is the better choice in terms of torque density, torque ripple, and magnet usage among the investigated topologies.

Keywords: Consequent poles, Dual-PM, Halbach array, flux modulation, permanent magnet vernier motor, torque density.

Next »
Graphical Abstract
[1]
X. Luo, and S. Niu, "A novel contra-rotating power split transmission system for wind power generation and its dual MPPT control strategy", IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6924-6935, 2017.
[http://dx.doi.org/10.1109/TPEL.2016.2629021]
[2]
J. Yu, and C. Liu, "Design of a double-stator magnetless vernier machine for direct-drive robotics", IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, 2018.
[http://dx.doi.org/10.1109/TMAG.2018.2836193]
[3]
D. Jang, and J. Chang, "Effects of flux modulation poles on the radial magnetic forces in surface-mounted permanent-magnet vernier machines", IEEE Trans. Magn., vol. 53, no. 6, pp. 1-4, 2017.
[http://dx.doi.org/10.1109/TMAG.2017.2663399]
[4]
W. Zhao, B. Wu, Q. Chen, and J. Zhu, "Fault-tolerant direct thrust force control for a dual inverter fed open-end winding linear vernier permanent-magnet motor using improved SVPWM", IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7458-7467, 2018.
[http://dx.doi.org/10.1109/TIE.2018.2795557]
[5]
Z.S. Du, and T.A. Lipo, "Torque performance comparison between a ferrite magnet vernier motor and an industrial interior permanent magnet machine", IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2088-2097, 2017.
[http://dx.doi.org/10.1109/TIA.2017.2673812]
[6]
W.N. Fu, and S.L. Ho, "A quantitative comparative analysis of a novel flux-modulated permanent-magnet motor for low-speed drive", IEEE Trans. Magn., vol. 46, no. 1, pp. 127-134, 2010.
[http://dx.doi.org/10.1109/TMAG.2009.2030677]
[7]
K. Xie, D. Li, R. Qu, X. Ren, M.R. Shah, and Y. Pan, "A new perspective on the PM vernier machine mechanism", IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1420-1429, 2019.
[http://dx.doi.org/10.1109/TIA.2018.2880144]
[8]
J-G. Lee, D-K. Lim, and H-K. Jung, "Analysis and design of interior permanent magnet synchronous motor using a sequential-stage magnetic equivalent circuit", IEEE Trans. Magn., vol. 55, no. 10, pp. 1-4, 2019.
[http://dx.doi.org/10.1109/TMAG.2019.2922043]
[9]
M. Si, X. Yang, S. Zhao, and J. Si, "Development of the equivalent magnetic circuit model for a surface-interior permanent magnet synchronous motor", In: 6th International Conference on Power Electronics Systems and Applications (PESA) 15-17 Dec. 2015, Hong Kong, IEEE,, pp. 1-4.
[http://dx.doi.org/10.1109/PESA.2015.7398952]
[10]
M. Jang, and K. Akatsu, "The magnet operating point estimation using motor parameter estimation and magnetic equivalent circuit in PMSM", In: IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 29 Nov.-2 Dec. 2020, Nanjing, China, IEEE, pp. 73-78.
[http://dx.doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9367924]
[11]
Y. Chen, W.N. Fu, and W. Li, "Performance analysis of a novel triple-permanent-magnet- excited magnetic gear and its design method", IEEE Trans. Magn., vol. 52, no. 7, pp. 1-4, 2016.
[http://dx.doi.org/10.1109/TMAG.2016.2522476]
[12]
B. Dai, K. Nakamura, Y. Suzuki, Y. Oishi, Y. Tachiya, and K. Kuritani, "Comparison of two different interior permanent magnet type low-speed rotor structures of axial-flux magnetic gear", 23rd International Conference on Electrical Machines and Systems (ICEMS) 24-27 Nov. 2020, Hamamatsu, Japan, IEEE,, pp. 1748-1751, .
[http://dx.doi.org/10.23919/ICEMS50442.2020.9290886]
[13]
Y. Kataoka, Y. Matsushima, and Y. Anazawa, "A design for PM vernier machines", 21st International Conference on Electrical Machines and Systems (ICEMS) 7-10 Oct. 2018, Jeju, Korea (South), , pp. 87-92, .
[http://dx.doi.org/10.23919/ICEMS.2018.8549255]
[14]
"K. SUZUKI Y. KATAOKA, and Y. ANAZAWA, “A study of high torque design in small-size PM vernier motor", In: 23rd International Conference on Electrical Machines and Systems (ICEMS) 24-27 Nov. 2020, Hamamatsu, Japan, IEEE,, pp. 1872-1877.
[http://dx.doi.org/10.23919/ICEMS50442.2020.9290806]
[15]
W. Liu, and T.A. Lipo, "Analysis of consequent pole spoke type vernier permanent magnet machine with alternating flux barrier design", IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 5918-5929, 2018.
[http://dx.doi.org/10.1109/TIA.2018.2856579]
[16]
D. Jang, and J. Chang, "Influences of winding MMF harmonics on torque characteristics in surface-mounted permanent magnet vernier machines", Energies, vol. 10, no. 4, p. 580, 2017.
[http://dx.doi.org/10.3390/en10040580]
[17]
H. Xu, H. Geng, H. Lin, Y. Qi, and X. Yin, "Rotor design and analysis of a high speed permanent magnet synchronous motor for cryogenic centrifugal pump", 2019 IEEE International Conference on Mechatronics and Automation (ICMA) 4-7 Aug. 2019, Tianjin, China, pp. 1756-1760, .
[http://dx.doi.org/10.1109/ICMA.2019.8816583]
[18]
J. Zhang, and Q. Zhang, "Electromagnetic performances analysis of a consequent pole interior permanent magnet vernier machine", Electr. Machines Control, vol. 24, no. 04, pp. 158-164, 2020.
[19]
W. Hua, P. Su, M. Tong, and J. Meng, "Investigation of a five-phase e-core hybrid-excitation flux-switching machine for EV and HEV applications", IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 124-133, 2017.
[http://dx.doi.org/10.1109/TIA.2016.2608324]
[20]
Y. Gao, R. Qu, D. Li, and J. Li, "Torque performance analysis of three-phase flux reversal machines", IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2110-2119, 2017.
[http://dx.doi.org/10.1109/TIA.2017.2677356]
[21]
S. Jia, R. Qu, J. Li, D. Li, W. Kong, and D. Ye, "A stator-PM consequent-pole vernier machine with hybrid excitation and DC-biased sinusoidal current", 2016 IEEE Conference on Electromagnetic Field Computation (CEFC) 13-16 Nov. 2016, Miami, FL, USA,, pp. 1-1, .
[http://dx.doi.org/10.1109/CEFC.2016.7815987]
[22]
L. Jian, Y. Shi, C. Liu, G. Xu, Y. Gong, and C.C. Chan, "A novel dual-permanent-magnet-excited machine for low-speed large-torque applications", IEEE Trans. Magn., vol. 49, no. 5, pp. 2381-2384, 2013.
[http://dx.doi.org/10.1109/TMAG.2013.2238660]
[23]
S. Niu, T. Sheng, X. Zhao, and X. Zhang, "Operation principle and torque component quantification of short-pitched flux-bidirectional-modulation machine", IEEE Access, vol. 7, pp. 136676-136685, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2942482]
[24]
Q. Wang, S. Niu, and X. Luo, "A novel hybrid dual-PM machine excited by AC with DC bias for electric vehicle propulsion", IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6908-6919, 2017.
[http://dx.doi.org/10.1109/TIE.2017.2682778]
[25]
Q. Wang, S. Niu, and L. Yang, "Design optimization and comparative study of novel dual-PM excited machines", IEEE Trans. Ind. Electron., vol. 64, no. 12, pp. 9924-9933, 2017.
[http://dx.doi.org/10.1109/TIE.2017.2716869]
[26]
H. Huang, D. Li, R. Qu, X. Gao, and B. Han, "Design and analysis of T-shape consequent pole dual PM Vernier Machines with differential magnetic network method", IEEE J. Emerg. Sel. Top. Power Electron., p. 1, 2021.
[http://dx.doi.org/10.1109/JESTPE.2021.3055496]
[27]
X. Xu, Z. Fan, L. Ai, H. Feng, B. Du, and Y. Zhao, "Characteristic analysis and optimization of U-PM linear vernier motor", In: 13th International Symposium on Linear Drives for Industry Applications (LDIA) 1-3 July 2021, Wuhan, China, IEEE,, pp. 1-5.
[http://dx.doi.org/10.1109/LDIA49489.2021.9505911]
[28]
Z.S. Du, and T.A. Lipo, "Design of an improved dual-stator ferrite magnet vernier machine to replace an industrial rare-earth IPM machine", IEEE Trans. Energ. Convers., vol. 34, no. 4, pp. 2062-2069, 2019.
[http://dx.doi.org/10.1109/TEC.2019.2931496]
[29]
S. Jia, K. Yan, D. Liang, R. Qu, J. Liu, and J. He, "A novel DC-biased current dual PM vernier machine", IEEE Trans. Ind. Appl., vol. 57, no. 5, pp. 4595-4605, 2021.
[http://dx.doi.org/10.1109/TIA.2021.3084544]
[30]
X. Zhao, S. Niu, and W. Fu, "Design of a novel parallel-hybrid-excited dual-pm machine based on armature harmonics diversity for electric vehicle propulsion", IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4209-4219, 2019.
[http://dx.doi.org/10.1109/TIE.2018.2863211]
[31]
X. Zhao, S. Niu, X. Zhang, and W. Fu, "A new relieving-DC-saturation hybrid excitation vernier machine for HEV starter generator application", IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6342-6353, 2020.
[http://dx.doi.org/10.1109/TIE.2019.2939966]
[32]
H. Wang, S. Fang, X. Lu, H. Ni, H. Yang, and H. Lin, "Analysis of a new dual-stator vernier machine with hybrid magnet flux-reversal arrangement", IEEE Trans. Appl. Supercond., vol. 29, no. 2, pp. 1-5, 2019.
[http://dx.doi.org/10.1109/TASC.2019.2891832]
[33]
S. Khosrogorji, A.N. Saberi, and J. Faiz, "Speed and force control of a partitioned stator linear wound field vernier machine using mathematical model", XI International Conference on Electrical Power Drive Systems (ICEPDS) 4-7 Oct. 2020, St. Petersburg, Russia, IEEE, , pp. 1-6, .
[http://dx.doi.org/10.1109/ICEPDS47235.2020.9249266]
[34]
J. Ji, Y. Jiang, W. Zhao, Q. Chen, and A. Yang, "Sensor less control of linear vernier permanent-magnet motor based on improved mover flux observer", IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3869-3877, 2020.
[http://dx.doi.org/10.1109/TPEL.2019.2934984]
[35]
Z. Yu, W. Kong, and R. Qu, "Direct torque control strategy for DC-biased vernier reluctance machines capable of zero-sequence current regulation", IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 2024-2033, 2021.
[http://dx.doi.org/10.1109/TIE.2020.2977579]
[36]
W. Zhao, A. Yang, J. Ji, Q. Chen, and J. Zhu, "Modified flux linkage observer for sensorless direct thrust force control of linear vernier permanent magnet motor", IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7800-7811, 2019.
[http://dx.doi.org/10.1109/TPEL.2018.2879411]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy