Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and In vitro Evaluation of Hydrazonomethyl-Quinolin–8–ol and Pyrazol–3–yl-Quinolin–8–ol Derivatives for Antimicrobial and Antimalarial Potential

Author(s): Sanjay Kumar, Purvi Shah, Siddharth K. Tripathi, Shabana I. Khan and Inder Pal Singh*

Volume 18, Issue 9, 2022

Published on: 26 April, 2022

Page: [949 - 969] Pages: 21

DOI: 10.2174/1573406418666220303144929

Price: $65

Abstract

Background: Quinoline is a well-established nucleus displaying various biological activities. Quinolin-8-ol-containing compounds are reported for antimicrobial as well as antimalarial activity. Hydrazone- and pyrazole-containing compounds are also reported for antimicrobial activity. In this work, we have synthesized hydrazonomethyl-quinolin–8–ol and pyrazol–3–yl-quinolin–8–ol derivatives retaining quinolin-8-ol along with hydrazone/pyrazole pharmacophores.

Objective: The objective of this work was to synthesise and evaluate in vitro hydrazonomethylquinolin– 8–ol and pyrazol–3–yl-quinolin–8–ol derivatives for antifungal, antibacterial and antimalarial activity. Methods: Designed and synthesized hydrazonomethyl-quinolin–8–ol and pyrazol–3–yl-quinolin–8– ol derivatives were evaluated for antifungal (against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans), antibacterial (against methicillin resistant Staphylococcus aureus (MRSA), Escherichia Coli, Pseudomonas aeruginosa and Klebsillae pneumoniae) as well as antimalarial (against Plasmodium falciparum D6 and W2 strains) activity.

Results: Hydrazonomethyl-quinolin–8–ol (15.1-15.28) and pyrazol–3–yl-quinolin–8–ol derivatives (16.1-16.21 and 20.1-20.18) were synthesized in good to moderate yield. One-pot synthesis of pyrazol– 3–yl-quinolin–8–ol derivatives (16.1-16.21 and 20.1-20.18) was achieved. Compounds 15.3, 15.6, 15.7, 15.9-15.14, 15.16-15.19, 15.22 and 15.24 were found more potent compared to reference standard fluconazole (IC50 = 3.20 μM) against C. albicans with IC50 value less than 3 μM. Compounds 15.1, 15.2, 15.21 and 15.23 showed almost similar activity to reference standard fluconazole against C. albicans. Compounds 15.1-15.3, 15.9-15.12, 15.14-15.17, and 15.21-15.23 also showed good activity against fluconazole-resistant strain A. fumigatus with IC50 value less than 3 μM. Compounds 15.2-15.4, 15.7, 15.9, 15.17, 15.20 showed good antimalarial activity against P. falciparum D6 as well as P. falciparum W2 with IC50 values of 1.84, 1.83, 1.56, 1.49, 1.45, 1.97, 1.68 μM and 1.86, 1.40, 1.19, 1.71, 1.16, 1.34, 1.61 μM, respectively. 5-Pyrazol–3–yl-quinolin–8–ol derivatives, such as 16.3, 16.5, 16.11, 16.13, 16.19, 16.20, also showed antimalarial activity against P. falciparum D6 and W2 strains with IC50 values of 2.23, 2.16, 2.99, 2.99, 2.73, 2.12 μM and 2.91, 3.60, 4.61, 2.71, 2.31, 2.66 μM, respectively.

Conclusion: Most of the 5-hydrazonomethyl-quinolin–8–ol derivatives showed good antifungal activity against C. albicans, A. fumigatus and C. neoformans. Most of the 5-hydrazonomethylquinolin– 8–ol derivatives were found more potent than reference standard fluconazole. These derivatives may be considered as leads for further development of antifungal agents.

Keywords: Hydrazonomethyl-quinolin–8–ol, Pyrazol–3–yl-quinolin–8–ol, antifungal, antibacterial, antimalarial, Plasmodium falciparum.

Graphical Abstract
[1]
Baquero, F.; Martínez, J.L.F.; F., Lanza V.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary path-ways and trajectories in antibiotic resistance. Clin. Microbiol. Rev., 2021, 34(4), e0005019.
[http://dx.doi.org/10.1128/CMR.00050-19] [PMID: 34190572]
[2]
Andersson, D.I.; Balaban, N.Q.; Baquero, F.; Courvalin, P.; Glaser, P.; Gophna, U.; Kishony, R.; Molin, S.; Tønjum, T. Antibiotic re-sistance: Turning evolutionary principles into clinical reality. FEMS Microbiol. Rev., 2020, 44(2), 171-188.
[http://dx.doi.org/10.1093/femsre/fuaa001] [PMID: 31981358]
[3]
Hendrickson, J.A.; Hu, C.; Aitken, S.L.; Beyda, N. Antifungal resistance: A concerning trend for the present and future. Curr. Infect. Dis. Rep., 2019, 21(12), 47.
[http://dx.doi.org/10.1007/s11908-019-0702-9] [PMID: 31734730]
[4]
Ippolito, M.M.; Moser, K.A.; Kabuya, J.B.B.; Cunningham, C.; Juliano, J.J. Antimalarial drug resistance and implications for the WHO global technical strategy. Curr. Epidemiol. Rep., 2021, 8, 1-17.
[http://dx.doi.org/10.1007/s40471-021-00266-5] [PMID: 33747712]
[5]
Podolsky, S.H. The evolving response to antibiotic resistance (1945-2018). Palgrave Commun., 2018, 4, 1-8.
[http://dx.doi.org/10.1057/s41599-018-0181-x]
[6]
Cheng, M.P.; René, P.; Cheng, A.P.; Lee, T.C. Back to the future: Penicillin-susceptible Staphylococcus aureus. Am. J. Med., 2016, 129(12), 1331-1333.
[http://dx.doi.org/10.1016/j.amjmed.2016.01.048] [PMID: 26924388]
[7]
MacGowan, A.; Macnaughton, E. Antibiotic resistance. Medicine (Baltimore), 2017, 45, 622-628.
[http://dx.doi.org/10.1016/j.mpmed.2017.07.006]
[8]
Knols, B.G.; Farenhorst, M.; Andriessen, R.; Snetselaar, J.; Suer, R.A.; Osinga, A.J.; Knols, J.M.; Deschietere, J.; Ng’habi, K.R.; Lyimo, I.N.; Kessy, S.T.; Mayagaya, V.S.; Sperling, S.; Cordel, M.; Sternberg, E.D.; Hartmann, P.; Mnyone, L.L.; Rose, A.; Thomas, M.B. Eave tubes for malaria control in Africa: An introduction. Malar. J., 2016, 15(1), 404.
[http://dx.doi.org/10.1186/s12936-016-1452-x] [PMID: 27515306]
[9]
Thu, A.M.; Phyo, A.P.; Landier, J.; Parker, D.M.; Nosten, F.H. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J., 2017, 284(16), 2569-2578.
[http://dx.doi.org/10.1111/febs.14127] [PMID: 28580606]
[10]
Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 32, 115973.
[http://dx.doi.org/10.1016/j.bmc.2020.115973] [PMID: 33444846]
[11]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[12]
Teng, P.; Li, C.; Peng, Z.; Anne Marie, V.; Nimmagadda, A.; Su, M.; Li, Y.; Sun, X.; Cai, J. Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorg. Med. Chem., 2018, 26(12), 3573-3579.
[http://dx.doi.org/10.1016/j.bmc.2018.05.031] [PMID: 29858158]
[13]
Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem., 2015, 23(16), 5098-5119.
[http://dx.doi.org/10.1016/j.bmc.2014.12.018] [PMID: 25593097]
[14]
Harry, N.A.; Ujwaldev, S.M.; Anilkumar, G. Recent advances and prospects in the metal-free synthesis of quinolines. Org. Biomol. Chem., 2020, 18(48), 9775-9790.
[http://dx.doi.org/10.1039/D0OB02000A] [PMID: 33289767]
[15]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review. RSC Advances, 2020, 10, 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J]
[16]
Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12, 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[17]
Christensen, S.B. Natural products that changed society. Biomedicines, 2021, 9(5), 472.
[http://dx.doi.org/10.3390/biomedicines9050472] [PMID: 33925870]
[18]
Nair, K.P. Cinchona (Cinchona sp.). Tree Crops; Springer: Cham, 2021, pp. 129-151.
[http://dx.doi.org/10.1007/978-3-030-62140-7_4]
[19]
U. S. Food & Drug Administration 2020. Available from: https://www.accessdata.fda.gov/drugsatfda (Accessed on July 7, 2020).
[20]
U.S. Food & Drug Administration. 2020. Available from: https://www.fda.gov/Drugs/Information (Accessed on July 7, 2020).
[21]
Gupta, R.; Luxami, V.; Paul, K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg. Chem., 2021, 108, 104633.
[http://dx.doi.org/10.1016/j.bioorg.2021.104633] [PMID: 33513476]
[22]
Rbaa, M.; Jabli, S.; Lakhrissi, Y.; Ouhssine, M.; Almalki, F.; Ben Hadda, T.; Messgo-Moumene, S.; Zarrouk, A.; Lakhrissi, B. Synthesis, antibacterial properties and bioinformatics computational analyses of novel 8-hydroxyquinoline derivatives. Heliyon, 2019, 5(10), e02689.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02689] [PMID: 31687516]
[23]
El Faydy, M.; Dahaieh, N.; Ounine, K.; Rastija, V.; Almalki, F.; Jamalis, J.; Abdelkader, Z.; Hadda, T.B.; Lakhrissi, B. Synthesis and anti-microbial activity evaluation of some new 7-substituted quinolin-8-ol derivatives: POM analyzes, docking, and identification of antibacte-rial antibioticphore sites. Chem. Data Collect, 2021, 31, 100593.
[http://dx.doi.org/10.1016/j.cdc.2020.100593]
[24]
Petro-Buelvas, F.A.; Guzmán, C.A.; Villa, H.S.; Robledo, S.M.; Velez, I.D.; Santafe, G.G. Synthesis and antileishmanial activity of styrylquinoline-type compounds: In vitro and in vivo studies. Ceylon J. Sci, 2021, 50, 173-181.
[http://dx.doi.org/10.4038/cjs.v50i2.7880]
[25]
Odingo, J.O.; Early, J.V.; Smith, J.; Johnson, J.; Bailey, M.A.; Files, M.; Guzman, J.; Ollinger, J.; Korkegian, A.; Kumar, A.; Ovechkina, Y.; Parish, T. 8-Hydroxyquinolines are bactericidal against Mycobacterium tuberculosis. Drug Dev. Res., 2019, 80(5), 566-572.
[http://dx.doi.org/10.1002/ddr.21531] [PMID: 30893501]
[26]
Sarojini, P.; Jeyachandran, M.; Vagolusivakrishna, D.S. Synthetic strategy, characterization and antimycobacterium evaluation of 8-hydroxy quinoline derivatives; Int. J. S. Res. Sci. Engg. Tech, 2018, pp. 571-575.
[27]
Pippi, B.; Joaquim, A.R.; Lopes, W.; Machado, G.R.M.; Bergamo, V.Z.; Giuliani, L.M.; Abegg, M.A.; Cruz, L.; Vainstein, M.H.; Fuentefria, A.M.; de Andrade, S.F. 8-Hydroxyquinoline-5-sulfonamides are promising antifungal candidates for the topical treatment of dermatomy-cosis. J. Appl. Microbiol., 2020, 128(4), 1038-1049.
[http://dx.doi.org/10.1111/jam.14545] [PMID: 31816165]
[28]
Kos, J.; Ku, C.F.; Kapustikova, I.; Oravec, M.; Zhang, H.J.; Jampilek, J. 8-Hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus. ChemistrySelect, 2019, 4, 4582-4587.
[http://dx.doi.org/10.1002/slct.201900873]
[29]
Shah, P.; Naik, D.; Jariwala, N.; Bhadane, D.; Kumar, S.; Kulkarni, S.; Bhutani, K.K.; Singh, I.P. Synthesis of C-2 and C-3 substituted quinolines and their evaluation as anti-HIV-1 agents. Bioorg. Chem., 2018, 80, 591-601.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.016] [PMID: 30036815]
[30]
Shah, P.; Abadi, L.F.; Gaikwad, S.; Chaudhari, D.; Kushwah, V.; Jain, S.; Bhutani, K.K.; Kulkarni, S.; Singh, I.P. Synthesis and biological evaluation of 8-hydroxyquinoline-hydrazones for anti-HIV-1 and anticancer potential. ChemistrySelect, 2018, 3, 10727-10731.
[http://dx.doi.org/10.1002/slct.201802283]
[31]
Zhu, L-G.; Wang, Z-F.; Gao, Y.; Qin, Q-P.; Huang, X-L.; Tan, M-X.; Zeng, C-J.; Zou, B-Q. New 5-chloro-8-hydroxyquinoline derivatives organometallic Ru (II)-arene complexes as antitumor agents. Inorg. Chem. Commun., 2019, 108, 107537.
[http://dx.doi.org/10.1016/j.inoche.2019.107537]
[32]
Moran, M.M.; Angel Guio, J.E.; Cano, N.H.; del Carmen Migliore, B.; Izquierdo, R.; Charris, J.; Lopez, S.; Israel, A.; Santiago, A.; Rossi, R. Novel 11, 12H-dihydronaphthalene [1, 2-b] quinoline as atypical antipsychotic. Lett. Drug Des. Discov., 2018, 15, 294-303.
[http://dx.doi.org/10.2174/1570180814666170704144246]
[33]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and biological screening of pyrano [3, 2-c] quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[34]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[35]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[36]
Singh, K.; Kaur, H.; Smith, P.; de Kock, C.; Chibale, K.; Balzarini, J. Quinoline-pyrimidine hybrids: Synthesis, antiplasmodial activity, SAR, and mode of action studies. J. Med. Chem., 2014, 57(2), 435-448.
[http://dx.doi.org/10.1021/jm4014778] [PMID: 24354322]
[37]
Cipurković, A.; Horozić, E.; Maric, S.; Mekic, L.; Junuzovic, H. Metal complexes with 8-hydroxyquinoline: Synthesis and in vitro antimi-crobial activity. Open J. Appl. Sci., 2021, 11, 1.
[http://dx.doi.org/10.4236/ojapps.2021.111001]
[38]
Patel, D.K.; Singh, A. Synthesis, characterization and antimicrobial activity of metal chelates of 5-[4-chloro phenyl (1, 3, 4) thiadiazol-2-ylamino methylene]-8-hydroxy quinoline. J. Chem., 2009, 6, 1017-1022.
[39]
Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther., 2013, 7, 1157-1178.
[http://dx.doi.org/10.2147/DDDT.S49763] [PMID: 24115839]
[40]
Al-Sha’alan, N.H. Antimicrobial activity and spectral, magnetic and thermal studies of some transition metal complexes of a Schiff base hydrazone containing a quinoline moiety. Molecules, 2007, 12(5), 1080-1091.
[http://dx.doi.org/10.3390/12051080] [PMID: 17873842]
[41]
Da Silva, C.C.; Martins, R.M.; Lund, R.G.; Pizzuti, L.; de Pereira, C.M. Recent highlights on the synthesis of pyrazoles with antimicrobial activity. Curr. Bioact. Compd., 2019, 15, 475-506.
[http://dx.doi.org/10.2174/1573407214666180730104941]
[42]
Bansal, A. A Brief review on antimicrobial potential of pyrazoles (From 2010-2018). Mini Rev. Org. Chem., 2020, 17, 197-222.
[http://dx.doi.org/10.2174/1570193X16666190122162920]
[43]
Kumar, S.; Gupta, S.; Abadi, L.F.; Gaikwad, S.; Desai, D.; Bhutani, K.K.; Kulkarni, S.; Singh, I.P. Synthesis and in-vitro anti-HIV-1 evalu-ation of novel pyrazolo[4,3-c]pyridin-4-one derivatives. Eur. J. Med. Chem., 2019, 183, 111714.
[http://dx.doi.org/10.1016/j.ejmech.2019.111714] [PMID: 31557609]
[44]
Kumar, S.; Gupta, S.; Gaikwad, S.; Abadi, L.F.; Bhutani, L.K.K.; Kulkarni, S.; Singh, I.P. Design, synthesis and in vitro evaluation of nov-el anti-HIV 3-pyrazol-3-yl-pyridin-2-one analogs. Med. Chem., 2019, 15(5), 561-570.
[http://dx.doi.org/10.2174/1573406414666181106125539] [PMID: 30398119]
[45]
Browne, A.J.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; Rao, P.; Longbottom, J.; Harriss, E.; Moore, C.E.; Dunachie, S.; Basnyat, B.; Baker, S.; Lopez, A.D.; Day, N.P.J.; Hay, S.I.; Dolecek, C. Drug-resistant enteric fever worldwide, 1990 to 2018: A systematic review and meta-analysis. BMC Med., 2020, 18(1), 1-22.
[http://dx.doi.org/10.1186/s12916-019-1443-1] [PMID: 31898501]
[46]
Daskum, A.M.; Chessed, G.; Qadeer, M.A.; Mustapha, T. Antimalarial chemotherapy, mechanisms of action and resistance to major anti-malarial drugs in clinical use: A review. Microbes Infect. Dis., 2021, 2, 130-142.
[47]
Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial Resistance. JAMA, 2016, 316(11), 1193-1204.
[http://dx.doi.org/10.1001/jama.2016.11764] [PMID: 27654605]
[48]
Hassan, S.Y. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 2013, 18(3), 2683-2711.
[http://dx.doi.org/10.3390/molecules18032683] [PMID: 23449067]
[49]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[50]
Bekhit, A.A.; Saudi, M.N.; Hassan, A.M.M.; Fahmy, S.M.; Ibrahim, T.M.; Ghareeb, D.; El-Seidy, A.M.; Nasralla, S.N.; Bekhit, A.E.A. Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. Eur. J. Med. Chem., 2019, 163, 353-366.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.067] [PMID: 30530172]
[51]
Zhang, L.; Wen, G.; Xiu, Q.; Guo, L.; Deng, J.; Zhong, C. Synthesis and photovoltaic properties of polymeric metal complexes containing 8-hydroxyquinoline as dye sensitizers for dye-sensitized solar cells. J. Coord. Chem., 2012, 65, 1632-1644.
[http://dx.doi.org/10.1080/00958972.2012.677532]
[52]
Furniss, B.S. Vogel’s Textbook of Practical Organic Chemistry; Pearson Education India, 1989.
[53]
Du, F.; Wang, H.; Bao, Y.; Liu, B.; Zheng, H.; Bai, R. Conjugated coordination polymers based on 8-hydroxyquinoline ligands: impact of polyhedral oligomeric silsesquioxanes on solubility and luminescence. J. Mater. Chem., 2011, 21, 10859-10864.
[http://dx.doi.org/10.1039/c1jm11389e]
[54]
Panda, N.; Jena, A.K. Fe-catalyzed one-pot synthesis of 1,3-di- and 1,3,5-trisubstituted pyrazoles from hydrazones and vicinal diols. J. Org. Chem., 2012, 77(20), 9401-9406.
[http://dx.doi.org/10.1021/jo301770k] [PMID: 22998610]
[55]
Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts, 2nd ed.; Approved Standard, 2002. Document M27-A2.
[56]
Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved Standard, 2008. Document M38-A2.
[57]
Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 9th ed.; Approved Standard , 2012. Document M7-A9.
[58]
Makler, M.T.; Hinrichs, D.J. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitem-ia. Am. J. Trop. Med. Hyg., 1993, 48(2), 205-210.
[http://dx.doi.org/10.4269/ajtmh.1993.48.205] [PMID: 8447524]
[59]
Zulfiqar, F.; Khan, S.I.; Ross, S.A.; Ali, Z.; Khan, I.A. Prenylated flavonol glycosides from Epimedium grandiflorum: Cytotoxicity and evaluation against inflammation and metabolic disorder. Phytochem. Lett., 2017, 20, 160-167.
[http://dx.doi.org/10.1016/j.phytol.2017.04.027]
[60]
Gadhwal, S.; Baruah, M.; Sandhu, J.S. Microwave induced synthesis of hydrazones and Wolff-Kishner reduction of carbonyl compounds. Synlett, 1999, 1999, 1573-1574.
[http://dx.doi.org/10.1055/s-1999-2901]
[61]
Tok, F.; Sağlık, B.N.; Özkay, Y.; Ilgın, S.; Kaplancıklı, Z.A.; Koçyiğit-Kaymakçıoğlu, B. Synthesis of new hydrazone derivatives and eval-uation of their monoamine oxidase inhibitory activity. Bioorg. Chem., 2021, 114, 105038.
[http://dx.doi.org/10.1016/j.bioorg.2021.105038] [PMID: 34102520]
[62]
Polshettiwar, V.; Varma, R.S. Polystyrene sulfonic acid catalyzed greener synthesis of hydrazones in aqueous medium using microwaves. Tetrahedron Lett., 2007, 48, 5649-5652.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.038]
[63]
Zhang, M.; Shang, Z-R.; Li, X-T.; Zhang, J-N.; Wang, Y.; Li, K.; Li, Y-Y.; Zhang, Z-H. Simple and efficient approach for synthesis of hydrazones from carbonyl compounds and hydrazides catalyzed by meglumine. Synth. Commun., 2017, 47, 178-187.
[http://dx.doi.org/10.1080/00397911.2016.1258476]
[64]
Hajipour, A.R.; Mohammadpoor-Baltork, I.; Bigdeli, M. A convenient and mild procedure for the synthesis of hydrazones and semicarba-zones from aldehydes or ketones under solvent-free conditions. J. Chem. Res. (S), 1999, 9, 570-571.
[65]
Syed Ameen, S.T.; Vilvanathan, A.; Khader, S.Z.A.; Mahalingam, G. Microwave-assisted green synthesis of β-diketone hydrazone derivatives and evaluation of their antioxidant and antibacterial activities. Curr. Microw. Chem., 2020, 7, 222-229.
[http://dx.doi.org/10.2174/2213335607999200917145217]
[66]
Jabeen, M.; Mehmood, K.; Khan, M.A.; Nasrullah, M.; Maqbool, T.; Jabeen, F.; Afzal, M. Comparative study of microwave assisted and conventional synthesis of furfuraldehyde based hydrazone derivatives and their metal complexes with biological evaluation. Asian J. Chem., 2017, 29, 431-436.
[http://dx.doi.org/10.14233/ajchem.2017.20232]
[67]
Nun, P.; Martin, C.; Martinez, J.; Lamaty, F. Solvent-free synthesis of hydrazones and their subsequent N-alkylation in a Ball-mill. Tetrahedron, 2011, 67, 8187-8194.
[http://dx.doi.org/10.1016/j.tet.2011.07.056]
[68]
Chaur, M.N.; Collado, D.; Lehn, J.M. Configurational and constitutional information storage: multiple dynamics in systems based on pyridyl and acyl hydrazones. Chemistry, 2011, 17(1), 248-258.
[http://dx.doi.org/10.1002/chem.201002308] [PMID: 21207621]
[69]
Su, X.; Aprahamian, I. Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev., 2014, 43(6), 1963-1981.
[http://dx.doi.org/10.1039/c3cs60385g] [PMID: 24429467]
[70]
Romero, E.L.; D’Vries, R.F.; Zuluaga, F.; Chaur, M.N. Multiple dynamics of hydrazone based compounds. J. Braz. Chem. Soc., 2015, 26, 1265-1273.
[71]
Romero, E.L.; Soto-Monsalve, M.; Gutiérrez, G.; Zuluaga, F.; D’Vries, R.F.; Chaur, M.N. Structural, spectroscopic, and theoretical analy-sis of a molecular system based on 2-((2-(4-chlorophenylhydrazone) methyl) quinolone. Rev. Colomb. Quim., 2018, 47, 63-72.
[http://dx.doi.org/10.15446/rev.colomb.quim.v47n2.67115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy