Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

MicroRNAs in Various Body Fluids and their Importance in Forensic Medicine

Author(s): Seong Lin Teoh and Srijit Das*

Volume 22, Issue 18, 2022

Published on: 20 May, 2022

Page: [2332 - 2343] Pages: 12

DOI: 10.2174/1389557522666220303141558

Price: $65

Abstract

MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid, and urine. Additionally, the expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enables the identification of the body fluids. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods used for the identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance in different pathological conditions, as well as their medicolegal importance.

Keywords: microRNA, biomarkers, body fluids identification, diagnostic, forensic medicine, gene expression.

Graphical Abstract
[1]
Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1] [PMID: 30228348]
[2]
de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Åström, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; Carlisle, A.J.; Daub, C.O.; Detmar, M.; Deviatiiarov, R.; Fort, A.; Gebhard, C.; Goldowitz, D.; Guhl, S.; Ha, T.J.; Harshbarger, J.; Hasegawa, A.; Hashi-moto, K.; Herlyn, M.; Heutink, P.; Hitchens, K.J.; Hon, C.C.; Huang, E.; Ishizu, Y.; Kai, C.; Kasukawa, T.; Klinken, P.; Lassmann, T.; Le-cellier, C.H.; Lee, W.; Lizio, M.; Makeev, V.; Mathelier, A.; Medvedeva, Y.A.; Mejhert, N.; Mungall, C.J.; Noma, S.; Ohshima, M.; Okada-Hatakeyama, M.; Persson, H.; Rizzu, P.; Roudnicky, F.; Sætrom, P.; Sato, H.; Severin, J.; Shin, J.W.; Swoboda, R.K.; Tarui, H.; Toyoda, H.; Vitting-Seerup, K.; Winteringham, L.; Yamaguchi, Y.; Yasuzawa, K.; Yoneda, M.; Yumoto, N.; Zabierowski, S.; Zhang, P.G.; Wells, C.A.; Summers, K.M.; Kawaji, H.; Sandelin, A.; Rehli, M.; Hayashizaki, Y.; Carninci, P.; Forrest, A.R.R.; de Hoon, M.J.L. FANTOM Con-sortium. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol., 2017, 35(9), 872-878.
[http://dx.doi.org/10.1038/nbt.3947] [PMID: 28829439]
[3]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[4]
Fareh, M.; Yeom, K.H.; Haagsma, A.C.; Chauhan, S.; Heo, I.; Joo, C. TRBP ensures efficient dicer processing of precursor microRNA in RNA-crowded environments. Nat. Commun., 2016, 7, 13694.
[http://dx.doi.org/10.1038/ncomms13694] [PMID: 27934859]
[5]
Olejniczak, M.; Kotowska-Zimmer, A.; Krzyzosiak, W. Stress-induced changes in miRNA biogenesis and functioning. Cell. Mol. Life Sci., 2018, 75(2), 177-191.
[http://dx.doi.org/10.1007/s00018-017-2591-0] [PMID: 28717872]
[6]
Treiber, T.; Treiber, N.; Plessmann, U.; Harlander, S.; Daiß, J.L.; Eichner, N.; Lehmann, G.; Schall, K.; Urlaub, H.; Meister, G. A compen-dium of RNA-Binding proteins that regulate microrna biogenesis. Mol. Cell, 2017, 66(2), 270-284.e13.
[http://dx.doi.org/10.1016/j.molcel.2017.03.014] [PMID: 28431233]
[7]
Van Meter, E.N.; Onyango, J.A.; Teske, K.A. A review of currently identified small molecule modulators of microRNA function. Eur. J. Med. Chem., 2020, 188, 112008.
[http://dx.doi.org/10.1016/j.ejmech.2019.112008] [PMID: 31931338]
[8]
Chen, J.Q.; Papp, G.; Szodoray, P.; Zeher, M. The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun. Rev., 2016, 15(12), 1171-1180.
[http://dx.doi.org/10.1016/j.autrev.2016.09.003] [PMID: 27639156]
[9]
Preusse, M.; Theis, F.J.; Mueller, N.S. miTALOS v2: Analyzing tissue specific microRNA function. PLoS One, 2016, 11(3), e0151771.
[http://dx.doi.org/10.1371/journal.pone.0151771] [PMID: 26998997]
[10]
Soliman, A.M.; Lin, T.S.; Mahakkanukrauh, P.; Das, S. Role of microRNAs in diagnosis, prognosis and management of multiple myelo-ma. Int. J. Mol. Sci., 2020, 21(20), 7539.
[http://dx.doi.org/10.3390/ijms21207539] [PMID: 33066062]
[11]
Das, S.; Mohamed, I.N.; Teoh, S.L.; Thevaraj, T.; Ku Ahmad Nasir, K.N.; Zawawi, A.; Salim, H.H.; Zhou, D.K. Micro-RNA and the featu-res of metabolic syndrome: A narrative review. Mini Rev. Med. Chem., 2020, 20(7), 626-635.
[http://dx.doi.org/10.2174/1389557520666200122124445] [PMID: 31969099]
[12]
Teoh, S.L.; Das, S. The role of microRNAs in diagnosis, prognosis, metastasis and resistant cases in breast cancer. Curr. Pharm. Des., 2017, 23(12), 1845-1859.
[http://dx.doi.org/10.2174/1381612822666161027120043] [PMID: 28231756]
[13]
Juźwik, C.A.; S Drake, S. Zhang, Y.; Paradis-Isler, N.; Sylvester, A.; Amar-Zifkin, A.; Douglas, C.; Morquette, B.; Moore, C.S.; Fournier, A.E. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog. Neurobiol., 2019, 182, 101664.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101664] [PMID: 31356849]
[14]
Torres, J.L.; Novo-Veleiro, I.; Manzanedo, L.; Alvela-Suárez, L.; Macías, R.; Laso, F.J.; Marcos, M. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J. Gastroenterol., 2018, 24(36), 4104-4118.
[http://dx.doi.org/10.3748/wjg.v24.i36.4104] [PMID: 30271077]
[15]
Putteeraj, M.; Fairuz, Y.M.; Teoh, S.L. MicroRNA dysregulation in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2017, 16(9), 1000-1009.
[PMID: 28782488]
[16]
Coon, J.; Kingsley, K.; Howard, K.M. miR-365 (microRNA): Potential biomarker in oral squamous cell carcinoma exosomes and extrace-llular vesicles. Int. J. Mol. Sci., 2020, 21(15), 5317.
[http://dx.doi.org/10.3390/ijms21155317] [PMID: 32727045]
[17]
Ma, Y. The challenge of microRNA as a biomarker of epilepsy. Curr. Neuropharmacol., 2018, 16(1), 37-42.
[PMID: 28676013]
[18]
Anthiya, S.; Griveau, A.; Loussouarn, C.; Baril, P.; Garnett, M.; Issartel, J.P.; Garcion, E. MicroRNA-based drugs for brain tumors. Trends Cancer, 2018, 4(3), 222-238.
[http://dx.doi.org/10.1016/j.trecan.2017.12.008] [PMID: 29506672]
[19]
Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[20]
Hoy, S.M. Patisiran: First global approval. Drugs, 2018, 78(15), 1625-1631.
[http://dx.doi.org/10.1007/s40265-018-0983-6] [PMID: 30251172]
[21]
Lagos-Quintana, M.; Rauhut, R.; Yalcin, A.; Meyer, J.; Lendeckel, W.; Tuschl, T. Identification of tissue-specific microRNAs from mouse. Curr. Biol., 2002, 12(9), 735-739.
[http://dx.doi.org/10.1016/S0960-9822(02)00809-6] [PMID: 12007417]
[22]
Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027), 769-773.
[http://dx.doi.org/10.1038/nature03315] [PMID: 15685193]
[23]
Endzeliņš, E.; Berger, A.; Melne, V.; Bajo-Santos, C.; Soboļevska, K.; Ābols, A.; Rodriguez, M.; Šantare, D.; Rudņickiha, A.; Lietuvietis, V.; Llorente, A.; Linē, A. Detection of circulating miRNAs: Comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer, 2017, 17(1), 730.
[http://dx.doi.org/10.1186/s12885-017-3737-z] [PMID: 29121858]
[24]
Armand-Labit, V.; Pradines, A. Circulating cell-free microRNAs as clinical cancer biomarkers. Biomol. Concepts, 2017, 8(2), 61-81.
[http://dx.doi.org/10.1515/bmc-2017-0002] [PMID: 28448269]
[25]
Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 5003-5008.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[26]
Chevillet, J.R.; Kang, Q.; Ruf, I.K.; Briggs, H.A.; Vojtech, L.N.; Hughes, S.M.; Cheng, H.H.; Arroyo, J.D.; Meredith, E.K.; Gallichotte, E.N.; Pogosova-Agadjanyan, E.L.; Morrissey, C.; Stirewalt, D.L.; Hladik, F.; Yu, E.Y.; Higano, C.S.; Tewari, M. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl. Acad. Sci. USA, 2014, 111(41), 14888-14893.
[http://dx.doi.org/10.1073/pnas.1408301111] [PMID: 25267620]
[27]
Brown, R.A.M.; Epis, M.R.; Horsham, J.L.; Kabir, T.D.; Richardson, K.L.; Leedman, P.J. Total RNA extraction from tissues for microR-NA and target gene expression analysis: Not all kits are created equal. BMC Biotechnol., 2018, 18(1), 16.
[http://dx.doi.org/10.1186/s12896-018-0421-6] [PMID: 29548320]
[28]
Trakunram, K.; Champoochana, N.; Chaniad, P.; Thongsuksai, P.; Raungrut, P. MicroRNA isolation by Trizol-based method and its stabi-lity in stored serum and cDNA derivatives. Asian Pac. J. Cancer Prev., 2019, 20(6), 1641-1647.
[http://dx.doi.org/10.31557/APJCP.2019.20.6.1641] [PMID: 31244282]
[29]
Wang, Z.; Zhang, J.; Luo, H.; Ye, Y.; Yan, J.; Hou, Y. Screening and confirmation of microRNA markers for forensic body fluid identifi-cation. Forensic Sci. Int. Genet., 2013, 7(1), 116-123.
[http://dx.doi.org/10.1016/j.fsigen.2012.07.006] [PMID: 22909992]
[30]
Silva, S.S.; Lopes, C.; Teixeira, A.L.; Carneiro de Sousa, M.J.; Medeiros, R. Forensic miRNA: Potential biomarker for body fluids? Forensic Sci. Int. Genet., 2015, 14, 1-10.
[http://dx.doi.org/10.1016/j.fsigen.2014.09.002] [PMID: 25280377]
[31]
Hanson, E.K.; Lubenow, H.; Ballantyne, J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem., 2009, 387(2), 303-314.
[http://dx.doi.org/10.1016/j.ab.2009.01.037] [PMID: 19454234]
[32]
Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kääb, S.; Wakili, R.; Jespersen, T.; Tfelt-Hansen, J. Stability of circulating blood-based microRNAs - Pre-analytic methodological considerations. PLoS One, 2017, 12(2), e0167969.
[http://dx.doi.org/10.1371/journal.pone.0167969] [PMID: 28151938]
[33]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[34]
Marzi, M.J.; Ghini, F.; Cerruti, B.; de Pretis, S.; Bonetti, P.; Giacomelli, C.; Gorski, M.M.; Kress, T.; Pelizzola, M.; Muller, H.; Amati, B.; Nicassio, F. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res., 2016, 26(4), 554-565.
[http://dx.doi.org/10.1101/gr.198788.115] [PMID: 26821571]
[35]
Ferri, G.; Bini, C.; Ceccardi, S.; Pelotti, S. Successful identification of two years old menstrual bloodstain by using MMP-11 shorter ampli-cons. J. Forensic Sci., 2004, 49(6), 1387.
[PMID: 15568728]
[36]
Zhang, X.; Ladd, A.; Dragoescu, E.; Budd, W.T.; Ware, J.L.; Zehner, Z.E. MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin. Exp. Metastasis, 2009, 26(8), 965-979.
[http://dx.doi.org/10.1007/s10585-009-9287-2] [PMID: 19771525]
[37]
Kakimoto, Y.; Tanaka, M.; Kamiguchi, H.; Ochiai, E.; Osawa, M. MicroRNA stability in FFPE tissue samples: Dependence on GC content. PLoS One, 2016, 11(9), e0163125.
[http://dx.doi.org/10.1371/journal.pone.0163125] [PMID: 27649415]
[38]
Kappel, A.; Keller, A. miRNA assays in the clinical laboratory: Workflow, detection technologies and automation aspects. Clin. Chem. Lab. Med., 2017, 55(5), 636-647.
[http://dx.doi.org/10.1515/cclm-2016-0467] [PMID: 27987355]
[39]
Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem., 2010, 56(11), 1733-1741.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[40]
Camerlingo, C.; Lisitskiy, M.; Lepore, M.; Portaccio, M.; Montorio, D.; Prete, S.D.; Cennamo, G. Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy. Sensors (Basel), 2019, 19(5), 1177.
[http://dx.doi.org/10.3390/s19051177] [PMID: 30866575]
[41]
Aparna, R.; Shanti Iyer, R. Tears and eyewear in forensic investigation - A review. Forensic Sci. Int., 2020, 306, 110055.
[http://dx.doi.org/10.1016/j.forsciint.2019.110055] [PMID: 31785512]
[42]
Yao, Y.N.; Di, D.; Yuan, Z.C.; Wu, L.; Hu, B. Schirmer paper noninvasive microsampling for direct mass spectrometry analysis of human tears. Anal. Chem., 2020, 92(9), 6207-6212.
[http://dx.doi.org/10.1021/acs.analchem.9b05078] [PMID: 32250596]
[43]
Kim, Y.J.; Yeon, Y.; Lee, W.J.; Shin, Y.U.; Cho, H.; Sung, Y.K.; Kim, D.R.; Lim, H.W.; Kang, M.H. Comparison of microRNA expression in tears of normal subjects and Sjogren syndrome patients. Invest. Ophthalmol. Vis. Sci., 2019, 60(14), 4889-4895.
[http://dx.doi.org/10.1167/iovs.19-27062] [PMID: 31752018]
[44]
Inubushi, S.; Kawaguchi, H.; Mizumoto, S.; Kunihisa, T.; Baba, M.; Kitayama, Y.; Takeuchi, T.; Hoffman, R.M.; Tanino, H.; Sasaki, R. Oncogenic miRNAs identified in tear exosomes from metastatic breast cancer patients. Anticancer Res., 2020, 40(6), 3091-3096.
[http://dx.doi.org/10.21873/anticanres.14290] [PMID: 32487603]
[45]
Kenny, A.; Jiménez-Mateos, E.M.; Zea-Sevilla, M.A.; Rábano, A.; Gili-Manzanaro, P.; Prehn, J.H.M.; Henshall, D.C.; Ávila, J.; Engel, T.; Hernández, F. Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer’s disease. Sci. Rep., 2019, 9(1), 15437.
[http://dx.doi.org/10.1038/s41598-019-51837-y] [PMID: 31659197]
[46]
Chen, J.H.; Inamori-Kawamoto, O.; Michiue, T.; Ikeda, S.; Ishikawa, T.; Maeda, H. Cardiac biomarkers in blood, and pericardial and cere-brospinal fluids of forensic autopsy cases: A reassessment with special regard to postmortem interval. Leg. Med. (Tokyo), 2015, 17(5), 343-350.
[http://dx.doi.org/10.1016/j.legalmed.2015.03.007] [PMID: 26052007]
[47]
Swain, R.; Kumar, A.; Sahoo, J.; Lakshmy, R.; Gupta, S.K.; Bhardwaj, D.N.; Pandey, R.M. Estimation of post-mortem interval: A compa-rison between cerebrospinal fluid and vitreous humour chemistry. J. Forensic Leg. Med., 2015, 36, 144-148.
[http://dx.doi.org/10.1016/j.jflm.2015.09.017] [PMID: 26454503]
[48]
Tominaga, M.; Michiue, T.; Ishikawa, T.; Inamori-Kawamoto, O.; Oritani, S.; Maeda, H. Evaluation of postmortem drug concentrations in cerebrospinal fluid compared with blood and pericardial fluid. Forensic Sci. Int., 2015, 254, 118-125.
[http://dx.doi.org/10.1016/j.forsciint.2015.07.005] [PMID: 26218406]
[49]
Mirzaei, H. Stroke in women: Risk factors and clinical biomarkers. J. Cell. Biochem., 2017, 118(12), 4191-4202.
[http://dx.doi.org/10.1002/jcb.26130] [PMID: 28498508]
[50]
Yagi, Y.; Ohkubo, T.; Kawaji, H.; Machida, A.; Miyata, H.; Goda, S.; Roy, S.; Hayashizaki, Y.; Suzuki, H.; Yokota, T. Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci. Lett., 2017, 636, 48-57.
[http://dx.doi.org/10.1016/j.neulet.2016.10.042] [PMID: 27780738]
[51]
Akers, J.C.; Hua, W.; Li, H.; Ramakrishnan, V.; Yang, Z.; Quan, K.; Zhu, W.; Li, J.; Figueroa, J.; Hirshman, B.R.; Miller, B.; Piccioni, D.; Ringel, F.; Komotar, R.; Messer, K.; Galasko, D.R.; Hochberg, F.; Mao, Y.; Carter, B.S.; Chen, C.C. A cerebrospinal fluid microRNA signa-ture as biomarker for glioblastoma. Oncotarget, 2017, 8(40), 68769-68779.
[http://dx.doi.org/10.18632/oncotarget.18332] [PMID: 28978155]
[52]
Müller, M.; Jäkel, L.; Bruinsma, I.B.; Claassen, J.A.; Kuiperij, H.B.; Verbeek, M.M. MicroRNA-29a is a candidate biomarker for Alzhei-mer’s disease in cell-free cerebrospinal fluid. Mol. Neurobiol., 2016, 53(5), 2894-2899.
[http://dx.doi.org/10.1007/s12035-015-9156-8] [PMID: 25895659]
[53]
Wan, Y.; Liu, Y.; Wang, X.; Wu, J.; Liu, K.; Zhou, J.; Liu, L.; Zhang, C. Identification of differential microRNAs in cerebrospinal fluid and serum of patients with major depressive disorder. PLoS One, 2015, 10(3), e0121975.
[http://dx.doi.org/10.1371/journal.pone.0121975] [PMID: 25763923]
[54]
Meyer, S.; Temme, C.; Wahle, E. Messenger RNA turnover in eukaryotes: Pathways and enzymes. Crit. Rev. Biochem. Mol. Biol., 2004, 39(4), 197-216.
[http://dx.doi.org/10.1080/10409230490513991] [PMID: 15596551]
[55]
Brewer, G. Messenger RNA decay during aging and development. Ageing Res. Rev., 2002, 1(4), 607-625.
[http://dx.doi.org/10.1016/S1568-1637(02)00023-5] [PMID: 12208236]
[56]
El-Mogy, M.; Lam, B.; Haj-Ahmad, T.A.; McGowan, S.; Yu, D.; Nosal, L.; Rghei, N.; Roberts, P.; Haj-Ahmad, Y. Diversity and signature of small RNA in different bodily fluids using next generation sequencing. BMC Genomics, 2018, 19(1), 408.
[http://dx.doi.org/10.1186/s12864-018-4785-8] [PMID: 29843592]
[57]
Fang, C.; Zhao, J.; Li, J.; Qian, J.; Liu, X.; Sun, Q.; Liu, W.; Tian, Y.; Ji, A.; Wu, H.; Yan, J. Massively parallel sequencing of microRNA in bloodstains and evaluation of environmental influences on miRNA candidates using realtime polymerase chain reaction. Forensic Sci. Int. Genet., 2019, 38, 32-38.
[http://dx.doi.org/10.1016/j.fsigen.2018.10.001] [PMID: 30321749]
[58]
Zhao, C.; Zhao, M.; Zhu, Y.; Zhang, L.; Zheng, Z.; Wang, Q.; Li, Y.; Zhang, P.; Zhu, S.; Ding, S.; Li, J. The persistence and stability of miRNA in bloodstained samples under different environmental conditions. Forensic Sci. Int., 2021, 318, 110594.
[http://dx.doi.org/10.1016/j.forsciint.2020.110594] [PMID: 33276201]
[59]
O., Leary K.R.; Glynn, C.L. Investigating the isolation and amplification of microRNAs for forensic body fluid identification. MicroRNA, 2018, 7(3), 187-194.
[http://dx.doi.org/10.2174/2211536607666180430153821] [PMID: 29714155]
[60]
Li, Z.; Bai, P.; Peng, D.; Wang, H.; Guo, Y.; Jiang, Y.; He, W.; Tian, H.; Yang, Y.; Huang, Y.; Long, B.; Liang, W.; Zhang, L. Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood. Forensic Sci. Int. Genet., 2017, 30, 24-33.
[http://dx.doi.org/10.1016/j.fsigen.2017.05.012] [PMID: 28605652]
[61]
Cheng, G. Circulating miRNAs: Roles in cancer diagnosis, prognosis and therapy. Adv. Drug Deliv. Rev., 2015, 81, 75-93.
[http://dx.doi.org/10.1016/j.addr.2014.09.001] [PMID: 25220354]
[62]
Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K.; Egawa, S.; Chi-karaishi, T.; Fujimoto, H.; Ochiya, T. Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci., 2019, 110(1), 408-419.
[http://dx.doi.org/10.1111/cas.13856] [PMID: 30382619]
[63]
Zhang, L.; Xu, Y.; Jin, X.; Wang, Z.; Wu, Y.; Zhao, D.; Chen, G.; Li, D.; Wang, X.; Cao, H.; Xie, Y.; Liang, Z. A circulating miRNA signa-ture as a diagnostic biomarker for non-invasive early detection of breast cancer. Breast Cancer Res. Treat., 2015, 154(2), 423-434.
[http://dx.doi.org/10.1007/s10549-015-3591-0] [PMID: 26476723]
[64]
Sulaiman, S.A.; Ainaa Muhsin, N.I.; Rasyadan Arshad, A. Differential expression of circulating miRNAs in Parkinson’s disease patients: Potential early biomarker? Neurol. Asia, 2020, 25(3), 319-329.
[65]
Park, J.L.; Park, S.M.; Kwon, O.H.; Lee, H.C.; Kim, J.Y.; Seok, H.H.; Lee, W.S.; Lee, S.H.; Kim, Y.S.; Woo, K.M.; Kim, S.Y. Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification. Electrophoresis, 2014, 35(21-22), 3062-3068.
[http://dx.doi.org/10.1002/elps.201400075] [PMID: 24915788]
[66]
Di Pietro, V.; Porto, E.; Ragusa, M.; Barbagallo, C.; Davies, D.; Forcione, M.; Logan, A.; Di Pietro, C.; Purrello, M.; Grey, M.; Hammond, D.; Sawlani, V.; Barbey, A.K.; Belli, A. Salivary microRNAs: Diagnostic markers of mild traumatic brain injury in contact-sport. Front. Mol. Neurosci., 2018, 11, 290.
[http://dx.doi.org/10.3389/fnmol.2018.00290] [PMID: 30177873]
[67]
Al-Rawi, N.H.; Al-Marzooq, F.; Al-Nuaimi, A.S.; Hachim, M.Y.; Hamoudi, R. Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLoS One, 2020, 15(8), e0237004.
[http://dx.doi.org/10.1371/journal.pone.0237004] [PMID: 32756589]
[68]
Min, N.; Sakthi Vale, P.D.; Wong, A.A.; Tan, N.W.H.; Chong, C.Y.; Chen, C.J.; Wang, R.Y.L.; Chu, J.J.H. Circulating salivary miRNA hsa-miR-221 as clinically validated diagnostic marker for hand, foot, and mouth disease in pediatric patients. Ebio Med., 2018, 31, 299-306.
[http://dx.doi.org/10.1016/j.ebiom.2018.05.006] [PMID: 29754884]
[69]
Zapata, F.; Ortega-Ojeda, F.E.; García-Ruiz, C. Revealing the location of semen, vaginal fluid and urine in stained evidence through near infrared chemical imaging. Talanta, 2017, 166, 292-299.
[http://dx.doi.org/10.1016/j.talanta.2017.01.086] [PMID: 28213237]
[70]
Wang, Z.; Zhao, X.; Hou, Y. Exploring of microRNA markers for semen stains using massively parallel sequencing. Forensic Sci. Int. Genet., 2017, 6, e107-e109.
[http://dx.doi.org/10.1016/j.fsigss.2017.09.039]
[71]
Zubakov, D.; Boersma, A.W.; Choi, Y.; van Kuijk, P.F.; Wiemer, E.A.; Kayser, M. MicroRNA markers for forensic body fluid identifica-tion obtained from microarray screening and quantitative RT-PCR confirmation. Int. J. Legal Med., 2010, 124(3), 217-226.
[http://dx.doi.org/10.1007/s00414-009-0402-3] [PMID: 20145944]
[72]
Tian, H.; Lv, M.; Li, Z.; Peng, D.; Tan, Y.; Wang, H.; Li, Q.; Li, F.; Liang, W. Semen-specific miRNAs: Suitable for the distinction of infer-tile semen in the body fluid identification? Forensic Sci. Int. Genet., 2018, 33, 161-167.
[http://dx.doi.org/10.1016/j.fsigen.2017.12.010] [PMID: 29304462]
[73]
Mayes, C.; Houston, R.; Seashols-Williams, S.; LaRue, B.; Hughes-Stamm, S. The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Leg. Med. (Tokyo), 2019, 38, 45-50.
[http://dx.doi.org/10.1016/j.legalmed.2019.03.007] [PMID: 30959396]
[74]
Sakurada, K.; Watanabe, K.; Akutsu, T. Current methods for body fluid identification related to sexual crime: Focusing on saliva, semen, and vaginal fluid. Diagnostics (Basel), 2020, 10(9), 693.
[http://dx.doi.org/10.3390/diagnostics10090693] [PMID: 32937964]
[75]
Zegels, G.; Van Raemdonck, G.A.; Coen, E.P.; Tjalma, W.A.; Van Ostade, X.W. Comprehensive proteomic analysis of human cervical-vaginal fluid using colposcopy samples. Proteome Sci., 2009, 7, 17.
[http://dx.doi.org/10.1186/1477-5956-7-17] [PMID: 19374746]
[76]
Giampaoli, S.; DeVittori, E.; Valeriani, F.; Berti, A.; Romano Spica, V. Informativeness of NGS analysis for vaginal fluid identification. J. Forensic Sci., 2017, 62(1), 192-196.
[http://dx.doi.org/10.1111/1556-4029.13222] [PMID: 27907225]
[77]
Fujimoto, S.; Manabe, S.; Morimoto, C.; Ozeki, M.; Hamano, Y.; Hirai, E.; Kotani, H.; Tamaki, K. Distinct spectrum of microRNA expres-sion in forensically relevant body fluids and probabilistic discriminant approach. Sci. Rep., 2019, 9(1), 14332.
[http://dx.doi.org/10.1038/s41598-019-50796-8] [PMID: 31586097]
[78]
Virkler, K.; Lednev, I.K. Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci. Int., 2009, 188(1-3), 1-17.
[http://dx.doi.org/10.1016/j.forsciint.2009.02.013] [PMID: 19328638]
[79]
Hager, E.; Farber, C.; Kurouski, D. Forensic identification of urine on cotton and polyester fabric with a hand-held Raman spectrometer. Forensic Chem., 2018, 9, 44-49.
[http://dx.doi.org/10.1016/j.forc.2018.05.001]
[80]
Eissa, S.; Matboli, M.; Bekhet, M.M. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for dia-betic nephropathy identified by bioinformatics analysis. Biomed. Pharmacother., 2016, 83, 92-99.
[http://dx.doi.org/10.1016/j.biopha.2016.06.018] [PMID: 27470555]
[81]
Solé, C.; Moliné, T.; Vidal, M.; Ordi-Ros, J.; Cortés-Hernández, J. An exosomal urinary miRNA signature for early diagnosis of renal fibrosis in lupus nephritis. Cells, 2019, 8(8), 773.
[http://dx.doi.org/10.3390/cells8080773] [PMID: 31349698]
[82]
Takamura, A.; Watanabe, K.; Akutsu, T.; Ozawa, T. Soft and robust identification of body fluid using fourier transform infrared spectros-copy and chemometric strategies for forensic analysis. Sci. Rep., 2018, 8(1), 8459.
[http://dx.doi.org/10.1038/s41598-018-26873-9] [PMID: 29855535]
[83]
Orphanou, C.M.; Walton-Williams, L.; Mountain, H.; Cassella, J. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci. Int., 2015, 252, e10-e16.
[http://dx.doi.org/10.1016/j.forsciint.2015.04.020] [PMID: 25944716]
[84]
Layne, T.R.; Green, R.A.; Lewis, C.A.; Nogales, F.; Dawson Cruz, T.C.; Zehner, Z.E.; Seashols-Williams, S.J. microRNA detection in blood, urine, semen, and saliva stains after compromising treatments. J. Forensic Sci., 2019, 64(6), 1831-1837.
[http://dx.doi.org/10.1111/1556-4029.14113] [PMID: 31184791]
[85]
Sirker, M.; Fimmers, R.; Schneider, P.M.; Gomes, I. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Sci. Int. Genet., 2017, 27, 41-49.
[http://dx.doi.org/10.1016/j.fsigen.2016.11.012] [PMID: 27940410]
[86]
Sauer, E.; Reinke, A.K.; Courts, C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci. Int. Genet., 2016, 22, 89-99.
[http://dx.doi.org/10.1016/j.fsigen.2016.01.018] [PMID: 26878708]
[87]
Luo, X.Y.; Li, Z.L.; Peng, D.; Wang, L.; Zhang, L.; Liang, W.B. MicroRNA markers for forensic body fluid identification obtained from miRCURY™ LNA array. Forensic Sci. Int. Genet., 2015, 5, e630-e632.
[http://dx.doi.org/10.1016/j.fsigss.2015.10.006]
[88]
Mayes, C.; Seashols-Williams, S.; Hughes-Stamm, S. A capillary electrophoresis method for identifying forensically relevant body fluids using miRNAs. Leg. Med. (Tokyo), 2018, 30, 1-4.
[http://dx.doi.org/10.1016/j.legalmed.2017.10.013] [PMID: 29125963]
[89]
Li, W.C.; Ma, K.J.; Lv, Y.H.; Zhang, P.; Pan, H.; Zhang, H.; Wang, H.J.; Ma, D.; Chen, L. Postmortem interval determination using 18S-rRNA and microRNA. Sci. Justice, 2014, 54(4), 307-310.
[http://dx.doi.org/10.1016/j.scijus.2014.03.001] [PMID: 25002049]
[90]
Lv, Y.H.; Ma, J.L.; Pan, H.; Zhang, H.; Li, W.C.; Xue, A.M.; Wang, H.J.; Ma, K.J.; Chen, L. RNA degradation as described by a mathema-tical model for postmortem interval determination. J. Forensic Leg. Med., 2016, 44, 43-52.
[http://dx.doi.org/10.1016/j.jflm.2016.08.015] [PMID: 27598868]
[91]
Tozzo, P.; Scrivano, S.; Sanavio, M.; Caenazzo, L. The role of DNA degradation in the estimation of post-mortem interval: A systematic review of the current literature. Int. J. Mol. Sci., 2020, 21(10), 3540.
[http://dx.doi.org/10.3390/ijms21103540] [PMID: 32429539]
[92]
Maiese, A.; Scatena, A.; Costantino, A.; Di Paolo, M.; La Russa, R.; Turillazzi, E.; Frati, P.; Fineschi, V. MicroRNAs as useful tools to estimate time since death. A systematic review of current literature. Diagnostics (Basel), 2021, 11(1), 64.
[http://dx.doi.org/10.3390/diagnostics11010064] [PMID: 33401603]
[93]
Tu, C.; Du, T.; Ye, X.; Shao, C.; Xie, J.; Shen, Y. Using miRNAs and circRNAs to estimate PMI in advanced stage. Leg. Med. (Tokyo), 2019, 38, 51-57.
[http://dx.doi.org/10.1016/j.legalmed.2019.04.002] [PMID: 30986695]
[94]
Tu, C.; Du, T.; Shao, C.; Liu, Z.; Li, L.; Shen, Y. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circR-NAs as reference genes for the estimation of PMI. Forensic Sci. Med. Pathol., 2018, 14(2), 194-201.
[http://dx.doi.org/10.1007/s12024-018-9973-y] [PMID: 29691731]
[95]
Martínez-Rivera, V.; Cárdenas-Monroy, C.A.; Millan-Catalan, O.; González-Corona, J.; Huerta-Pacheco, N.S.; Martínez-Gutiérrez, A.; Villavicencio-Queijeiro, A.; Pedraza-Lara, C.; Hidalgo-Miranda, A.; Bravo-Gómez, M.E.; Pérez-Plasencia, C.; Guardado-Estrada, M. Dysregulation of miR-381-3p and miR-23b-3p in skeletal muscle could be a possible estimator of early post-mortem interval in rats. PeerJ, 2021, 9, e11102.
[http://dx.doi.org/10.7717/peerj.11102] [PMID: 33986977]
[96]
Odriozola, A.; Riancho, J.A.; de la Vega, R.; Agudo, G.; García-Blanco, A.; de Cos, E.; Fernández, F.; Sañudo, C.; Zarrabeitia, M.T. miR-NA analysis in vitreous humor to determine the time of death: A proof-of-concept pilot study. Int. J. Legal Med., 2013, 127(3), 573-578.
[http://dx.doi.org/10.1007/s00414-012-0811-6] [PMID: 23254460]
[97]
Lv, Y.H.; Ma, J.L.; Pan, H.; Zeng, Y.; Tao, L.; Zhang, H.; Li, W.C.; Ma, K.J.; Chen, L. Estimation of the human postmortem interval using an established rat mathematical model and multi-RNA markers. Forensic Sci. Med. Pathol., 2017, 13(1), 20-27.
[http://dx.doi.org/10.1007/s12024-016-9827-4] [PMID: 28032211]
[98]
Na, J.Y. Estimation of the post-mortem interval using microRNA in the bones. J. Forensic Leg. Med., 2020, 75, 102049.
[http://dx.doi.org/10.1016/j.jflm.2020.102049] [PMID: 32861958]
[99]
Montanari, E.; Giorgetti, R.; Busardò, F.P.; Giorgetti, A.; Tagliabracci, A.; Alessandrini, F. Suitability of miRNA assessment in postmortem interval estimation. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(4), 1774-1787.
[PMID: 33660786]
[100]
Martins, S.S.; Sampson, L.; Cerdá, M.; Galea, S. Worldwide prevalence and trends in unintentional drug overdose: A systematic review of the literature. Am. J. Public Health, 2015, 105(11), e29-e49.
[http://dx.doi.org/10.2105/AJPH.2015.302843] [PMID: 26451760]
[101]
Lin, S.Y.; Lee, H.H.; Lee, J.F.; Chen, B.H. Urine specimen validity test for drug abuse testing in workplace and court settings. J. Food Drug Anal., 2018, 26(1), 380-384.
[http://dx.doi.org/10.1016/j.jfda.2017.01.001] [PMID: 29389577]
[102]
Solimini, R.; Minutillo, A.; Kyriakou, C.; Pichini, S.; Pacifici, R.; Busardo, F.P. Nails in forensic toxicology: An update. Curr. Pharm. Des., 2017, 23(36), 5468-5479.
[PMID: 28677498]
[103]
Zhou, Y.; Sun, L.; Wang, X.; Zhou, L.; Li, J.; Liu, M.; Wang, F.; Peng, J.; Gui, X.; Zhao, H.; Reichenbach, N.; Zhou, D.; Ho, W.Z. Heroin use promotes HCV infection and dysregulates HCV-related circulating microRNAs. J. Neuroimmune Pharmacol., 2015, 10(1), 102-110.
[http://dx.doi.org/10.1007/s11481-014-9577-6] [PMID: 25572448]
[104]
Gu, W.J.; Zhang, C.; Zhong, Y.; Luo, J.; Zhang, C.Y.; Zhang, C.; Wang, C. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder. Biomed. Pharmacother., 2020, 125, 109918.
[http://dx.doi.org/10.1016/j.biopha.2020.109918] [PMID: 32036213]
[105]
Zhao, Y.; Zhang, K.; Jiang, H.; Du, J.; Na, Z.; Hao, W.; Yu, S.; Zhao, M. Decreased expression of plasma microRNA in patients with met-hamphetamine (MA) use disorder. J. Neuroimmune Pharmacol., 2016, 11(3), 542-548.
[http://dx.doi.org/10.1007/s11481-016-9671-z] [PMID: 27108111]
[106]
Sun, Q.; Zhao, Y.; Zhang, K.; Su, H.; Chen, T.; Jiang, H.; Du, J.; Zhong, N.; Yu, S.; Zhao, M. An association study between methamphe-tamine use disorder with psychosis and polymorphisms in MiRNA. Neurosci. Lett., 2020, 717, 134725.
[http://dx.doi.org/10.1016/j.neulet.2019.134725] [PMID: 31881254]
[107]
Leuenberger, N.; Jan, N.; Pradervand, S.; Robinson, N.; Saugy, M. Circulating microRNAs as long-term biomarkers for the detection of erythropoiesis-stimulating agent abuse. Drug Test. Anal., 2011, 3(11-12), 771-776.
[http://dx.doi.org/10.1002/dta.370] [PMID: 22113880]
[108]
Kelly, B.N.; Haverstick, D.M.; Lee, J.K.; Thorner, M.O.; Vance, M.L.; Xin, W.; Bruns, D.E. Circulating microRNA as a biomarker of hu-man growth hormone administration to patients. Drug Test. Anal., 2014, 6(3), 234-238.
[http://dx.doi.org/10.1002/dta.1469] [PMID: 23495241]
[109]
Salamin, O.; Jaggi, L.; Baume, N.; Robinson, N.; Saugy, M.; Leuenberger, N. Circulating microRNA-122 as potential biomarker for detec-tion of testosterone abuse. PLoS One, 2016, 11(5), e0155248.
[http://dx.doi.org/10.1371/journal.pone.0155248] [PMID: 27171140]
[110]
Ramachandran, A.; Jaeschke, H. Acetaminophen toxicity: Novel insights into mechanisms and future perspectives. Gene Expr., 2018, 18(1), 19-30.
[http://dx.doi.org/10.3727/105221617X15084371374138] [PMID: 29054140]
[111]
Ward, J.; Kanchagar, C.; Veksler-Lublinsky, I.; Lee, R.C.; McGill, M.R.; Jaeschke, H.; Curry, S.C.; Ambros, V.R. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc. Natl. Acad. Sci. USA, 2014, 111(33), 12169-12174.
[http://dx.doi.org/10.1073/pnas.1412608111] [PMID: 25092309]
[112]
Vliegenthart, A.D.; Shaffer, J.M.; Clarke, J.I.; Peeters, L.E.; Caporali, A.; Bateman, D.N.; Wood, D.M.; Dargan, P.I.; Craig, D.G.; Moore, J.K.; Thompson, A.I.; Henderson, N.C.; Webb, D.J.; Sharkey, J.; Antoine, D.J.; Park, B.K.; Bailey, M.A.; Lader, E.; Simpson, K.J.; Dear, J.W. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney in-jury. Sci. Rep., 2015, 5, 15501.
[http://dx.doi.org/10.1038/srep15501] [PMID: 26489516]
[113]
Yang, X.; Salminen, W.F.; Shi, Q.; Greenhaw, J.; Gill, P.S.; Bhattacharyya, S.; Beger, R.D.; Mendrick, D.L.; Mattes, W.B.; James, L.P. Po-tential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children. Toxicol. Appl. Pharmacol., 2015, 284(2), 180-187.
[http://dx.doi.org/10.1016/j.taap.2015.02.013] [PMID: 25708609]
[114]
Rocchi, A.; Chiti, E.; Maiese, A.; Turillazzi, E.; Spinetti, I. MicroRNAs: An update of applications in forensic science. Diagnostics (Basel), 2020, 11(1), 32.
[http://dx.doi.org/10.3390/diagnostics11010032] [PMID: 33375374]
[115]
Kloten, V.; Neumann, M.H.D.; Di Pasquale, F.; Sprenger-Haussels, M.; Shaffer, J.M.; Schlumpberger, M.; Herdean, A.; Betsou, F.; Am-merlaan, W.; Af Hällström, T.; Serkkola, E.; Forsman, T.; Lianidou, E.; Sjöback, R.; Kubista, M.; Bender, S.; Lampignano, R.; Krahn, T.; Schlange, T. CANCER-ID consortium. Multicenter evaluation of circulating plasma microrna extraction technologies for the development of clinically feasible reverse transcription quantitative PCR and next-generation sequencing analytical work flows. Clin. Chem., 2019, 65(9), 1132-1140.
[http://dx.doi.org/10.1373/clinchem.2019.303271] [PMID: 31235535]
[116]
Parker, V.L.; Cushen, B.F.; Gavriil, E.; Marshall, B.; Waite, S.; Pacey, A.; Heath, P.R. Comparison and optimisation of microRNA extracti-on from the plasma of healthy pregnant women. Mol. Med. Rep., 2021, 23(4), 1.
[http://dx.doi.org/10.3892/mmr.2021.11897] [PMID: 33576446]
[117]
Bhome, R.; Del Vecchio, F.; Lee, G.H.; Bullock, M.D.; Primrose, J.N.; Sayan, A.E.; Mirnezami, A.H. Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer. Cancer Lett., 2018, 420, 228-235.
[http://dx.doi.org/10.1016/j.canlet.2018.02.002] [PMID: 29425686]
[118]
Karttunen, J.; Heiskanen, M.; Navarro-Ferrandis, V.; Das Gupta, S.; Lipponen, A.; Puhakka, N.; Rilla, K.; Koistinen, A.; Pitkänen, A. Pre-cipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs. J. Extracell. Vesicles, 2018, 8(1), 1555410.
[http://dx.doi.org/10.1080/20013078.2018.1555410] [PMID: 30574280]
[119]
Lee, J.; Kwon, M.H.; Kim, J.A.; Rhee, W.J. Detection of exosome miRNAs using molecular beacons for diagnosing prostate cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 3), S52-S63.
[http://dx.doi.org/10.1080/21691401.2018.1489263]
[120]
Liu, Y.; He, H.; Xiao, Z.X. A systematic analysis of miRNA markers and classification algorithms for forensic body fluid identification. Brief. Bioinform., 2020, 22(4), bbaa324.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy