Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Look Into My Onco-forest - Review of Plant Natural Products with Anticancer Activity

Author(s): Izabela Michalak* and Mirosława Püsküllüoğlu*

Volume 22, Issue 11, 2022

Published on: 30 March, 2022

Page: [922 - 938] Pages: 17

DOI: 10.2174/1568026622666220303112218

Price: $65

Abstract

Cancer is a multistage process that numerous modalities including systemic treatment can treat. About half of the molecules that have been approved in the last few decades count for plant derivatives. This review presents the application of tree/shrub-derived biologically active compounds as anticancer agents. Different parts of trees/shrubs - wood, bark, branches, roots, leaves, needles, fruits, flowers, etc. - contain a wide variety of primary and secondary metabolites that demonstrate anticancer properties. Special attention was paid to phenolics (phenolic acids and polyphenols, including flavonoids and non-flavonoids (tannins, lignans, stilbenes)), essential oils, and their main constituents such as terpenes/terpenoids, phytosterols, alkaloids, and many others. The anticancer properties of these compounds are mainly attributed to their strong antioxidant properties. In vitro experiments on various cancer cell lines revealed a cytotoxic effect of tree-derived extracts. Mechanisms of anticancer action of the extracts are also listed. Examples of drugs that successfully underwent clinical trials with well-established positions in the guidelines created by oncological societies are provided. The review also focuses on directions for the future in the development of anticancer agents derived from trees/shrubs. Applying biologically active compounds derived from trees and shrubs as anticancer agents continuously seems promising in treating systemic cancer.

Keywords: Tree, Shrub, Extraction, Biologically active compounds, Cytotoxicity, Anticancer drugs.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Elias, A.; Shebaby, W.N.; Nehme, B.; Faour, W.; Bassil, B.S.; Hakim, J.E.; Iskandar, R.; Dib-Jalbout, N.; Mroueh, M.; Daher, C.; Taleb, R.I. In vitro and in vivo evaluation of the anticancer and anti-inflammatory activities of 2-Himachelen-7-ol isolated from Cedrus libani. Sci. Rep., 2019, 9(1), 12855.
[http://dx.doi.org/10.1038/s41598-019-49374-9] [PMID: 31492934]
[4]
Ibarra-Berumen, J.; Rosales-Castro, M.; Ordaz-Pichardo, C. Potential use of wood metabolites for cancer treatment. Nat. Prod. Res., 2021, 1-17. Online ahead of print
[http://dx.doi.org/10.1080/14786419.2021.1972420] [PMID: 34459687]
[5]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[6]
Seca, A.; Pinto, D. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[7]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[8]
Yang, S.S.; Cragg, G.M.; Newman, D.J. The camptothecin experience: From chinese medicinal plants to potent anti-cancer drugs.Drug Discovery and Traditional Chinese Medicine; Springer US: Boston, MA, 2001, pp. 61-74.
[http://dx.doi.org/10.1007/978-1-4615-1455-8_7]
[9]
Kacprzak, K.M. Chemistry and biology of camptothecin and its derivatives. Natural Products; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013, pp. 643-682.
[http://dx.doi.org/10.1007/978-3-642-22144-6_26]
[10]
Wang, H.; Oo Khor, T.; Shu, L.; Su, Z.Y.; Fuentes, F.; Lee, J.H.; Tony Kong, A-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem., 2012, 12(10), 1281-1305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[11]
Berdigaliyev, N.; Aljofan, M. An overview of drug discovery and development. Future Med. Chem., 2020, 12(10), 939-947.
[http://dx.doi.org/10.4155/fmc-2019-0307] [PMID: 32270704]
[12]
Kaushik, I.; Ramachandran, S.; Prasad, S.; Srivastava, S.K. Drug rechanneling: A novel paradigm for cancer treatment. Semin. Cancer Biol., 2021, 68, 279-290.
[http://dx.doi.org/10.1016/j.semcancer.2020.03.011] [PMID: 32437876]
[13]
Singh, S.; Pandey, V.P.; Yadav, K.; Yadav, A.; Dwivedi, U.N. Natural products as anti-cancerous therapeutic molecules targeted towards topoisomerases. Curr. Protein Pept. Sci., 2020, 21(11), 1103-1142.
[http://dx.doi.org/10.2174/1389203721666200918152511] [PMID: 32951576]
[14]
Marvibaigi, M.; Amini, N.; Supriyanto, E.; Abdul Majid, F.A.; Kumar Jaganathan, S.; Jamil, S.; Hamzehalipour Almaki, J.; Nasiri, R. Antioxidant activity and ROS-dependent apoptotic effect of Scurrula ferruginea (Jack) danser methanol extract in human breast cancer cell MDA-MB-231. PLoS One, 2016, 11(7), e0158942.
[http://dx.doi.org/10.1371/journal.pone.0158942] [PMID: 27410459]
[15]
Russo, D.; Miglionico, R.; Carmosino, M.; Bisaccia, F.; Andrade, P.; Valentão, P.; Milella, L.; Armentano, M. A comparative study on phytochemical profiles and biological activities of Sclerocarya birrea (A.Rich.) Hochst leaf and bark extracts. Int. J. Mol. Sci., 2018, 19(1), 186.
[http://dx.doi.org/10.3390/ijms19010186] [PMID: 29316691]
[16]
Rosa, G.P.; Silva, B.J.C.; Seca, A.M.L.; Moujir, L.M.; Barreto, M.C. Phytochemicals with added value from Morella and Myrica species. Molecules, 2020, 25(24), 6052.
[http://dx.doi.org/10.3390/molecules25246052] [PMID: 33371425]
[17]
Szwajkowska-Michałek, L.; Przybylska-Balcerek, A.; Rogoziński, T.; Stuper-Szablewska, K. Phenolic compounds in trees and shrubs of central Europe. Appl. Sci. (Basel), 2020, 10(19), 6907.
[http://dx.doi.org/10.3390/app10196907]
[18]
Purnamasari, R.; Winarni, D.; Permanasari, A.A.; Agustina, E.; Hayaza, S.; Darmanto, W. Anticancer activity of methanol extract of Ficus carica leaves and fruits against proliferation, apoptosis, and necrosis in Huh7it cells. Cancer Inform., 2019, 18, 176935119842576.
[http://dx.doi.org/10.1177/1176935119842576] [PMID: 31037025]
[19]
Diaz, L.E.; Munoz, D.R.; Prieto, R.E.; Cuervo, S.A.; Gonzalez, D.L.; Guzman, J.D.; Bhakta, S. Antioxidant, antitubercular and cytotoxic activities of Piper imperiale. Molecules, 2012, 17(4), 4142-4157.
[http://dx.doi.org/10.3390/molecules17044142] [PMID: 22481537]
[20]
Tanih, N.F.; Ndip, R.N. The acetone extract of Sclerocarya birrea (Anacardiaceae) possesses antiproliferative and apoptotic potential against human breast cancer cell lines (MCF-7). Scientific World J., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/956206] [PMID: 23576913]
[21]
Yue, R.; Li, B.; Shen, Y.; Zeng, H.; Li, B.; Yuan, H.; He, Y.; Shan, L.; Zhang, W. 6-C-methyl flavonoids isolated from Pinus densata inhibit the proliferation and promote the apoptosis of the HL-60 human promyelocytic leukaemia cell line. Planta Med., 2013, 79(12), 1024-1030.
[http://dx.doi.org/10.1055/s-0033-1350617] [PMID: 23877923]
[22]
Silva, M.J.D.; Carvalho, A.J.S.; Rocha, C.Q.; Vilegas, W.; Silva, M.A.; Gouvêa, C.M.C.P. Ethanolic extract of Mimosa caesalpiniifolia leaves: Chemical characterization and cytotoxic effect on human breast cancer MCF-7 cell line. S. Afr. J. Bot., 2014, 93, 64-69.
[http://dx.doi.org/10.1016/j.sajb.2014.03.011]
[23]
Armentano, M.F.; Bisaccia, F.; Miglionico, R.; Russo, D.; Nolfi, N.; Carmosino, M.; Andrade, P.B.; Valentão, P.; Diop, M.S.; Milella, L. Antioxidant and proapoptotic activities of Sclerocarya birrea [(A. Rich.) Hochst. methanolic root extract on the hepatocellular carcinoma cell line HepG2. BioMed Res. Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/561589] [PMID: 26075245]
[24]
Arung, E.T.; Amirta, R.; Zhu, Q.; Amen, Y.; Shimizu, K. Effect of wood, bark and leaf extracts of macaranga trees on cytotoxic activity in some cancer and normal cell lines. J. Indian Acad. Wood Sci., 2018, 15(2), 115-119.
[http://dx.doi.org/10.1007/s13196-018-0215-4]
[25]
Isidorov, V. Szoka, Ł.; Nazaruk, J. Cytotoxicity of white birch bud extracts: Perspectives for therapy of tumours. PLoS One, 2018, 13(8), e0201949.
[http://dx.doi.org/10.1371/journal.pone.0201949] [PMID: 30106978]
[26]
Abbas, P.; Hashim, Y.Z.H.Y.; Salleh, H.M. Uninfected agarwood branch extract possess cytotoxic and inhibitory effects on MCF-7 breast cancer cells. Marmara Pharm. J., 2019, 23(1), 120-129.
[27]
Khor, K.Z.; Joseph, J.; Shamsuddin, F.; Lim, V.; Moses, E.J.; Abdul Samad, N. The cytotoxic effects of Moringa oleifera leaf extract and silver nanoparticles on human Kasumi-1 cells. Int. J. Nanomedicine, 2020, 15, 5661-5670.
[http://dx.doi.org/10.2147/IJN.S244834]
[28]
Jeba Malar, T.R.J.; Antonyswamy, J.; Vijayaraghavan, P.; Ock Kim, Y.; Al-Ghamdi, A.A.; Elshikh, M.S.; Hatamleh, A.A.; Al-Dosary, M.A.; Na, S.W.; Kim, H.J. In-vitro phytochemical and pharmacological bio-efficacy studies on Azadirachta indica A. Juss and Melia azedarach Linn for anticancer activity. Saudi J. Biol. Sci., 2020, 27(2), 682-688.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.024] [PMID: 32210688]
[29]
Isah, T. Anticancer alkaloids from trees: Development into drugs. Pharmacogn. Rev., 2016, 10(20), 90-99.
[http://dx.doi.org/10.4103/0973-7847.194047] [PMID: 28082790]
[30]
Zubair, M.S.; Anam, S.; Lallo, S. Cytotoxic activity and phytochemical standardization of Lunasia amara Blanco wood extract. Asian Pac. J. Trop. Biomed., 2016, 6(11), 962-966.
[31]
Manosroi, A.; Akazawa, H.; Pattamapun, K.; Kitdamrongtham, W.; Akihisa, T.; Manosroi, W.; Manosroi, J. Potent anti-proliferative effects against oral and cervical cancers of Thai medicinal plants selected from the Thai/Lanna medicinal plant recipe database “MANOSROI III”. Pharm. Biol., 2015, 53(7), 1075-1081.
[http://dx.doi.org/10.3109/13880209.2014.959613] [PMID: 25612774]
[32]
Brustulim, L.J.R.; Monteiro, L.M.; Almeida, V.P.; Raman, V.; Maia, B.H.L.N.S.; Casapula, I.; Paludo, K.S.; Bussade, J.E.; Rehman, J.U.; Kahn, I.A.; Farago, P.V.; Budel, J.M. Ocotea porosa: Anatomy and histochemistry of leaves and stems, chemical composition, cytotoxicity and insecticidal activities of essential oil. Braz. Arch. Biol. Technol., 2020, 63, e20190082.
[http://dx.doi.org/10.1590/1678-4324-2020190082]
[33]
Raal, A.; Hoai, N.T.; Duc, H.V.; Thao, D.T.; Orav, A. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells. Pharmacogn. Mag., 2015, 11(44)(Suppl. 2), 290.
[http://dx.doi.org/10.4103/0973-1296.166052] [PMID: 26664017]
[34]
Robinson, J.P.; Suriya, K.; Subbaiya, R.; Ponmurugan, P. Antioxidant and cytotoxic activity of Tecoma stans against lung cancer cell line (A549). Braz. J. Pharm. Sci., 2017, 53(3), 1-5.
[http://dx.doi.org/10.1590/s2175-97902017000300204]
[35]
Huang, X.F.; Chang, K.F.; Lee, S.C.; Sheu, G.T.; Li, C.Y.; Weng, J.C.; Hsiao, C.Y.; Tsai, N.M. Extract derived from Cedrus atlantica acts as an antitumor agent on hepatocellular carcinoma growth in vitro and in vivo. Molecules, 2020, 25(20), 4608.
[http://dx.doi.org/10.3390/molecules25204608] [PMID: 33050385]
[36]
Venditti, A.; Maggi, F.; Saab, A.M.; Bramucci, M.; Quassinti, L.; Petrelli, D.; Lupidi, G.; El Samrani, A.; Borgatti, M.; Bernardi, F.; Gambari, R.; Abboud, J.; Saab, M.J.; Bianco, A. Antiproliferative, antimicrobial and antioxidant properties of Cedrus libani and pinus pinea wood oils and Juniperus excelsa berry oil. Plant Biosyst - An Int. J. Deal. Asp. Plant Biol, 2021, 1-12.
[http://dx.doi.org/10.1080/11263504.2020.1864495]
[37]
Carneiro, L.; Tasso, T.; Santos, M.; Goulart, M.; dos Santos, R.; Bastos, J.; da Silva, J.; Crotti, A.; Parreira, R.; Orenha, R.; Veneziani, R.; Ambrósio, S. Copaifera multijuga, Copaifera pubiflora and Copaifera trapezifolia oleoresins: Chemical characterization and in vitro cytotoxic potential against tumoral cell lines. J. Braz. Chem. Soc., 2020, 31(8), 1679-1689.
[http://dx.doi.org/10.21577/0103-5053.20200054]
[38]
Leandro, L.M.; de Sousa Vargas, F.; Barbosa, P.C.S.; Neves, J.K.O.; da Silva, J.A.; da Veiga-Junior, V.F. Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules, 2012, 17(4), 3866-3889.
[http://dx.doi.org/10.3390/molecules17043866] [PMID: 22466849]
[39]
Su, Q.; Brodie, P.J.; Liu, Y.; Miller, J.S.; Andrianjafy, N.M.; Antsiferana, R.; Rasamison, V.E.; Kingston, D.G.I. Antiproliferative triterpenoid saponins from Leptaulus citroides Baill. from the madagascar rain forest. Nat. Prod. Bioprospect., 2016, 6(1), 31-39.
[http://dx.doi.org/10.1007/s13659-015-0083-1] [PMID: 26746216]
[40]
Vo, T.K.; Ta, Q.T.H.; Chu, Q.T.; Nguyen, T.T.; Vo, V.G. Anti-Hepatocellular-Cancer activity exerted by β-Sitosterol and β-Sitosterol-Glucoside from Indigofera zollingeriana Miq. Molecules, 2020, 25(13), 3021.
[http://dx.doi.org/10.3390/molecules25133021] [PMID: 32630623]
[41]
Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Cruz-Martins, N.; Nigam, M.; Mishra, A.P.; Konovalov, D.A.; Orobinskaya, V.; Abu-Reidah, I.M.; Zam, W.; Sharopov, F.; Venneri, T.; Capasso, R.; Kukula-Koch, W.; Wawruszak, A.; Koch, W. Phytosterols: From preclinical evidence to potential clinical applications. Front. Pharmacol., 2021, 11, 599959.
[http://dx.doi.org/10.3389/fphar.2020.599959] [PMID: 33519459]
[42]
Kumar, S.; Bodla, R. Nontargeted analysis and cancer cells cytotoxicity of Aegle marmelos Correa Ex Roxb. Pharmacogn. Mag., 2018, 14(55), 40.
[http://dx.doi.org/10.4103/pm.pm_264_17]
[43]
Mei, W.L.; Lin, F.; Zuo, W.J.; Wang, H.; Dai, H-F. Cucurbitacins from fruits of Aquilaria sinensis. Chin. J. Nat. Med., 2012, 10(3), 234-237.
[http://dx.doi.org/10.3724/SP.J.1009.2012.00234]
[44]
Chandrasekaran, R.; Thiagarajan, K.; Mohan, S.; Roy, T.K. Antiproliferative effect of Acacia nilotica (L.) leaf extract rich in ethyl gallate against human carcinoma cell line KB. Indian J. Pharmacol., 2020, 52(6), 488-494.
[http://dx.doi.org/10.4103/ijp.IJP_223_17] [PMID: 33666190]
[45]
Zhang, J.; Nishimoto, Y.; Tokuda, H.; Suzuki, N.; Yasukawa, K.; Kitdamrongtham, W.; Akazawa, H.; Manosroi, A.; Manosroi, J.; Akihisa, T. Cancer chemopreventive effect of bergenin from Peltophorum pterocarpum wood. Chem. Biodivers., 2013, 10(10), 1866-1875.
[http://dx.doi.org/10.1002/cbdv.201300182] [PMID: 24130029]
[46]
Mbosso Teinkela, J.E.; Siwe Noundou, X.; Nguemfo, E.L.; Meyer, F.; Djoukoue, A.; Van Antwerpen, P.; Ngouela, S.; Tsamo, E.; Mpondo Mpondo, E.A.; Vardamides, J.C.; Azebaze, G.A.B.; Wintjens, R. Identification of compounds with anti-proliferative activity from the wood of Ficus elastica Roxb. ex Hornem. aerial roots. Fitoterapia, 2016, 112, 65-73.
[http://dx.doi.org/10.1016/j.fitote.2016.05.002] [PMID: 27167182]
[47]
Jeong, H.; Park, S.; Kim, S.Y.; Cho, S.H.; Jeong, M.S.; Kim, S.R.; Seo, J.B.; Kim, S.H.; Kim, K.N. 1-Cinnamoyltrichilinin from Melia azedarach causes apoptosis through the P38 Mapk pathway in Hl-60 human leukemia cells. Int. J. Mol. Sci., 2020, 21(20), 7506.
[http://dx.doi.org/10.3390/ijms21207506] [PMID: 33053881]
[48]
Centrone, M.; D’Agostino, M.; Difonzo, G.; De Bruno, A.; Di Mise, A.; Ranieri, M.; Montemurro, C.; Valenti, G.; Poiana, M.; Caponio, F.; Tamma, G. Antioxidant efficacy of olive by-product extracts in human colon HCT8 cells. Foods, 2020, 10(1), 11.
[http://dx.doi.org/10.3390/foods10010011] [PMID: 33374501]
[49]
Karunai Raj, M.; Balachandran, C.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S.; Vijayakumar, A. Isolation of terrestribisamide from Peltophorum pterocarpum (DC.) Baker ex. K. Heyne and its antimicrobial, antioxidant, and cytotoxic activities. Med. Chem. Res., 2013, 22(8), 3823-3830.
[http://dx.doi.org/10.1007/s00044-012-0393-3]
[50]
Barapatre, A.; Meena, A.S.; Mekala, S.; Das, A.; Jha, H. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int. J. Biol. Macromol., 2016, 86, 443-453.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.109] [PMID: 26836619]
[51]
Saab, A.M.; Lampronti, I.; Borgatti, M.; Finotti, A.; Harb, F.; Safi, S.; Gambari, R. In vitro evaluation of the anti-proliferative activities of the wood essential oils of three Cedrus species against K562 human chronic myelogenous leukaemia cells. Nat. Prod. Res., 2012, 26(23), 2227-2231.
[http://dx.doi.org/10.1080/14786419.2011.643885] [PMID: 22168262]
[52]
FDA. Q3C-Plant biosyst. Int. J. Deal. Asp. Plant Biol., 2017, 9765, 1-8.
[53]
Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7(12), 1129-1150.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.016]
[54]
Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30(1), 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[55]
Kim, S.R.; Cuong To, D.; Nguyen, P.H.; Nguyen, Y.N.; Cho, B.J.; Tran, M.H. Antioxidant and cell proliferation properties of the Vietnamese traditional medicinal plant Peltophorum pterocarpum. Molecules, 2020, 25(20), 4800.
[http://dx.doi.org/10.3390/molecules25204800] [PMID: 33086647]
[56]
Venkatesan, T.; Choi, Y.W.; Mun, S.P.; Kim, Y.K. Pinus radiata bark extract induces caspase-independent apoptosis-like cell death in MCF-7 human breast cancer cells. Cell Biol. Toxicol., 2016, 32(5), 451-464.
[http://dx.doi.org/10.1007/s10565-016-9346-9] [PMID: 27400986]
[57]
Zhang, Y.; Wan, Y.; Huo, B.; Li, B.; Jin, Y.; Hu, X. Extracts and components of Ficus carica leaves suppress survival, cell cycle, and migration of triple-negative breast cancer MDA-MB-231 cells. OncoTargets Ther., 2018, 11, 4377-4386.
[http://dx.doi.org/10.2147/OTT.S171601] [PMID: 30100743]
[58]
Pynam, H.; Dharmesh, S.M. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomed. Pharmacother., 2018, 106, 98-108.
[http://dx.doi.org/10.1016/j.biopha.2018.06.053] [PMID: 29957472]
[59]
Malfa, G.A.; Tomasello, B.; Acquaviva, R.; Genovese, C.; La Mantia, A.; Cammarata, F.P.; Ragusa, M.; Renis, M.; Di Giacomo, C. Betula etnensis Raf. (Betulaceae) extract induced HO-1 expression and ferroptosis cell death in human colon cancer cells. Int. J. Mol. Sci., 2019, 20(11), 2723.
[http://dx.doi.org/10.3390/ijms20112723] [PMID: 31163602]
[60]
Lee, J.E.; Thuy, N.T.T.; Lee, J.; Cho, N.; Yoo, H.M. Platyphylloside isolated from Betula platyphylla is antiproliferative and induces apoptosis in colon cancer and leukemic cells. Molecules, 2019, 24(16), 2960.
[http://dx.doi.org/10.3390/molecules24162960] [PMID: 31443270]
[61]
Khan, F.; Pandey, P.; Ahmad, V.; Upadhyay, T.K. Moringa oleifera methanolic leaves extract induces apoptosis and G0/G1 cell cycle arrest via downregulation of hedgehog signaling pathway in human prostate PC-3 cancer cells. J. Food Biochem., 2020, 44(8), e13338.
[http://dx.doi.org/10.1111/jfbc.13338] [PMID: 32588472]
[62]
Wang, J.; Wang, X.; Jiang, S.; Lin, P.; Zhang, J.; Lu, Y.; Wang, Q.; Xiong, Z.; Wu, Y.; Ren, J.; Yang, H. Cytotoxicity of fig fruit latex against human cancer cells. Food Chem. Toxicol., 2008, 46(3), 1025-1033.
[http://dx.doi.org/10.1016/j.fct.2007.10.042] [PMID: 18078703]
[63]
Silva, J.N.; Monção, N.B.N.; de Farias, R.R.S.; Citó, A.M.G.L.; Chaves, M.H.; Araújo, M.R.S.; Lima, D.J.B.; Pessoa, C.; Lima, A.; Araújo, E.C.C.; Militão, G.C.G.; Costa, M.P.; Capasso, R.; Ferreira, P.M.P. Toxicological, chemopreventive, and cytotoxic potentialities of rare vegetal species and supporting findings for the brazilian unified health system (SUS). J. Toxicol. Environ. Health A, 2020, 83(13-14), 525-545.
[http://dx.doi.org/10.1080/15287394.2020.1780658] [PMID: 32568625]
[64]
Yared, J.A.; Tkaczuk, K.H.R. Update on taxane development: New analogs and new formulations. Drug Des. Devel. Ther., 2012, 6, 371-384.
[PMID: 23251087]
[65]
Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci., 2018, 19(11), 3533.
[http://dx.doi.org/10.3390/ijms19113533] [PMID: 30423952]
[66]
Sundarraj, S. Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; Kannan, S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J. Ethnopharmacol., 2012, 141(3), 803-809.
[http://dx.doi.org/10.1016/j.jep.2012.03.014] [PMID: 22440953]
[67]
Hoseinkhani, Z.; Norooznezhad, F.; Rastegari-Pouyani, M.; Mansouri, K. Medicinal plants extracts with antiangiogenic activity: Where is the link? Adv. Pharm. Bull., 2020, 10(3), 370-378.
[http://dx.doi.org/10.34172/apb.2020.045] [PMID: 32665895]
[68]
Avila-Carrasco, L.; Majano, P.; Sánchez-Toméro, J.A.; Selgas, R.; López-Cabrera, M.; Aguilera, A.; González Mateo, G. Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Front. Pharmacol., 2019, 10, 715.
[http://dx.doi.org/10.3389/fphar.2019.00715] [PMID: 31417401]
[69]
Wilusz, M.; Majka, M. Role of the Wnt/β-catenin network in regulating hematopoiesis. Arch. Immunol. Ther. Exp. (Warsz.), 2008, 56(4), 257-266.
[http://dx.doi.org/10.1007/s00005-008-0029-y] [PMID: 18726147]
[70]
Patel, M.J.; Tripathy, S.; Mukhopadhyay, K.D.; Wangjam, T.; Cabang, A.B.; Morris, J.; Wargovich, M.J. A supercritical CO 2 extract of neem leaf (A. indica) and its bioactive liminoid, nimbolide, suppresses colon cancer in preclinical models by modulating pro-inflammatory pathways. Mol. Carcinog., 2018, 57(9), 1156-1165.
[http://dx.doi.org/10.1002/mc.22832] [PMID: 29697164]
[71]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[72]
Arnal, I.; Wade, R.H. How does taxol stabilise microtubules? Biol. Cell, 1995, 84(3), 224-224.
[http://dx.doi.org/10.1016/0248-4900(96)89446-9]
[73]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[74]
Perdue, R.E.; Hartwell, J.L. Search for plant sources of anticancer drugs. Morris Arbor. Bull, 1969, 20(3), 35-53.
[75]
Walsh, V.; Goodman, J. From taxol to taxol®: The changing identities and ownership of an anti-cancer drug. Med. Anthropol., 2002, 21(3-4), 307-336.
[http://dx.doi.org/10.1080/01459740214074] [PMID: 12458837]
[76]
European Medicines Agency (EMA). NNEX I SUMMARY OF PRODUCT CHARACTERISTICS. 2021. Available from: https://www.ema.europa.eu/en/documents/product-information/jevtana-epar-product-information_en.pdf
[77]
European Medicines Agency (EMA). Annex I summary of product characteristics. 2021. Available from: https://www.ema.europa.eu/en/documents/product-information/abraxane-epar-product-informa tion_en.pdf
[78]
Annex I summary of product characteristics. 2021. Available from: https://www.ema.europa.eu/en/documents/product-informa tion/taxotere-epar-product-information_en.pdf
[79]
Tewari, D.; Rawat, P.; Singh, P.K. Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem. Toxicol., 2019, 123, 522-535.
[http://dx.doi.org/10.1016/j.fct.2018.11.041] [PMID: 30471312]
[80]
Rothenberg, M.L. Topoisomerase I inhibitors: Review and update. Ann. Oncol., 1997, 8(9), 837-855.
[http://dx.doi.org/10.1023/A:1008270717294] [PMID: 9358934]
[81]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70(1), 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[82]
Khageh Hosseini, S.; Kolterer, S.; Steiner, M.; von Manstein, V.; Gerlach, K.; Trojan, J.; Waidmann, O.; Zeuzem, S.; Schulze, J.O.; Hahn, S.; Steinhilber, D.; Gatterdam, V.; Tampé, R.; Biondi, R.M.; Proschak, E.; Zörnig, M. Camptothecin and its analog SN-38, the active metabolite of irinotecan, inhibit binding of the transcriptional regulator and oncoprotein FUBP1 to its DNA target sequence FUSE. Biochem. Pharmacol., 2017, 146, 53-62.
[http://dx.doi.org/10.1016/j.bcp.2017.10.003] [PMID: 29031818]
[83]
Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res., 2019, 148, 104398.
[http://dx.doi.org/10.1016/j.phrs.2019.104398] [PMID: 31415916]
[84]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[85]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.085] [PMID: 28073672]
[86]
Yan, Z.; Zhu, Z.; Li, K.; Chen, P.; Wang, L.; Huang, C.; Xue, J.; Liu, M. A phase I pharmacokinetics study of 9-nitrocamptothecin in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2011, 67(4), 955-961.
[http://dx.doi.org/10.1007/s00280-010-1546-z] [PMID: 21191594]
[87]
Kim, H.S.; Park, S.Y.; Park, C.Y.; Kim, Y.T.; Kim, B.J.; Song, Y.J.; Kim, B.G.; Kim, Y.B.; Cho, C.H.; Kim, J.H.; Song, Y.S. A multicentre, randomised, open-label, parallel-group Phase 2b study of belotecan versus topotecan for recurrent ovarian cancer. Br. J. Cancer, 2021, 124(2), 375-382.
[http://dx.doi.org/10.1038/s41416-020-01098-8] [PMID: 32994466]
[88]
Kang, J.H.; Lee, K.H.; Kim, D.W.; Kim, S.W.; Kim, H.R.; Kim, J.H.; Choi, J.H.; An, H.J.; Kim, J.S.; Jang, J.S.; Kim, B.S.; Kim, H.T. A randomised phase 2b study comparing the efficacy and safety of belotecan vs. topotecan as monotherapy for sensitive-relapsed small-cell lung cancer. Br. J. Cancer, 2021, 124(4), 713-720.
[http://dx.doi.org/10.1038/s41416-020-01055-5] [PMID: 33191408]
[89]
SUMMARY OF PRODUCT CHARACTERISTICS Irinotecan. 2021. Available from: http://mri.cts-mrp.eu/download/NL_H_ 1326_001_FinalSPC.pdf
[90]
Yeh, Y.S.; Tsai, H.L.; Huang, C.W.; Wang, J.H.; Lin, Y.W.; Tang, H.C.; Sung, Y.C.; Wu, C.C.; Lu, C.Y.; Wang, J.Y. Prospective analysis of UGT1A1 promoter polymorphism for irinotecan dose escalation in metastatic colorectal cancer patients treated with bevacizumab plus FOLFIRI as the first-line setting: Study protocol for a randomized controlled trial. Trials, 2016, 17(1), 46.
[http://dx.doi.org/10.1186/s13063-016-1153-3] [PMID: 26811156]
[91]
Tsai, H.L.; Huang, C.W.; Lin, Y.W.; Wang, J.H.; Wu, C.C.; Sung, Y.C.; Chen, T.L.; Wang, H.M.; Tang, H.C.; Chen, J.B.; Ke, T.W.; Tsai, C.S.; Huang, H.Y.; Wang, J.Y. Determination of the UGT1A1 polymorphism as guidance for irinotecan dose escalation in metastatic colorectal cancer treated with first-line bevacizumab and FOLFIRI (PURE FIST). Eur. J. Cancer, 2020, 138, 19-29.
[http://dx.doi.org/10.1016/j.ejca.2020.05.031] [PMID: 32829105]
[92]
Wang, W.; Huang, J.; Tao, Y.; Lyu, X.; Yang, L.; Wu, D.; Tian, Y. Phase II and UGT1A1 polymorphism study of two different irinotecan dosages combined with cisplatin as first-line therapy for advanced gastric cancer. Chemotherapy, 2016, 61(4), 197-203.
[http://dx.doi.org/10.1159/000442787] [PMID: 26872008]
[93]
Gezici, S. Şekeroğlu, N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anticancer. Agents Med. Chem., 2019, 19(1), 101-111.
[http://dx.doi.org/10.2174/1871520619666181224121004] [PMID: 30582485]
[94]
Kinghorn, A.D.; Chai, H-B.; Kinghorn, A.D. Discovery of new anticancer agents from higher plants. Front. Biosci. (Schol. Ed.), 2012, S4(1), 142-156.
[http://dx.doi.org/10.2741/s257] [PMID: 22202049]
[95]
Peddi, P.F.; Hurvitz, S.A. Trastuzumab emtansine: The first targeted chemotherapy for treatment of breast cancer. Future Oncol., 2013, 9(3), 319-326.
[http://dx.doi.org/10.2217/fon.13.7] [PMID: 23469968]
[96]
National Center for Biotechnology Information. PubChem compound summary for CID 36314, paclitaxel. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/36314
[97]
National Center for Biotechnology Information. PubChem compound summary for CID 36314, paclitaxel. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/148124
[98]
National Center for Biotechnology Information. PubChem compound summary for CID 9854073, cabazitaxel. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/9854073
[99]
National Center for Biotechnology Information. PubChem compound summary for CID 60838, irinotecan. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Irinotecan
[100]
National Center for Biotechnology Information. PubChem compound summary for CID 60700, topotecan. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/60700
[101]
ESMO. Guidelines. 2021. Available from: https://www.esmo.org/ guidelines
[102]
ASCO. Guidelines, tools, & resources. 2021. Available from: https://www.asco.org/practice-patients/guidelines
[103]
Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel), 2020, 12(3), 738.
[http://dx.doi.org/10.3390/cancers12030738] [PMID: 32245016]
[104]
Ghahremanloo, A.; Soltani, A.; Modaresi, S.M.S.; Hashemy, S.I. Recent advances in the clinical development of immune checkpoint blockade therapy. Cell Oncol. (Dordr.), 2019, 42(5), 609-626.
[http://dx.doi.org/10.1007/s13402-019-00456-w] [PMID: 31201647]
[105]
Zam, W.; Ali, L. Immune checkpoint inhibitors in the treatment of cancer. Curr. Clin. Pharmacol., 2021, 16.
[http://dx.doi.org/10.2174/1574884716666210325095022] [PMID: 33823768]
[106]
Zhang, X.; Wang, S.; Zhu, Y.; Zhang, M.; Zhao, Y.; Yan, Z.; Wang, Q.; Li, X. Double-edged effects of interferons on the regulation of cancer-immunity cycle. OncoImmunology, 2021, 10(1), 1929005.
[http://dx.doi.org/10.1080/2162402X.2021.1929005] [PMID: 34262796]
[107]
Rahimi Kalateh Shah Mohammad, G.; Ghahremanloo, A.; Soltani, A.; Fathi, E.; Hashemy, S.I. Cytokines as potential combination agents with PD-1/PD-L1 blockade for cancer treatment. J. Cell. Physiol., 2020, 235(7-8), 5449-5460.
[http://dx.doi.org/10.1002/jcp.29491] [PMID: 31970790]
[108]
Wang, Y.; Zhang, H.; He, Y.W. The complement receptors C3aR and C5aR are a new class of immune checkpoint receptor in cancer immunotherapy. Front. Immunol., 2019, 10, 1574.
[http://dx.doi.org/10.3389/fimmu.2019.01574] [PMID: 31379815]
[109]
Deng, J.; Zhao, S.; Zhang, X.; Jia, K.; Wang, H.; Zhou, C.; He, Y. OX40 (CD134) and OX40 ligand, important immune checkpoints in cancer. OncoTargets Ther., 2019, 12, 7347-7353.
[http://dx.doi.org/10.2147/OTT.S214211] [PMID: 31564917]
[110]
Lee, J.; Han, Y.; Wang, W.; Jo, H.; Kim, H.; Kim, S.; Yang, K.M.; Kim, S.J.; Dhanasekaran, D.N.; Song, Y.S. Phytochemicals in cancer immune checkpoint inhibitor therapy. Biomolecules, 2021, 11(8), 1107.
[http://dx.doi.org/10.3390/biom11081107] [PMID: 34439774]
[111]
Bailly, C. Anticancer activities and mechanism of action of nagilactones, a group of terpenoid lactones isolated from Podocarpus species. Nat. Prod. Bioprospect., 2020, 10(6), 367-375.
[http://dx.doi.org/10.1007/s13659-020-00268-8] [PMID: 33034879]
[112]
Ri, M.H.; Ma, J.; Jin, X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. J. Ethnopharmacol., 2021, 281, 114370.
[http://dx.doi.org/10.1016/j.jep.2021.114370] [PMID: 34214644]
[113]
Berretta, M.; Bignucolo, A.; Di Francia, R.; Comello, F.; Facchini, G.; Ceccarelli, M.; Iaffaioli, R.V.; Quagliariello, V.; Maurea, N. Resveratrol in cancer patients: From bench to bedside. Int. J. Mol. Sci., 2020, 21(8), 2945.
[http://dx.doi.org/10.3390/ijms21082945] [PMID: 32331450]
[114]
Delmas, D.; Hermetet, F.; Aires, V. PD-1/PD-L1 checkpoints and resveratrol: A controversial new way for a therapeutic strategy. Cancers (Basel), 2021, 13(18), 4509.
[http://dx.doi.org/10.3390/cancers13184509] [PMID: 34572736]
[115]
Shen, M.; Hang Chan, T.; Ping Dou, Q. Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization. Anticancer. Agents Med. Chem., 2012, 12(8), 891-901.
[http://dx.doi.org/10.2174/187152012802649978] [PMID: 22292765]
[116]
Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernández, T.Y.; Cianciosi, D.; Reboredo-Rodriguez, P.; Zhang, J.; Manna, P.P.; Daglia, M.; Atanasov, A.G.; Battino, M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol. Adv., 2020, 38, 107322.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.011] [PMID: 30476540]
[117]
Gajos-Michniewicz, A.; Czyz, M. Modulation of WNT/β-catenin pathway in melanoma by biologically active components derived from plants. Fitoterapia, 2016, 109, 283-292.
[http://dx.doi.org/10.1016/j.fitote.2016.02.002] [PMID: 26851176]
[118]
Razali, R.A.; Lokanathan, Y.; Yazid, M.D.; Ansari, A.S.; Saim, A.B.; Hj Idrus, R.B. Modulation of epithelial to mesenchymal transition signaling pathways by Olea europaea and its active compounds. Int. J. Mol. Sci., 2019, 20(14), 3492.
[http://dx.doi.org/10.3390/ijms20143492] [PMID: 31315241]
[119]
Lin, Y.X.; Wang, Y.; Blake, S.; Yu, M.; Mei, L.; Wang, H.; Shi, J. RNA nanotechnology-mediated cancer immunotherapy. Theranostics, 2020, 10(1), 281-299.
[http://dx.doi.org/10.7150/thno.35568] [PMID: 31903120]
[120]
Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr. Drug Metab., 2019, 20(6), 416-429.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[121]
Oliveira, C de S.L. A, L.; Schomann, T.; de Geus-Oei, L-F.; Kapiteijn, E.; Cruz, L.J.; de Araújo Junior, RF. Nanocarriers as a tool for the treatment of colorectal cancer. Pharmaceutics, 2021, 13(8), 1111.
[PMID: 34452074]
[122]
Khan, T.; Gurav, P. PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs. Front. Pharmacol., 2018, 8, 1002.
[http://dx.doi.org/10.3389/fphar.2017.01002] [PMID: 29479316]
[123]
Wang-Gillam, A.; Hubner, R.A.; Siveke, J.T.; Von Hoff, D.D.; Belanger, B.; de Jong, F.A.; Mirakhur, B.; Chen, L.T. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. Eur. J. Cancer, 2019, 108, 78-87.
[http://dx.doi.org/10.1016/j.ejca.2018.12.007] [PMID: 30654298]
[124]
Wu, C.; Zhang, Y.; Yang, D.; Zhang, J.; Ma, J.; Cheng, D.; Chen, J.; Deng, L. Novel SN38 derivative-based liposome as anticancer prodrug: An in vitro and in vivo study. Int. J. Nanomedicine, 2018, 14, 75-85.
[http://dx.doi.org/10.2147/IJN.S187906] [PMID: 30587986]
[125]
Bardia, A.; Tolaney, S.M.; Punie, K.; Loirat, D.; Oliveira, M.; Kalinsky, K.; Zelnak, A.; Aftimos, P.; Dalenc, F.; Sardesai, S.; Hamilton, E.; Sharma, P.; Recalde, S.; Gil, E.C.; Traina, T.; O’Shaughnessy, J.; Cortes, J.; Tsai, M.; Vahdat, L.; Diéras, V.; Carey, L.A.; Rugo, H.S.; Goldenberg, D.M.; Hong, Q.; Olivo, M.; Itri, L.M.; Hurvitz, S.A. Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann. Oncol., 2021, 32(9), 1148-1156.
[http://dx.doi.org/10.1016/j.annonc.2021.06.002] [PMID: 34116144]
[126]
Rugo, H.S.; Bardia, A.; Tolaney, S.M.; Arteaga, C.; Cortes, J.; Sohn, J.; Marmé, F.; Hong, Q.; Delaney, R.J.; Hafeez, A.; André, F.; Schmid, P. TROPiCS-02: A phase III study investigating sacituzumab govitecan in the treatment of HR+/HER2- metastatic breast cancer. Future Oncol., 2020, 16(12), 705-715.
[http://dx.doi.org/10.2217/fon-2020-0163] [PMID: 32223649]
[127]
Hanna, N.H.; Schneider, B.J.; Temin, S.; Baker, S., Jr; Brahmer, J.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; Jaiyesimi, I.; Johnson, D.H.; Leighl, N.B.; Phillips, T.; Riely, G.J.; Robinson, A.G.; Rosell, R.; Schiller, J.H.; Singh, N.; Spigel, D.R.; Stabler, J.O.; Tashbar, J.; Masters, G. Therapy for stage IV Non-small-cell lung cancer without driver alterations: ASCO and OH (CCO) joint guideline update. J. Clin. Oncol., 2020, 38(14), 1608-1632.
[http://dx.doi.org/10.1200/JCO.19.03022] [PMID: 31990617]
[128]
Peixoto, R.D.; Ho, M.; Renouf, D.J.; Lim, H.J.; Gill, S.; Ruan, J.Y.; Cheung, W.Y. Eligibility of metastatic pancreatic cancer patients for first-line palliative intent nab-paclitaxel plus gemcitabine versus FOLFIRINOX. Am. J. Clin. Oncol., 2017, 40(5), 507-511.
[http://dx.doi.org/10.1097/COC.0000000000000193] [PMID: 25844823]
[129]
Singh, R.R.; O’Reilly, E.M. New treatment strategies for metastatic pancreatic ductal adenocarcinoma. Drugs, 2020, 80(7), 647-669.
[http://dx.doi.org/10.1007/s40265-020-01304-0] [PMID: 32306207]
[130]
Roin, B.N. Unpatentable drugs and the standards of patentability articles unpatentable drugs and the standards of patentability. Tex. Law Rev., 2009, 87, 503.
[131]
Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Comparison of conventional extraction technique with ultrasound assisted extraction on recovery of phenolic compounds from lemon scented tea tree (Leptospermum petersonii) leaves. Heliyon, 2020, 6(4), e03666.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03666] [PMID: 32258513]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy