Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Mini-Review Article

Challenges and Approaches of Drugs Such as Memantine, Donepezil, Rivastigmine, and Aducanumab in the Treatment, Control and Management of Alzheimer's Disease

Author(s): Mohammad Saeedi* and Fatemeh Mehranfar

Volume 16, Issue 2, 2022

Published on: 28 March, 2022

Page: [102 - 121] Pages: 20

DOI: 10.2174/1872208316666220302115901

Price: $65

Abstract

Alzheimer's disease (AD) is a kind of neuropsychiatric illness that affects the central nervous system. In this disease, the accumulation of amyloid-beta increases, and phosphorylated tau (P-tau) protein is one of the ways to treat this disease is to reduce the accumulation of amyloid-beta. Various studies have demonstrated that pharmacological approaches have considerable effects in the treatment of AD, despite the side effects and challenges. Cholinesterase inhibitors and the NMDA receptor antagonist memantine are presently authorized therapies for AD. Memantine and Donepezil are the most common drugs for the prevention and therapy of AD with mechanisms such as lessened β-amyloid plaque, affecting N-Methyl-D-aspartate (NMDA) receptors. Diminution glutamate and elevated acetylcholine are some of the influences of medications administrated to treat AD, and drugs can also play a role in slowing the progression of cognitive and memory impairment. A new pharmacological approach and strategy are required to control the future of AD. This review appraises the effects of memantine, donepezil, rivastigmine, and aducanumab in clinical trials, in vitro and animal model studies that have explored how these drugs versus AD development and also discuss possible mechanisms of influence on the brain. Research in clinical trials has substantial findings that support the role of these medications in AD treatment and ameliorate the safety and efficacy of AD therapy, although more clinical trials are required to prove their effectiveness.

Keywords: Alzheimer's disease, memantine, donepezil, aducanumab, neuroinflammation, homocysteine.

Next »
Graphical Abstract
[1]
Assefa BT, Tafere GG, Wondafrash DZ, Gidey MT. The bewildering effect of AMPK activators in Alz-heimer’s disease: Review of the current evidence. BioMed Res Int 2020; 2020: 9895121.
[http://dx.doi.org/10.1155/2020/9895121]
[2]
Hossain MF, Uddin MS, Uddin GMS, et al. Melatonin in Alzheimer’s disease: A latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathol-ogy. Mol Neurobiol 2019; 56(12): 8255-76.
[http://dx.doi.org/10.1007/s12035-019-01660-3] [PMID: 31209782]
[3]
Kabir MT, Sufian MA, Uddin MS, et al. NMDA recep-tor antagonists: Repositioning of memantine as a multitargeting agent for Alzheimer’s therapy. Curr Pharm Des 2019; 25(33): 3506-18.
[http://dx.doi.org/10.2174/1381612825666191011102444] [PMID: 31604413]
[4]
Wilson RS, Segawa E, Boyle PA, Anagnos SE, Hizel LP, Bennett DA. The natural history of cognitive de-cline in Alzheimer’s disease. Psychol Aging 2012; 27(4): 1008-17.
[http://dx.doi.org/10.1037/a0029857] [PMID: 22946521]
[5]
Barker WW, Luis CA, Kashuba A, et al. Relative fre-quencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal scle-rosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord 2002; 16(4): 203-12.
[http://dx.doi.org/10.1097/00002093-200210000-00001] [PMID: 12468894]
[6]
Haines JL. Alzheimer disease: perspectives from epi-demiology and genetics. J Law Med Ethics 2018; 46(3): 694-8.
[http://dx.doi.org/10.1177/1073110518804230] [PMID: 30336113]
[7]
Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 2013; 80(19): 1778-83.
[http://dx.doi.org/10.1212/WNL.0b013e31828726f5] [PMID: 23390181]
[8]
Cummings J. Lessons learned from Alzheimer dis-ease: clinical trials with negative outcomes. Clin Transl Sci 2018; 11(2): 147-52.
[http://dx.doi.org/10.1111/cts.12491] [PMID: 28767185]
[9]
Yee A, Tsui NB, Chang Y, et al. Alzheimer’s disease: Insights for risk evaluation and prevention in the Chi-nese population and the need for a comprehensive programme in Hong Kong/China. Hong Kong Med J 2018; 24(5): 492-500.
[10]
Mir RH, Sawhney G, Pottoo FH, et al. Role of envi-ronmental pollutants in Alzheimer’s disease: A review. Environ Sci Pollut Res Int 2020; 27(36): 44724-42.
[http://dx.doi.org/10.1007/s11356-020-09964-x] [PMID: 32715424]
[11]
Lahiri DK, Maloney B. The “LEARn” (latent early-life associated regulation) model: An epigenetic pathway linking metabolic and cognitive disorders. J Alzheimers Dis 2012; 30(Suppl. 2): S15-30.
[http://dx.doi.org/10.3233/JAD-2012-120373] [PMID: 22555376]
[12]
Baranowska-Wójcik E, Szwajgier D. Alzheimer’s dis-ease: review of current nanotechnological therapeutic strategies. Expert Rev Neurother 2020; 20(3): 271-9.
[http://dx.doi.org/10.1080/14737175.2020.1719069] [PMID: 31957510]
[13]
Saeedi M, Rashidy-Pour A. Association between chronic stress and Alzheimer’s disease: Therapeutic effects of saffron. Biomed Pharmacother 2021; 133: 110995.
[http://dx.doi.org/10.1016/j.biopha.2020.110995] [PMID: 33232931]
[14]
Kojro E, Fahrenholz F. The non-amyloidogenic path-way: structure and function of α-secretases. Subcell Biochem 2005; 38: 105-27.
[PMID: 15709475]
[15]
Ibrahim AM, Pottoo FH, Dahiya ES, Khan FA, Ku-mar JBS. Neuron-glia interactions: Molecular basis of Alzheimer’s disease and applications of neuroprote-omics. Eur J Neurosci 2020; 52(2): 2931-43.
[http://dx.doi.org/10.1111/ejn.14838] [PMID: 32463535]
[16]
Bateman RJ, Aisen PS, De Strooper B, et al. Autoso-mal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res Ther 2011; 3(1): 1-13.
[http://dx.doi.org/10.1186/alzrt59] [PMID: 21211070]
[17]
Matsuoka Y, Picciano M, La Francois J, Duff K. Fi-brillar β-amyloid evokes oxidative damage in a trans-genic mouse model of Alzheimer’s disease. Neuroscience 2001; 104(3): 609-13.
[http://dx.doi.org/10.1016/S0306-4522(01)00115-4] [PMID: 11440793]
[18]
Ashraf GM. Advances in dementia research. Neuropsychology 2019; 64.
[http://dx.doi.org/10.5772/intechopen.78252]
[19]
Urrestarazu E, Iriarte J. Clinical management of sleep disturbances in Alzheimer’s disease: current and emerging strategies. Nat Sci Sleep 2016; 8: 21-33.
[http://dx.doi.org/10.2147/NSS.S76706] [PMID: 26834500]
[20]
Cheignon C, Tomas M, Bonnefont-Rousselot D, Fall-er P, Hureau C, Collin F. Oxidative stress and the am-yloid beta peptide in Alzheimer’s disease. Redox Biol 2018; 14: 450-64.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[21]
Zhao Y, Zhao B. Oxidative stress and the pathogene-sis of Alzheimer’s disease. Oxid Med Cell Longev 2013; 2013: 316523.
[http://dx.doi.org/10.1155/2013/316523]
[22]
Milatovic D, Gupta RC, Aschner M. Anticholinester-ase toxicity and oxidative stress. ScientificWorldJournal 2006; 6: 295-310.
[http://dx.doi.org/10.1100/tsw.2006.38] [PMID: 16518518]
[23]
Stipanuk MH. Sulfur amino acid metabolism: path-ways for production and removal of homocysteine and cysteine. Annu Rev Nutr 2004; 24: 539-77.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132418] [PMID: 15189131]
[24]
Baydas G, Kutlu S, Naziroglu M, et al. Inhibitory ef-fects of melatonin on neural lipid peroxidation in-duced by intracerebroventricularly administered ho-mocysteine. J Pineal Res 2003; 34(1): 36-9.
[http://dx.doi.org/10.1034/j.1600-079X.2003.02939.x] [PMID: 12485370]
[25]
Cankurtaran M, Yesil Y, Kuyumcu ME, et al. Altered levels of homocysteine and serum natural antioxi-dants links oxidative damage to Alzheimer’s disease. J Alzheimers Dis 2013; 33(4): 1051-8.
[http://dx.doi.org/10.3233/JAD-2012-121630] [PMID: 23109556]
[26]
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 2013; 62: 13-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.001] [PMID: 23665395]
[27]
Santos CY, Snyder PJ, Wu W-C, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. Alzheimers Dement (Amst) 2017; 7: 69-87.
[http://dx.doi.org/10.1016/j.dadm.2017.01.005] [PMID: 28275702]
[28]
Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Estab-lishment and dysfunction of the blood-brain barrier. Cell 2015; 163(5): 1064-78.
[http://dx.doi.org/10.1016/j.cell.2015.10.067] [PMID: 26590417]
[29]
Tufi R, Gandhi S, de Castro IP, et al. Enhancing nu-cleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 mod-el of Parkinson’s disease. Nat Cell Biol 2014; 16(2): 157-66.
[http://dx.doi.org/10.1038/ncb2901] [PMID: 24441527]
[30]
Beilina A, Van Der Brug M, Ahmad R, et al. Muta-tions in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci USA 2005; 102(16): 5703-8.
[http://dx.doi.org/10.1073/pnas.0500617102] [PMID: 15824318]
[31]
Du F, Yu Q, Yan S, et al. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 2017; 140(12): 3233-51.
[http://dx.doi.org/10.1093/brain/awx258] [PMID: 29077793]
[32]
Teipel SJ, Meindl T, Grinberg L, et al. The cholinergic system in mild cognitive impairment and Alzheimer’s disease: An in vivo MRI and DTI study. Hum Brain Mapp 2011; 32(9): 1349-62.
[http://dx.doi.org/10.1002/hbm.21111] [PMID: 20672311]
[33]
Grothe M, Heinsen H, Teipel SJ. Atrophy of the cho-linergic Basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry 2012; 71(9): 805-13.
[http://dx.doi.org/10.1016/j.biopsych.2011.06.019] [PMID: 21816388]
[34]
Grothe M, Zaborszky L, Atienza M, et al. Reduction of basal forebrain cholinergic system parallels cogni-tive impairment in patients at high risk of developing Alzheimer’s disease. Cereb Cortex 2010; 20(7): 1685-95.
[http://dx.doi.org/10.1093/cercor/bhp232] [PMID: 19889714]
[35]
Peng S, Wuu J, Mufson EJ, Fahnestock M. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 2005; 93(6): 1412-21.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03135.x] [PMID: 15935057]
[36]
Talib LL, Hototian SR, Joaquim HP, Forlenza OV, Gattaz WF. Increased iPLA2 activity and levels of phosphorylated GSK3B in platelets are associated with donepezil treatment in Alzheimer’s disease pa-tients. Eur Arch Psychiatry Clin Neurosci 2015; 265(8): 701-6.
[http://dx.doi.org/10.1007/s00406-015-0600-6] [PMID: 25920742]
[37]
Sun GY, Xu J, Jensen MD, Simonyi A. Phospholipase A2 in the central nervous system: Implications for neurodegenerative diseases. J Lipid Res 2004; 45(2): 205-13.
[http://dx.doi.org/10.1194/jlr.R300016-JLR200] [PMID: 14657205]
[38]
Schaeffer EL, Forlenza OV, Gattaz WF. Phospho-lipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer dis-ease. Psychopharmacology (Berl) 2009; 202(1-3): 37-51.
[http://dx.doi.org/10.1007/s00213-008-1351-0] [PMID: 18853146]
[39]
Schaeffer EL, da Silva ER, Novaes Bde A, Skaf HD, Gattaz WF. Differential roles of phospholipases A2 in neuronal death and neurogenesis: Implications for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(8): 1381-9.
[http://dx.doi.org/10.1016/j.pnpbp.2010.08.019] [PMID: 20804810]
[40]
Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med 2020; 26(3): 379-86.
[http://dx.doi.org/10.1038/s41591-020-0755-1] [PMID: 32123385]
[41]
Al Mamun A, Uddin MS, Kabir MT, et al. Exploring the promise of targeting ubiquitin-proteasome system to combat Alzheimer’s disease. Neurotox Res 2020; 38(1): 8-17.
[http://dx.doi.org/10.1007/s12640-020-00185-1] [PMID: 32157628]
[42]
Wu J, Fu B, Lei H, Tang H, Wang Y. Gender differ-ences of peripheral plasma and liver metabolic profil-ing in APP/PS1 transgenic AD mice. Neuroscience 2016; 332: 160-9.
[http://dx.doi.org/10.1016/j.neuroscience.2016.06.049] [PMID: 27393253]
[43]
Altunoglu E, Guntas G, Erdenen F, et al. Ischemia-modified albumin and advanced oxidation protein products as potential biomarkers of protein oxidation in Alzheimer’s disease. Geriatr Gerontol Int 2015; 15(7): 872-80.
[http://dx.doi.org/10.1111/ggi.12361] [PMID: 25345484]
[44]
Nativio R, Lan Y, Donahue G, et al. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nat Genet 2020; 1-12.
[http://dx.doi.org/10.1038/s41588-020-0696-0]
[45]
Ghosh A, Mizuno K, Tiwari SS, et al. Alzheimer’s dis-ease-related dysregulation of mRNA translation caus-es key pathological features with ageing. Transl Psychiatry 2020; 10(1): 192.
[http://dx.doi.org/10.1038/s41398-020-00882-7] [PMID: 32546772]
[46]
Xian-hui D, Wei-juan G, Tie-mei S, et al. Age-related changes of brain iron load changes in the frontal cor-tex in APPswe/PS1∆E9 transgenic mouse model of Alzheimer’s disease. J Trace Elem Med Biol 2015; 30: 118-23.
[http://dx.doi.org/10.1016/j.jtemb.2014.11.009] [PMID: 25575693]
[47]
Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998; 158(1): 47-52.
[http://dx.doi.org/10.1016/S0022-510X(98)00092-6] [PMID: 9667777]
[48]
Kabir MT, Uddin MS, Zaman S, et al. Molecular mechanisms of metal toxicity in the pathogenesis of Alzheimer’s disease. Mol Neurobiol 2021; 58(1): 1-20.
[http://dx.doi.org/10.1007/s12035-020-02096-w] [PMID: 32889653]
[49]
Contreras JA, Aslanyan V, Sweeney MD, et al. Func-tional connectivity among brain regions affected in Alzheimer’s disease is associated with CSF TNF-α in APOE4 carriers. Neurobiol Aging 2020; 86: 112-22.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.10.013] [PMID: 31870643]
[50]
Schmukler E, Solomon S, Simonovitch S, et al. Al-tered mitochondrial dynamics and function in AP-OE4-expressing astrocytes. Cell Death Dis 2020; 11(7): 578.
[http://dx.doi.org/10.1038/s41419-020-02776-4] [PMID: 32709881]
[51]
Michaelson DM. APOE ε4 the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement 2014; 10(6): 861-8.
[http://dx.doi.org/10.1016/j.jalz.2014.06.015] [PMID: 25217293]
[52]
Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC. Early role of vascular dysregula-tion on late-onset alzheimer’s disease based on multi-factorial data-driven analysis. Nat Commun 2016; 7(1): 11934.
[http://dx.doi.org/10.1038/ncomms11934] [PMID: 27327500]
[53]
Nortley R, Korte N, Izquierdo P, et al. Amyloid β oli-gomers constrict human capillaries in Alzheimer’s dis-ease via signaling to pericytes. Science 2019; 365(6450): eaav9518.
[http://dx.doi.org/10.1126/science.aav9518] [PMID: 31221773]
[54]
Toda N, Okamura T. Cerebral blood flow regulation by nitric oxide in Alzheimer’s disease. J Alzheimers Dis 2012; 32(3): 569-78.
[http://dx.doi.org/10.3233/JAD-2012-120670] [PMID: 22810094]
[55]
Corzo L, Zas R, Rodríguez S, Fernández-Novoa L, Cacabelos R. Decreased levels of serum nitric oxide in different forms of dementia. Neurosci Lett 2007; 420(3): 263-7.
[http://dx.doi.org/10.1016/j.neulet.2007.05.008] [PMID: 17556102]
[56]
Uddin MS, Kabir MT, Mamun AA, et al. Pharmaco-logical approaches to mitigate neuroinflammation in Alzheimer’s disease. Int Immunopharmacol 2020; 84: 106479.
[http://dx.doi.org/10.1016/j.intimp.2020.106479] [PMID: 32353686]
[57]
Prinz M, Priller J, Sisodia SS, Ransohoff RM. Hetero-geneity of CNS myeloid cells and their roles in neuro-degeneration. Nat Neurosci 2011; 14(10): 1227-35.
[http://dx.doi.org/10.1038/nn.2923] [PMID: 21952260]
[58]
Hartz AM, Bauer B, Soldner EL, et al. Amyloid-β contributes to blood-brain barrier leakage in transgen-ic human amyloid precursor protein mice and in hu-mans with cerebral amyloid angiopathy. Stroke 2012; 43(2): 514-23.
[http://dx.doi.org/10.1161/STROKEAHA.111.627562] [PMID: 22116809]
[59]
Musicco C, Capelli V, Pesce V, et al. Accumulation of overoxidized peroxiredoxin III in aged rat liver mito-chondria. Biochim Biophys Acta 2009; 1787(7): 890-6.
[http://dx.doi.org/10.1016/j.bbabio.2009.03.002] [PMID: 19272351]
[60]
Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO. Pro-inflammatory interleukin-18 increases Alz-heimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 2012; 9(1): 199.
[http://dx.doi.org/10.1186/1742-2094-9-199] [PMID: 22898493]
[61]
Sutinen EM, Korolainen MA, Häyrinen J, et al. Inter-leukin-18 alters protein expressions of neurodegenera-tive diseases-linked proteins in human SH-SY5Y neu-ron-like cells. Front Cell Neurosci 2014; 8: 214.
[http://dx.doi.org/10.3389/fncel.2014.00214] [PMID: 25147500]
[62]
Oakley R, Tharakan B. Vascular hyperpermeability and aging. Aging Dis 2014; 5(2): 114-25.
[PMID: 24729937]
[63]
McColl BW, Rose N, Robson FH, Rothwell NJ, Law-rence CB. Increased brain microvascular MMP-9 and incidence of haemorrhagic transformation in obese mice after experimental stroke. J Cereb Blood Flow Metab 2010; 30(2): 267-72.
[http://dx.doi.org/10.1038/jcbfm.2009.217] [PMID: 19826431]
[64]
Sabio G, Davis RJ. TNF and MAP kinase signalling pathways. Semin Immunol 2014; 26(3): 237-45.
[http://dx.doi.org/10.1016/j.smim.2014.02.009]
[65]
Decourt B, Lahiri DK, Sabbagh MN. Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr Alzheimer Res 2017; 14(4): 412-25.
[http://dx.doi.org/10.2174/1567205013666160930110551] [PMID: 27697064]
[66]
Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K. Cell mediators of inflammation in the Alz-heimer disease brain. Alzheimer Dis Assoc Disord 2000; 14(Suppl. 1): S47-53.
[http://dx.doi.org/10.1097/00002093-200000001-00008] [PMID: 10850730]
[67]
Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009; 73(10): 768-74.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bb95] [PMID: 19738171]
[68]
Holmes C, Cunningham C, Zotova E, Culliford D, Perry VH. Proinflammatory cytokines, sickness be-havior, and Alzheimer disease. Neurology 2011; 77(3): 212-8.
[http://dx.doi.org/10.1212/WNL.0b013e318225ae07] [PMID: 21753171]
[69]
Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997; 48(3): 626-32.
[http://dx.doi.org/10.1212/WNL.48.3.626] [PMID: 9065537]
[70]
McGeer PL, Rogers J, McGeer EG. Inflammation, antiinflammatory agents, and Alzheimer’s disease: the last 22 years. J Alzheimers Dis 2016; 54(3): 853-7.
[http://dx.doi.org/10.3233/JAD-160488] [PMID: 27716676]
[71]
Hein AM, O’Banion MK. Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol 2009; 40(1): 15-32.
[http://dx.doi.org/10.1007/s12035-009-8066-z] [PMID: 19365736]
[72]
Santiago JA, Potashkin JA. The impact of disease comorbidities in Alzheimer’s disease. Front Aging Neurosci 2021; 13: 631770.
[http://dx.doi.org/10.3389/fnagi.2021.631770] [PMID: 33643025]
[73]
Böni-Schnetzler M, Thorne J, Parnaud G, et al. In-creased interleukin (IL)-1β messenger ribonucleic acid expression in β -cells of individuals with type 2 diabe-tes and regulation of IL-1β in human islets by glucose and autostimulation. J Clin Endocrinol Metab 2008; 93(10): 4065-74.
[http://dx.doi.org/10.1210/jc.2008-0396] [PMID: 18664535]
[74]
Deckers K, Schievink SHJ, Rodriquez MMF, et al. Coronary heart disease and risk for cognitive impair-ment or dementia: Systematic review and meta-analysis. PLoS One 2017; 12(9): e0184244.
[http://dx.doi.org/10.1371/journal.pone.0184244] [PMID: 28886155]
[75]
Srivastava S, Ahmad R, Khare SK. Alzheimer’s dis-ease and its treatment by different approaches: A re-view. Eur J Med Chem 2021; 216: 113320.
[http://dx.doi.org/10.1016/j.ejmech.2021.113320] [PMID: 33652356]
[76]
Pardridge WM. Treatment of Alzheimer’s disease and blood-brain barrier drug delivery. Pharmaceuticals (Basel) 2020; 13(11): 394.
[http://dx.doi.org/10.3390/ph13110394] [PMID: 33207605]
[77]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on ag-ing-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[78]
Colovic MB, Krstic DZ, Lazarevic-Pašti TD, Bondžic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315-35.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[79]
Di Iorio G, Baroni G, Lorusso M, Montemitro C, Spano MC, di Giannantonio M. Efficacy of meman-tine in schizophrenic patients: A systematic review. J Amino Acids 2017; 2017: 7021071.
[http://dx.doi.org/10.1155/2017/7021071]
[80]
Series MH, Micromedex T, Village G. Colorado.Trimethoprim-sulfamethoxazo 2004.
[81]
Olivares D, Deshpande VK, Shi Y, et al. N-methyl D-aspartate (NMDA) receptor antagonists and meman-tine treatment for Alzheimer’s disease, vascular de-mentia and Parkinson’s disease. Curr Alzheimer Res 2012; 9(6): 746-58.
[http://dx.doi.org/10.2174/156720512801322564] [PMID: 21875407]
[82]
Bakiri Y, Hamilton NB, Káradóttir R, Attwell D. Test-ing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia 2008; 56(2): 233-40.
[http://dx.doi.org/10.1002/glia.20608] [PMID: 18046734]
[83]
Zheng W, Zhu X-M, Zhang Q-E, et al. Adjunctive memantine for major mental disorders: A systematic review and meta-analysis of randomized double-blind controlled trials. Schizophr Res 2019; 209: 12-21.
[http://dx.doi.org/10.1016/j.schres.2019.05.019] [PMID: 31164254]
[84]
Seeman P, Caruso C, Lasaga M. Memantine agonist action at dopamine D2High receptors. Synapse 2008; 62(2): 149-53.
[http://dx.doi.org/10.1002/syn.20472] [PMID: 18000814]
[85]
Matsunaga S, Kishi T, Iwata N. Memantine mono-therapy for Alzheimer’s disease: A systematic review and meta-analysis. PLoS One 2015; 10(4): e0123289.
[http://dx.doi.org/10.1371/journal.pone.0123289] [PMID: 25860130]
[86]
Matsunaga S, Kishi T, Iwata N. Combination therapy with cholinesterase inhibitors and memantine for Alz-heimer’s disease: A systematic review and meta-analysis. Int J Neuropsychopharmacol 2014; 18(5): pyu115.
[PMID: 25548104]
[87]
Kishi T, Matsunaga S, Oya K, Ikuta T, Iwata N. Pro-tection against brain atrophy by anti-dementia medi-cation in mild cognitive impairment and Alzheimer’s disease: Meta-analysis of longitudinal randomized placebo-controlled trials. Int J Neuropsychopharmacol 2015; 18(12): pyv070.
[http://dx.doi.org/10.1093/ijnp/pyv070] [PMID: 26091818]
[88]
Chen S-L, Tao P-L, Chu C-H, et al. Low-dose me-mantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic ef-fects in rats. J Neuroimmune Pharmacol 2012; 7(2): 444-53.
[http://dx.doi.org/10.1007/s11481-011-9337-9] [PMID: 22205542]
[89]
Rao VLR, Dogan A, Todd KG, Bowen KK, Dempsey RJ. Neuroprotection by memantine, a non-competitive NMDA receptor antagonist after trau-matic brain injury in rats. Brain Res 2001; 911(1): 96-100.
[http://dx.doi.org/10.1016/S0006-8993(01)02617-8] [PMID: 11489449]
[90]
Lipton SA. The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2005; 2(2): 155-65.
[http://dx.doi.org/10.2174/1567205053585846] [PMID: 15974913]
[91]
Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 2006; 5(2): 160-70.
[http://dx.doi.org/10.1038/nrd1958] [PMID: 16424917]
[92]
Parsons CG, Stöffler A, Danysz W. Memantine: A NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic sys-tem--too little activation is bad, too much is even worse. Neuropharmacology 2007; 53(6): 699-723.
[http://dx.doi.org/10.1016/j.neuropharm.2007.07.013] [PMID: 17904591]
[93]
Wang X, Blanchard J, Grundke-Iqbal I, Iqbal K. Me-mantine attenuates Alzheimer’s disease-like patholo-gy and cognitive impairment. PLoS One 2015; 10(12): e0145441.
[http://dx.doi.org/10.1371/journal.pone.0145441] [PMID: 26697860]
[94]
Martinez-Coria H, Green KN, Billings LM, et al. Me-mantine improves cognition and reduces Alzheimer’s-like neuropathology in transgenic mice. Am J Pathol 2010; 176(2): 870-80.
[http://dx.doi.org/10.2353/ajpath.2010.090452] [PMID: 20042680]
[95]
Scholtzova H, Wadghiri YZ, Douadi M, et al. Me-mantine leads to behavioral improvement and amy-loid reduction in Alzheimer’s-disease-model transgen-ic mice shown as by micromagnetic resonance imag-ing. J Neurosci Res 2008; 86(12): 2784-91.
[http://dx.doi.org/10.1002/jnr.21713] [PMID: 18615702]
[96]
Nagakura A, Shitaka Y, Yarimizu J, Matsuoka N. Characterization of cognitive deficits in a transgenic mouse model of Alzheimer’s disease and effects of donepezil and memantine. Eur J Pharmacol 2013; 703(1-3): 53-61.
[http://dx.doi.org/10.1016/j.ejphar.2012.12.023] [PMID: 23276665]
[97]
Alley GM, Bailey JA, Chen D, et al. Memantine low-ers amyloid-β peptide levels in neuronal cultures and in APP/PS1 transgenic mice. J Neurosci Res 2010; 88(1): 143-54.
[http://dx.doi.org/10.1002/jnr.22172] [PMID: 19642202]
[98]
Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treat-ing dementia: evidence review for a clinical practice guideline. Ann Intern Med 2008; 148(5): 379-97.
[http://dx.doi.org/10.7326/0003-4819-148-5-200803040-00009] [PMID: 18316756]
[99]
McShane R, Westby MJ, Roberts E, et al. Memantine for dementia. Cochrane Database of systematic reviews 2019; (3): CD003154.
[http://dx.doi.org/10.1002/14651858.CD003154.pub6]
[100]
Zhou X, Wang L, Xiao W, et al. Memantine Improves Cognitive Function and Alters Hippocampal and Cor-tical Proteome in Triple Transgenic Mouse Model of Alzheimer’s Disease. Exp Neurobiol 2019; 28(3): 390-403.
[http://dx.doi.org/10.5607/en.2019.28.3.390] [PMID: 31308798]
[101]
Övey İS,Nazıroğlu M. Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer’s disease. Journal of Receptors and Signal Transduction 2020; 1(11)
[102]
Stazi M, Wirths O. Chronic memantine treatment ameliorates behavioral deficits, neuron loss, and im-paired neurogenesis in a model of Alzheimer’s dis-ease. Mol Neurobiol 2020; 1-13.
[PMID: 32914393]
[103]
Valis M, Herman D, Vanova N, et al. The concentra-tion of memantine in the cerebrospinal fluid of pa-tients with Alzheimer´ s disease and its consequence to oxidative stress biomarkers. Front Pharmacol 2019; 10: 943.
[http://dx.doi.org/10.3389/fphar.2019.00943] [PMID: 31555132]
[104]
Doody RS, Tariot PN, Pfeiffer E, Olin JT, Graham SM. Meta-analysis of six-month memantine trials in Alz-heimer’s disease. Alzheimers Dement 2007; 3(1): 7-17.
[http://dx.doi.org/10.1016/j.jalz.2006.10.004] [PMID: 19595910]
[105]
Ishikawa I, Shinno H, Ando N, Mori T, Nakamura Y. The effect of memantine on sleep architecture and psychiatric symptoms in patients with Alzheimer’s disease. Acta Neuropsychiatr 2016; 28(3): 157-64.
[http://dx.doi.org/10.1017/neu.2015.61] [PMID: 26572055]
[106]
Dong H, Yuede CM, Coughlan C, Lewis B, Csernan-sky JG. Effects of memantine on neuronal structure and conditioned fear in the Tg2576 mouse model of Alzheimer’s disease. Neuropsychopharmacology 2008; 33(13): 3226-36.
[http://dx.doi.org/10.1038/npp.2008.53] [PMID: 18418360]
[107]
Ettcheto M, Sánchez-López E, Gómez-Mínguez Y, et al. Peripheral and central effects of memantine in a mixed preclinical mice model of obesity and familial Alzheimer’s disease. Mol Neurobiol 2018; 55(9): 7327-39.
[http://dx.doi.org/10.1007/s12035-018-0868-4] [PMID: 29404958]
[108]
Bahramian A, Rastegar K, Namavar MR, Moosavi M. Insulin potentiates the therapeutic effect of me-mantine against central STZ-induced spatial learning and memory deficit. Behav Brain Res 2016; 311: 247-54.
[http://dx.doi.org/10.1016/j.bbr.2016.05.046] [PMID: 27233828]
[109]
Wang J, Gu BJ, Masters CL, Wang Y-J. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 2017; 13(10): 612-23.
[http://dx.doi.org/10.1038/nrneurol.2017.111] [PMID: 28960209]
[110]
Rajasekar N, Nath C, Hanif K, Shukla R. Inhibitory effect of memantine on streptozotocin-induced insu-lin receptor dysfunction, neuroinflammation, amyloi-dogenesis, and neurotrophic factor decline in astro-cytes. Mol Neurobiol 2016; 53(10): 6730-44.
[http://dx.doi.org/10.1007/s12035-015-9576-5] [PMID: 26660109]
[111]
Roshanravan H, Kim EY, Dryer SE. NMDA receptors as potential therapeutic targets in diabetic nephropa-thy: Increased renal NMDA receptor subunit expres-sion in Akita mice and reduced nephropathy follow-ing sustained treatment with memantine or MK-801. Diabetes 2016; 65(10): 3139-50.
[http://dx.doi.org/10.2337/db16-0209] [PMID: 27388219]
[112]
White MF. IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obes Metab 2014; 16(Suppl. 1): 4-15.
[http://dx.doi.org/10.1111/dom.12347] [PMID: 25200290]
[113]
Baquedano E, Burgos-Ramos E, Canelles S, et al. Increased oxidative stress and apoptosis in the hypo-thalamus of diabetic male mice in the insulin receptor substrate-2 knockout model. Dis Model Mech 2016; 9(5): 573-83.
[http://dx.doi.org/10.1242/dmm.023515] [PMID: 27013528]
[114]
Misztal M, Frankiewicz T, Parsons CG, Danysz W. Learning deficits induced by chronic intraventricular infusion of quinolinic acid-protection by MK-801 and memantine. Eur J Pharmacol 1996; 296(1): 1-8.
[http://dx.doi.org/10.1016/0014-2999(95)00682-6] [PMID: 8720470]
[115]
Zajaczkowski W, Quack G, Danysz W. Infusion of (+) -MK-801 and memantine-contrasting effects on radi-al maze learning in rats with entorhinal cortex lesion. Eur J Pharmacol 1996; 296(3): 239-46.
[http://dx.doi.org/10.1016/0014-2999(95)00716-4] [PMID: 8904075]
[116]
Lang UE, Mühlbacher M, Hesselink MB, et al. No nerve growth factor response to treatment with me-mantine in adult rats. J Neural Transm (Vienna) 2004; 111(2): 181-90.
[http://dx.doi.org/10.1007/s00702-003-0090-y] [PMID: 14767721]
[117]
Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL. Memantine protects against LPS-induced neuroinflammation, restores be-haviorally-induced gene expression and spatial learn-ing in the rat. Neuroscience 2006; 142(4): 1303-15.
[http://dx.doi.org/10.1016/j.neuroscience.2006.08.017] [PMID: 16989956]
[118]
Ito K, Tatebe T, Suzuki K, et al. Memantine reduces the production of amyloid-β peptides through modu-lation of amyloid precursor protein trafficking. Eur J Pharmacol 2017; 798: 16-25.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.001] [PMID: 28167259]
[119]
Mehta S, Chandersekhar K, Prasadrao G, et al. Safety and efficacy of donepezil hydrochloride in patients with mild to moderate Alzheimer’s disease: Findings of an observational study. Indian J Psychiatry 2012; 54(4): 337-43.
[http://dx.doi.org/10.4103/0019-5545.104820] [PMID: 23372236]
[120]
Blanco-Silvente L, Castells X, Saez M, et al. Discon-tinuation, efficacy, and safety of cholinesterase inhib-itors for Alzheimer’s disease: A meta-analysis and meta-regression of 43 randomized clinical trials enrol-ling 16 106 patients. Int J Neuropsychopharmacol 2017; 20(7): 519-28.
[http://dx.doi.org/10.1093/ijnp/pyx012] [PMID: 28201726]
[121]
Jia J, Wei C, Jia L, et al. Efficacy and safety of donepezil in Chinese patients with severe Alzheimer’s disease: A randomized controlled trial. J Alzheimers Dis 2017; 56(4): 1495-504.
[http://dx.doi.org/10.3233/JAD-161117] [PMID: 28157100]
[122]
Tiseo PJ, Perdomo CA, Friedhoff LT. Metabolism and elimination of 14C-donepezil in healthy volunteers: A single-dose study. Br J Clin Pharmacol 1998; 46(Suppl. 1): 19-24.
[http://dx.doi.org/10.1046/j.1365-2125.1998.0460s1019.x] [PMID: 9839761]
[123]
Tiseo PJ, Foley K, Friedhoff LT. An evaluation of the pharmacokinetics of donepezil HCl in patients with moderately to severely impaired renal function. Br J Clin Pharmacol 1998; 46(Suppl. 1): 56-60.
[http://dx.doi.org/10.1046/j.1365-2125.1998.0460s1056.x] [PMID: 9839768]
[124]
Marucci G, Moruzzi M, Amenta F. Donepezil in the treatment of Alzheimer’s disease. In: Martin CR, Preedy VR, Eds Diagnosis and Management in DementiaAcademic Press 2020; pp. 495-510.
[http://dx.doi.org/10.1016/B978-0-12-815854-8.00031-8]
[125]
Rogers SL, Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US multicentre, randomized, double-blind, place-bo-controlled trial. Dementia 1996; 7(6): 293-303.
[PMID: 8915035]
[126]
Arai H, Hashimoto N, Sumitomo K, Takase T, Ishii M. Disease state changes and safety of long-term donepezil hydrochloride administration in patients with Alzheimer’s disease: Japan-Great Outcome of Long-term trial with Donepezil (J-GOLD). Psychogeriatrics 2018; 18(5): 402-11.
[http://dx.doi.org/10.1111/psyg.12340] [PMID: 29993162]
[127]
Noetzli M, Eap CB. Pharmacodynamic, pharmacoki-netic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin Pharmacokinet 2013; 52(4): 225-41.
[http://dx.doi.org/10.1007/s40262-013-0038-9] [PMID: 23408070]
[128]
Cacabelos R. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat 2007; 3(3): 303-33.
[PMID: 19300564]
[129]
Lu J, Wan L, Zhong Y, et al. Stereoselective metabo-lism of donepezil and steady-state plasma concentra-tions of S-donepezil based on CYP2D6 polymor-phisms in the therapeutic responses of Han Chinese patients with Alzheimer’s disease. J Pharmacol Sci 2015; 129(3): 188-95.
[http://dx.doi.org/10.1016/j.jphs.2015.10.010] [PMID: 26603528]
[130]
Saumier D, Murtha S, Bergman H, Phillips N, White-head V, Chertkow H. Cognitive predictors of donepezil therapy response in Alzheimer disease. Dement Geriatr Cogn Disord 2007; 24(1): 28-35.
[http://dx.doi.org/10.1159/000102569] [PMID: 17495473]
[131]
Cacabelos R, Torrellas C, Carrera I. Opportunities in pharmacogenomics for the treatment of Alzheimer’s disease. Future Neurol 2015; 10(3): 229-52.
[http://dx.doi.org/10.2217/fnl.15.12]
[132]
Jann MW, Shirley KL, Small GW. Clinical pharmaco-kinetics and pharmacodynamics of cholinesterase in-hibitors. Clin Pharmacokinet 2002; 41(10): 719-39.
[http://dx.doi.org/10.2165/00003088-200241100-00003] [PMID: 12162759]
[133]
Kim HG, Moon M, Choi JG, et al. Donepezil inhibits the amyloid-beta oligomer-induced microglial activa-tion in vitro and in vivo. Neurotoxicology 2014; 40: 23-32.
[http://dx.doi.org/10.1016/j.neuro.2013.10.004] [PMID: 24189446]
[134]
Kim SH, Kandiah N, Hsu JL, Suthisisang C, Udom-mongkol C, Dash A. Beyond symptomatic effects: potential of donepezil as a neuroprotective agent and disease modifier in Alzheimer’s disease. Br J Pharmacol 2017; 174(23): 4224-32.
[http://dx.doi.org/10.1111/bph.14030] [PMID: 28901528]
[135]
Jia J, Wei C, Chen W, et al. Safety and efficacy of donepezil 10 mg/day in patients with mild to moder-ate Alzheimer’s disease. J Alzheimers Dis 2020; 1-13.
[136]
Rocca P, Cocuzza E, Marchiaro L, Bogetto F. Donepezil in the treatment of Alzheimer’s disease: long-term efficacy and safety. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26(2): 369-73.
[http://dx.doi.org/10.1016/S0278-5846(01)00283-4] [PMID: 11817515]
[137]
Yiannopoulou KG, Anastasiou AI, Kyrozis A, Anasta-siou IP. Donepezil treatment for Alzheimer’s disease in chronic dialysis patients. Case Rep Nephrol Dial 2019; 9(3): 126-36.
[http://dx.doi.org/10.1159/000502682] [PMID: 31616673]
[138]
Zhou X, Xiao W, Su Z, et al. Hippocampal proteomic alteration in triple transgenic mouse model of Alz-heimer’s disease and implication of PINK 1 regulation in donepezil treatment. J Proteome Res 2019; 18(4): 1542-52.
[http://dx.doi.org/10.1021/acs.jproteome.8b00818] [PMID: 30484658]
[139]
Cavedo E, Grothe MJ, Colliot O, et al. Reduced basal forebrain atrophy progression in a randomized Donepezil trial in prodromal Alzheimer’s disease. Sci Rep 2017; 7(1): 11706.
[http://dx.doi.org/10.1038/s41598-017-09780-3] [PMID: 28916821]
[140]
Atukeren P, Cengiz M, Yavuzer H, et al. The efficacy of donepezil administration on acetylcholinesterase activity and altered redox homeostasis in Alzheimer’s disease. Biomed Pharmacother 2017; 90: 786-95.
[http://dx.doi.org/10.1016/j.biopha.2017.03.101] [PMID: 28427041]
[141]
Arias E, Gallego-Sandín S, Villarroya M, García AG, López MG. Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblas-toma cells: role of nicotinic receptors. J Pharmacol Exp Ther 2005; 315(3): 1346-53.
[http://dx.doi.org/10.1124/jpet.105.090365] [PMID: 16144975]
[142]
Kimura M, Akasofu S, Ogura H, Sawada K. Protec-tive effect of donepezil against Abeta(1-40) neurotox-icity in rat septal neurons. Brain Res 2005; 1047(1): 72-84.
[http://dx.doi.org/10.1016/j.brainres.2005.04.014] [PMID: 15893738]
[143]
Kotani S, Yamauchi T, Teramoto T, Ogura H. Donepezil, an acetylcholinesterase inhibitor, enhances adult hippocampal neurogenesis. Chem Biol Interact 2008; 175(1-3): 227-30.
[http://dx.doi.org/10.1016/j.cbi.2008.04.004] [PMID: 18501884]
[144]
Eimar H, Alebrahim S, Manickam G, et al. Donepezil regulates energy metabolism and favors bone mass accrual. Bone 2016; 84: 131-8.
[http://dx.doi.org/10.1016/j.bone.2015.12.009] [PMID: 26719214]
[145]
Winblad B, Machado JC. Use of rivastigmine trans-dermal patch in the treatment of Alzheimer’s disease. Expert Opin Drug Deliv 2008; 5(12): 1377-86.
[http://dx.doi.org/10.1517/17425240802542690] [PMID: 19040398]
[146]
Winblad B, Cummings J, Andreasen N, et al. A six-month double-blind, randomized, placebo-controlled study of a transdermal patch in Alzheimer’s disease--rivastigmine patch versus capsule. Int J Geriatr Psychiatry 2007; 22(5): 456-67.
[PMID: 17380489]
[147]
Nguyen K, Hoffman H, Chakkamparambil B, Gross-berg GT. Evaluation of rivastigmine in Alzheimer’s disease. Neurodegener Dis Manag 2021; 11(1): 35-48.
[http://dx.doi.org/10.2217/nmt-2020-0052] [PMID: 33198569]
[148]
Polinsky RJ. Clinical pharmacology of rivastigmine: A new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther 1998; 20(4): 634-47.
[http://dx.doi.org/10.1016/S0149-2918(98)80127-6] [PMID: 9737824]
[149]
Mora-Navarro MA, Rincón-Sánchez AR, Pacheco-Moisés FP, et al. Nutritional status in patients with probable Alzheimer’s disease: Effect of Rivastigmine. J Nutr Health Aging 2021; 25(3): 340-6.
[http://dx.doi.org/10.1007/s12603-020-1519-9] [PMID: 33575726]
[150]
Birks JS, Grimley Evans J. Rivastigmine for Alz-heimer’s disease. Cochrane Database Syst Rev 2015; (4): CD001191.
[PMID: 25858345]
[151]
Ismail MF, Elmeshad AN, Salem NA-H. Potential therapeutic effect of nanobased formulation of ri-vastigmine on rat model of Alzheimer’s disease. Int J Nanomedicine 2013; 8: 393-406.
[http://dx.doi.org/10.2147/IJN.S39232] [PMID: 23378761]
[152]
Rösler M, Anand R, Cicin-Sain A, et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: International randomised controlled trial. BMJ 1999; 318(7184): 633-8.
[http://dx.doi.org/10.1136/bmj.318.7184.633] [PMID: 10066203]
[153]
Ali TB, Schleret TR, Reilly BM, Chen WY, Abagyan R. Adverse effects of cholinesterase inhibitors in de-mentia, according to the pharmacovigilance data-bases of the United-States and Canada. PLoS One 2015; 10(12): e0144337.
[http://dx.doi.org/10.1371/journal.pone.0144337] [PMID: 26642212]
[154]
Sadowsky CH, Micca JL, Grossberg GT, Velting DM. Rivastigmine from capsules to patch: therapeutic advances in the management of Alzheimer’s disease and Parkinson’s disease dementia. Prim Care Companion CNS Disord 2014; 16(5): 10.4088/PCC.14r01654.http://dx.doi.org/10.4088/PCC.14r01654
[PMID: 25667813]
[155]
Furiya Y, Tomiyama T, Izumi T, Ohba N, Ueno S. Rivastigmine improves appetite by increasing the plasma acyl/Des-Acyl ghrelin ratio and cortisol in Alzheimer disease. Dement Geriatr Cogn Disord Extra 2018; 8(1): 77-84.
[http://dx.doi.org/10.1159/000487358] [PMID: 29706984]
[156]
Potkin SG, Anand R, Fleming K, et al. Brain metabol-ic and clinical effects of rivastigmine in Alzheimer’s disease. Int J Neuropsychopharmacol 2001; 4(3): 223-30.
[http://dx.doi.org/10.1017/S1461145701002528] [PMID: 11602028]
[157]
Modrego PJ, Pina MA, Fayed N, Díaz M. Changes in metabolite ratios after treatment with rivastigmine in Alzheimer’s disease: A nonrandomised controlled trial with magnetic resonance spectroscopy. CNS Drugs 2006; 20(10): 867-77.
[http://dx.doi.org/10.2165/00023210-200620100-00006] [PMID: 16999455]
[158]
Feldman HH, Lane R. Rivastigmine: A placebo con-trolled trial of twice daily and three times daily regi-mens in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2007; 78(10): 1056-63.
[http://dx.doi.org/10.1136/jnnp.2006.099424] [PMID: 17353259]
[159]
Jia J, Ji Y, Feng T, et al. Sixteen-week interventional study to evaluate the clinical effects and safety of ri-vastigmine capsules in Chinese patients with Alz-heimer’s disease. J Alzheimers Dis 2019; 72(4): 1313-22.
[http://dx.doi.org/10.3233/JAD-190791] [PMID: 31744005]
[160]
Nisticò R, Borg JJ. Aducanumab for Alzheimer’s dis-ease: A regulatory perspective. Pharmacol Res 2021; 171: 105754.
[http://dx.doi.org/10.1016/j.phrs.2021.105754] [PMID: 34217830]
[161]
Schneider L. A resurrection of aducanumab for Alz-heimer’s disease. Lancet Neurol 2020; 19(2): 111-2.
[http://dx.doi.org/10.1016/S1474-4422(19)30480-6] [PMID: 31978357]
[162]
Arndt JW, Qian F, Smith BA, et al. Structural and ki-netic basis for the selectivity of aducanumab for ag-gregated forms of amyloid-β. Sci Rep 2018; 8(1): 6412.
[http://dx.doi.org/10.1038/s41598-018-24501-0] [PMID: 29686315]
[163]
Ferrero J, Williams L, Stella H, et al. First-in-human, double-blind, placebo-controlled, single-dose escala-tion study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement (N Y) 2016; 2(3): 169-76.
[http://dx.doi.org/10.1016/j.trci.2016.06.002] [PMID: 29067304]
[164]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s dis-ease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[165]
Lannfelt L, Söderberg L, Laudon H, et al. BAN2401 shows stronger binding to soluble aggregated amyloid-beta species than aducanumab. Alzheimers Dement 2019; 15(7): 1601-2.
[http://dx.doi.org/10.1016/j.jalz.2019.09.068]
[166]
Bohrmann B, Baumann K, Benz J, et al. Gantene-rumab: A novel human anti-Aβ antibody demon-strates sustained cerebral amyloid-β binding and elic-its cell-mediated removal of human amyloid-β. J Alzheimers Dis 2012; 28(1): 49-69.
[http://dx.doi.org/10.3233/JAD-2011-110977] [PMID: 21955818]
[167]
Ostrowitzki S, Lasser RA, Dorflinger E, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther 2017; 9(1): 95.
[http://dx.doi.org/10.1186/s13195-017-0318-y] [PMID: 29221491]
[168]
Logovinsky V, Satlin A, Lai R, et al. Safety and toler-ability of BAN2401--a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimers Res Ther 2016; 8(1): 14.
[http://dx.doi.org/10.1186/s13195-016-0181-2] [PMID: 27048170]
[169]
Haeberlein SB, von Hehn C, Tian Y, et al. EMERGE and ENGAGE Topline Results: Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. 2020 Alzheimer’s Association International Conference.
[http://dx.doi.org/10.1002/alz.047259]
[170]
Sevigny J. Aducanumab removes β-amyloid plaques and slows clinical decline in Alzheimer’s disease. Nature 2016; 537: 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy