Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

The Antibacterial Activity of Natural-derived Flavonoids

Author(s): Zhenyou Tan*, Jun Deng, Qiongxian Ye and Zhenfeng Zhang

Volume 22, Issue 12, 2022

Published on: 07 March, 2022

Page: [1009 - 1019] Pages: 11

DOI: 10.2174/1568026622666220221110506

Price: $65

Abstract

Flavonoids, a wide variety of phenolic secondary metabolites, are found in almost all plant families in the leaves, stems, roots, flowers, and seeds. Flavonoids could exert antibacterial activity via damaging the cytoplasmic membrane, inhibiting energy metabolism, and inhibiting the synthesis of nucleic acids, so flavonoids are considered constitutive antibacterial substances. This review aims to outline the recent advances of natural-derived flavonoids, including flavonoid glycosides with antibacterial potential to provide novel antibacterial lead hits/candidates, covering articles published between January 2016 and July 2021.

Keywords: Flavonoids, Glycosides, Natural products, Antibacterial activity, Phenolic secondary metabolites, Plant.

Next »
Graphical Abstract
[1]
Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol., 2020, 18(5), 275-285.
[http://dx.doi.org/10.1038/s41579-019-0288-0] [PMID: 31745331]
[2]
Vila, J.; Moreno-Morales, J.; Ballesté-Delpierre, C. Current landscape in the discovery of novel antibacterial agents. Clin. Microbiol. Infect., 2020, 26(5), 596-603.
[http://dx.doi.org/10.1016/j.cmi.2019.09.015] [PMID: 31574341]
[3]
Theuretzbacher, U.; Bush, K.; Harbarth, S.; Paul, M.; Rex, J.H.; Tacconelli, E.; Thwaites, G.E. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol., 2020, 18(5), 286-298.
[http://dx.doi.org/10.1038/s41579-020-0340-0] [PMID: 32152509]
[4]
Jampilek, J. Design and discovery of new antibacterial agents: Advances, perspectives, challenges. Curr. Med. Chem., 2018, 25(38), 4972-5006.
[http://dx.doi.org/10.2174/0929867324666170918122633] [PMID: 28925868]
[5]
Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial re-sistance to antimicrobial agents. Antibiotics (Basel), 2021, 10(5), e593.
[http://dx.doi.org/10.3390/antibiotics10050593] [PMID: 34067579]
[6]
Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 2017, 33(3), 300-305.
[http://dx.doi.org/10.4103/joacp.JOACP_349_15] [PMID: 29109626]
[7]
Kakoullis, L.; Papachristodoulou, E.; Chra, P.; Panos, G. Mechanisms of antibiotic resistance in important Gram-positive and Gram-negative pathogens and novel antibiotic solutions. Antibiotics (Basel), 2021, 10(4), e415.
[http://dx.doi.org/10.3390/antibiotics10040415] [PMID: 33920199]
[8]
Nikaido, H.; Pagès, J.M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol. Rev., 2012, 36(2), 340-363.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00290.x] [PMID: 21707670]
[9]
Popova, K.B.; Valsamatzi-Panagiotou, A.; Penchovsky, R. New drug discovery strategies for targeting drug-resistant bacteria. Environ. Chem. Lett., 2021, 19(3), 1995-2004.
[http://dx.doi.org/10.1007/s10311-021-01181-3]
[10]
Gatadi, S.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg. Chem., 2019, 92, 103252.
[http://dx.doi.org/10.1016/j.bioorg.2019.103252] [PMID: 31518761]
[11]
Reck, F.; Jansen, J.M.; Moser, H.E. Challenges of antibacterial drug discovery Reck, Folkert; Jansen, Johanna M.; Moser, Heinz E. ARKIVOC, 2019, 2019(4), 227-244.
[http://dx.doi.org/10.24820/ark.5550190.p010.955]
[12]
Xu, Z.Q.; Xu, Z.Y. [Recent progress in development of antibiotics against Gram-negative bacteria]. Yao Xue Xue Bao, 2013, 48(7), 993-1004.
[PMID: 24133966]
[13]
Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol., 2019, 52, 1-8.
[http://dx.doi.org/10.1016/j.cbpa.2018.12.007] [PMID: 30682725]
[14]
Garg, S.; Roy, A. A current perspective of plants as an antibacterial agent: A review. Curr. Pharm. Biotechnol., 2020, 21(15), 1588-1602.
[http://dx.doi.org/10.2174/1389201021666200622121249] [PMID: 32568018]
[15]
Gatadi, S.; Gour, J.; Nanduri, S. Natural product derived promising anti-MRSA drug leads: A review. Bioorg. Med. Chem., 2019, 27(17), 3760-3774.
[http://dx.doi.org/10.1016/j.bmc.2019.07.023] [PMID: 31324564]
[16]
Dai, J.; Han, R.; Xu, Y.; Li, N.; Wang, J.; Dan, W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg. Chem., 2020, 101, 103922.
[http://dx.doi.org/10.1016/j.bioorg.2020.103922] [PMID: 32559577]
[17]
Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 2021, 26(13), e4021.
[http://dx.doi.org/10.3390/molecules26134021] [PMID: 34209338]
[18]
Hussain, Y.; Luqman, S.; Meena, A. Research progress in flavonoids as potential anticancer drug including synergy with other approach-es. Curr. Top. Med. Chem., 2020, 20(20), 1791-1809.
[http://dx.doi.org/10.2174/1568026620666200502005411] [PMID: 32357817]
[19]
Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections-a review. Food Res. Int., 2015, 77, 221-235.
[http://dx.doi.org/10.1016/j.foodres.2015.06.021]
[20]
Rempe, C.S.; Burris, K.P.; Lenaghan, S.C.; Stewart, C.N., Jr The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Front. Microbiol., 2017, 8, 422.
[http://dx.doi.org/10.3389/fmicb.2017.00422] [PMID: 28360902]
[21]
Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother. Res., 2019, 33(1), 13-40.
[http://dx.doi.org/10.1002/ptr.6208] [PMID: 30346068]
[22]
Xiao, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr., 2017, 57(9), 1874-1905.
[PMID: 26176651]
[23]
Ji, Y.; Li, B.; Qiao, M.; Li, J.; Xu, H.; Zhang, L.; Zhang, X. Advances on the in vivo and in vitro glycosylations of flavonoids. Appl. Microbiol. Biotechnol., 2020, 104(15), 6587-6600.
[http://dx.doi.org/10.1007/s00253-020-10667-z] [PMID: 32514754]
[24]
Achika, J.I.; Ayo, R.G.; Oyewale, A.O.; Habila, J.D. Flavonoids with antibacterial and antioxidant potentials from the stem bark of Uapaca heudelotti. Heliyon, 2020, 6(2), e03381.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03381] [PMID: 32072061]
[25]
Ghoneim, M.M.; Afifi, W.M.; Ibrahim, M.; Elagawany, M.; Khayat, M.T.; Aboutaleb, M.H.; Metwaly, A.M. Biological evaluation and molecular docking study of metabolites from Salvadora Persica L. growing in Egypt. Pharmacogn. Mag., 2019, 15(61), 232-237.
[http://dx.doi.org/10.4103/pm.pm_361_18]
[26]
Tebou, P.L.F.; Tamokou, J.D.; Ngnokam, D.; Voutquenne-Nazabadioko, L.; Kuiate, J.R.; Bag, P.K. Flavonoids from Maytenus buchan-anii as potential cholera chemotherapeutic agents. S. Afr. J. Bot., 2017, 109, 58-65.
[http://dx.doi.org/10.1016/j.sajb.2016.12.019]
[27]
Gutiérrez-Venegas, G.; Gómez-Mora, J.A.; Meraz-Rodríguez, M.A.; Flores-Sánchez, M.A.; Ortiz-Miranda, L.F. Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque. Heliyon, 2019, 5(12), e03013.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03013] [PMID: 31886429]
[28]
Nizer, W.; Ferraz, A.; Moraes, T.; Ferreira, F.; Magalhães, C.; Vieira-Filho, S.; Duarte, L.; De Magalhães, J. Lack of activity of rutin iso-lated from Tontelea micrantha leaves against Vero and BHK, fungi, bacteria and Mayaro virus and its in silico activity. J. Pharm. Negat. Results, 2020, 11(1), 9-14.
[http://dx.doi.org/10.4103/jpnr.JPNR_12_19]
[29]
do Nascimento, M.N.G.; Machado Martins, M.; Scalon Cunha, L.C.; de Souza Santos, P.; Goulart, L.R.; de Souza Silva, T. Gomes Mar-tins, C.H.; de Morais, S.A.L.; Pivatto, M. Antimicrobial and cytotoxic activities of Senna and Cassia species (Fabaceae) extracts. Ind. Crops Prod., 2020, 148, e112081.
[http://dx.doi.org/10.1016/j.indcrop.2019.112081]
[30]
Li, M.X.; Xie, J.; Bai, X.; Du, Z.Z. Anti-aging potential, anti-tyrosinase and antibacterial activities of extracts and compounds isolated from Rosa chinensis cv. ‘JinBian’. Ind. Crops Prod., 2021, 159, e113059.
[http://dx.doi.org/10.1016/j.indcrop.2020.113059]
[31]
Stankovic J.; Godevac, D.; Tesevic, V.; Dajic-Stevanovic Z.; Ciric A.; Sokovic M.; Novakovic M. Antibacterial and antibiofilm activi-ty of flavonoid and saponin derivatives from Atriplex tatarica against Pseudomonas aeruginosa. J. Nat. Prod., 2019, 82(6), 1487-1495.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00970] [PMID: 31181926]
[32]
Yadava, R.N.; Raghuvansi, J. Antibacterial activity of a new flavone glycoside from the stems of Holmskioldia sanguinea Retz. Asian J. Chem., 2019, 31(8), 1815-1818.
[http://dx.doi.org/10.14233/ajchem.2019.22026]
[33]
Qiu, Y.; He, D.; Yang, J.; Ma, L.; Zhu, K.; Cao, Y. Kaempferol separated from Camellia oleifera meal by high-speed countercurrent chromatography for antibacterial application. Eur. Food Res. Technol., 2020, 246(12), 1-15.
[http://dx.doi.org/10.1007/s00217-020-03582-0] [PMID: 32837313]
[34]
Benmerache, A.; Benteldjoune, M.; Alabdul Magid, A.; Abedini, A.; Berrehal, D.; Kabouche, A.; Gangloff, S.C.; Voutquenne-Nazabadioko, L. Kabouche, Z. Chemical composition, antioxidant and antibacterial activities of Tamarix balansae J. Gay aerial parts. Nat. Prod. Res., 2017, 31(24), 2828-2835.
[http://dx.doi.org/10.1080/14786419.2017.1299729] [PMID: 28281364]
[35]
Hardiyanti, R.; Marpaung, L.; Adnyana, I.K.; Simanjuntak, P. Isolation of quercitrin from Dendrophthoe pentandra (L.) miq leaves and it’s antioxidant and antibacterial activities. Rasayan J. Chem., 2019, 12(4), 1822-1827.
[http://dx.doi.org/10.31788/RJC.2019.1235353]
[36]
Alhadrami, H.A.; Hamed, A.A.; Hassan, H.M.; Belbahri, L.; Rateb, M.E.; Sayed, A.M. Flavonoids as potential anti-MRSA agents through modulation of PBP2A: A computational and experimental study. Antibiotics (Basel), 2020, 9(9), e562.
[http://dx.doi.org/10.3390/antibiotics9090562] [PMID: 32878266]
[37]
Estrella-Parra, E.A.; Espinosa-González, A.M.; García-Bores, A.M.; Zamora-Salas, S.X.; Benítez-Flores, J.C.; González-Valle, M.R.; Hernández-Delgado, C.T.; Peñalosa-Castro, I.; Avila-Acevedo, J.G. Flavonol glycosides in Dyssodia tagetiflora and its temporal varia-tion, chemoprotective and ameliorating activities. Food Chem. Toxicol., 2019, 124, 411-422.
[http://dx.doi.org/10.1016/j.fct.2018.12.024] [PMID: 30576709]
[38]
Tagousop, C.N.; Tamokou, J.D.D.; Ekom, S.E.; Ngnokam, D.; Voutquenne-Nazabadioko, L. Antimicrobial activities of flavonoid glyco-sides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement. Altern. Med., 2018, 18(1), 252.
[http://dx.doi.org/10.1186/s12906-018-2321-7] [PMID: 30219066]
[39]
Mahamat, A.; Gbaweng, A.J.Y.; Tagatsing Fotsing, M.; Talla, E.; Fekam, F.B.; Henoumont, C.; Sophie, L.; Mbafor, J.T. Two new fla-vones glycosides with antimicrobial activities from Clerodendrum formicarum Gürke (Lamiaceae). Nat. Prod. Res., 2021, 35(6), 951-959.
[http://dx.doi.org/10.1080/14786419.2019.1613397] [PMID: 31148483]
[40]
Lehbili, M.; Alabdul Magid, A.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Abedini, A.; Morjani, H.; Gangloff, S.C.; Kabouche, Z. Antibacterial, antioxidant and cytotoxic activities of triterpenes and flavonoids from the aerial parts of Salvia barrelieri Etl. Nat. Prod. Res., 2018, 32(22), 2683-2691.
[http://dx.doi.org/10.1080/14786419.2017.1378207] [PMID: 28925304]
[41]
Weyepe Lah, F.C.; Balemaken Missi, M.; October, N.; Betote Didoue, P.H.; Nalova Ikome, N.H.; Abdou, J.P.; Kopa Kowa, T.; Agbor, G.; Tiabou Tchinda, A.; Dongo, E. Antibacterial and antioxidant activities of the extract and some flavonoids from aerial parts of Echinops Gracilis O. Hoffm. (Asteraceae). Nat. Prod. Commun., 2021, 16(3), 1-6.
[http://dx.doi.org/10.1177/1934578X21999151]
[42]
Kirmizibekmez, H.; Kúsz, N.; Karaca, N.; Demirci, F.; Hohmann’, J. Secondary metabolites from the leaves of Digitalis viridiflora. Nat. Prod. Commun., 2017, 12(1), 59-61.
[http://dx.doi.org/10.1177/1934578X1701200117] [PMID: 30549826]
[43]
Alhage, J.; Elbitar, H.; Taha, S.; Guegan, J.P.; Dassouki, Z.; Vives, T.; Benvegnu, T. Isolation of bioactive compounds from Calicotome villosa stems. Molecules, 2018, 23(4), e851.
[http://dx.doi.org/10.3390/molecules23040851] [PMID: 29642501]
[44]
Zhang, S.; Li, D.D.; Zeng, F.; Zhu, Z.H.; Song, P.; Zhao, M.; Duan, J.A. Efficient biosynthesis, analysis, solubility and anti-bacterial activities of succinylglycosylated naringenin. Nat. Prod. Res., 2019, 33(12), 1756-1760.
[http://dx.doi.org/10.1080/14786419.2018.1431633] [PMID: 29446976]
[45]
Labed, F.; Masullo, M.; Mirra, V.; Nazzaro, F.; Benayache, F.; Benayache, S.; Piacente, S. Amino acid-sesquiterpene lactone conjugates from the aerial parts of Centaurea pungens and evaluation of their antimicrobial activity. Fitoterapia, 2019, 133, 51-55.
[http://dx.doi.org/10.1016/j.fitote.2018.12.001] [PMID: 30557599]
[46]
Xu, Z.; Li, K.; Pan, T.; Liu, J.; Li, B.; Li, C.; Wang, S.; Diao, Y.; Liu, X. Lonicerin, an anti-algE flavonoid against Pseudomonas aeru-ginosa virulence screened from Shuanghuanglian formula by molecule docking based strategy. J. Ethnopharmacol., 2019, 239, 111909.
[http://dx.doi.org/10.1016/j.jep.2019.111909] [PMID: 31026553]
[47]
Guo, Z.K.; Wang, R.; Liu, T.M.; Chen, F.X.; Yang, M.Q. A new flavonoid derivative and a new 5-hydroxyanthranilic acid derivative from the sea urchin-derived Streptomyces sp. HDa1. J. Asian Nat. Prod. Res., 2019, 21(10), 992-998.
[http://dx.doi.org/10.1080/10286020.2018.1485663] [PMID: 29972031]
[48]
Rammohan, A.; Bhaskar, B.V.; Venkateswarlu, N.; Rao, V.L.; Gunasekar, D.; Zyryanov, G.V. Isolation of flavonoids from the flowers of Rhynchosia beddomei Baker as prominent antimicrobial agents and molecular docking. Microb. Pathog., 2019, 136, 103667.
[http://dx.doi.org/10.1016/j.micpath.2019.103667] [PMID: 31419459]
[49]
Sahu, A.; Ghosh, G.; Rath, G. Identification and molecular docking studies of bioactive principles from Alphonsea madraspatana bedd. against uropathogens. Curr. Pharm. Biotechnol., 2020, 21(7), 613-625.
[http://dx.doi.org/10.2174/1389201021666200107114846] [PMID: 31914910]
[50]
Cherfia, R.; Zaiter, A.; Akkal, S.; Chaimbault, P.; Abdelwahab, A.B.; Kirsch, G.; Kacem Chaouche, N. New approach in the characteriza-tion of bioactive compounds isolated from Calycotome spinosa (L.) Link leaves by the use of negative electrospray ionization LITMSn, LC-ESI-MS/MS, as well as NMR analysis. Bioorg. Chem., 2020, 96, 103535.
[http://dx.doi.org/10.1016/j.bioorg.2019.103535] [PMID: 32000017]
[51]
de Lima, M. de F.R.; Cavalcante, L.A.; Costa, E.C.T.A.; de Veras, B.O.; da Silva, M.V.; Cavalcanti, L.N.; Araújo, R.M. Bioactivity flavo-noids from roots of Euphorbia tirucalli L. Phytochem. Lett., 2021, 41, 186-192.
[http://dx.doi.org/10.1016/j.phytol.2020.10.017]
[52]
El-Shiekh, R.A.; Hassan, M.; Hashem, R.A.; Abdel-Sattar, E. Bioguided isolation of antibiofilm and antibacterial pregnane glycosides from Caralluma quadrangula: Disarming multidrug-resistant pathogens. Antibiotics (Basel), 2021, 10(7), e811.
[http://dx.doi.org/10.3390/antibiotics10070811] [PMID: 34356732]
[53]
Cruz, B.G.; Dos Santos, H.S.; Bandeira, P.N.; Rodrigues, T.H.S.; Matos, M.G.C.; Nascimento, M.F.; de Carvalho, G.G.C.; Braz-Filho, R.; Teixeira, A.M.R.; Tintino, S.R.; Coutinho, H.D.M. Evaluation of antibacterial and enhancement of antibiotic action by the flavonoid kaempferol 7-O-β-D-(6″-O-cumaroyl)-glucopyranoside isolated from Croton piauhiensis mll. Microb. Pathog., 2020, 143, 104144.
[http://dx.doi.org/10.1016/j.micpath.2020.104144] [PMID: 32194182]
[54]
Qiu, F.; Meng, L.; Chen, J.; Jin, H.; Jiang, L. In vitro activity of five flavones from Scutellaria baicalensisin combination with Cefazolin against methicillin-resistant Staphylococcus aureus (MRSA). Med. Chem. Res., 2016, 25(10), 2214-2219.
[http://dx.doi.org/10.1007/s00044-016-1685-9]
[55]
Mohammed, H.S.; Abdel-Aziz, M.M.; Abu-Baker, M.S.; Saad, A.M.; Mohamed, M.A.; Ghareeb, M.A. Antibacterial and potential antidia-betic activities of flavone C-glycosides isolated from beta vulgaris subspecies cicla L. Var. flavescens (amaranthaceae) cultivated in Egypt. Curr. Pharm. Biotechnol., 2019, 20(7), 595-604.
[http://dx.doi.org/10.2174/1389201020666190613161212] [PMID: 31203800]
[56]
Mohotti, S.; Rajendran, S.; Muhammad, T.; Strömstedt, A.A.; Adhikari, A.; Burman, R.; de Silva, E.D.; Göransson, U.; Hettiarachchi, C.M.; Gunasekera, S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J. Ethnopharmacol., 2020, 246, 112158.
[http://dx.doi.org/10.1016/j.jep.2019.112158] [PMID: 31421182]
[57]
Wu, S.C.; Han, F.; Song, M.R.; Chen, S.; Li, Q.; Zhang, Q.; Zhu, K.; Shen, J.Z. Natural flavones from Morus alba against methicillin-resistant Staphylococcus aureus via targeting the proton motive force and membrane permeability. J. Agric. Food Chem., 2019, 67(36), 10222-10234.
[http://dx.doi.org/10.1021/acs.jafc.9b01795] [PMID: 31385700]
[58]
Lin, S.; Li, H.; Tao, Y.; Liu, J.; Yuan, W.; Chen, Y.; Liu, Y.; Liu, S. In vitro and in vivo evaluation of membrane-active flavone am-phiphiles: Semisynthetic kaempferol-derived antimicrobials against drug-resistant Gram-positive bacteria. J. Med. Chem., 2020, 63(11), 5797-5815.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00053] [PMID: 32400157]
[59]
Pitchuanchom, S.; Mahiwan, C.; Chotichayapong, C.; Kanokmedhakul, S.; Poopasit, K.; Nontakitticharoen, M. Phytochemicals from twigs of Afzelia xylocarpa and their antioxidation kinetics of oxymyoglobin. Nat. Prod. Res., 2021, 1-5.
[http://dx.doi.org/10.1080/14786419.2021.1912746] [PMID: 33847198]
[60]
Bashyal, P.; Parajuli, P.; Pandey, R.P.; Sohng, J.K. Microbial biosynthesis of antibacterial chrysoeriol in recombinant Escherichia coli and bioactivity assessment. Catalysts, 2019, 9(2), e112.
[http://dx.doi.org/10.3390/catal9020112]
[61]
Lan, J.E.; Li, X.J.; Zhu, X.F.; Sun, Z.L.; He, J.M.; Zloh, M.; Gibbons, S.; Mu, Q. Flavonoids from Artemisia rupestris and their synergis-tic antibacterial effects on drug-resistant Staphylococcus aureus. Nat. Prod. Res., 2021, 35(11), 1881-1886.
[http://dx.doi.org/10.1080/14786419.2019.1639182] [PMID: 31303068]
[62]
Kwesiga, G.; Kelling, A.; Kersting, S.; Sperlich, E.; von Nickisch-Rosenegk, M.; Schmidt, B. Total syntheses of prenylated isoflavones from Erythrina sacleuxii and their antibacterial activity: 5-deoxy-3-prenylbiochanin A and erysubin F. J. Nat. Prod., 2020, 83(11), 3445-3453.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00932] [PMID: 33170684]
[63]
Wu, Y.P.; Li, X.M.; Kong, W.S.; Geng, Y.Q.; Liu, X.; Du, G.; Yang, H.Y.; Li, J.; Hu, Q.F. A new flavone from leaves of Nicotiana taba-cum and its antibacterial activity. Chin. Tradit. Herbal Drugs, 2018, 49(22), 5238-5241.
[64]
Allison, B.J.; Allenby, M.C.; Bryant, S.S.; Min, J.E.; Hieromnimon, M.; Joyner, P.M. Antibacterial activity of fractions from three Chu-mash medicinal plant extracts and in vitro inhibition of the enzyme enoyl reductase by the flavonoid jaceosidin. Nat. Prod. Res., 2017, 31(6), 707-712.
[http://dx.doi.org/10.1080/14786419.2016.1217201] [PMID: 27482826]
[65]
Macedo, I.; da Silva, J.H.; da Silva, P.T.; Cruz, B.G.; do Vale, J.P.C.; Dos Santos, H.S.; Bandeira, P.N.; de Souza, E.B.; Xavier, M.R.; Coutinho, H.D.M.; Braz-Filho, R.; Teixeira, A.M.R. Structural and microbiological characterization of 5-hydroxy-3,7,4-trimethoxyflavone: A flavonoid isolated from Vitex gardneriana Schauer leaves. Microb. Drug Resist., 2019, 25(3), 434-438.
[http://dx.doi.org/10.1089/mdr.2018.0359] [PMID: 30741597]
[66]
Echeverría, J.; Opazo, J.; Mendoza, L.; Urzúa, A.; Wilkens, M. Structure-activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of Chilean flora. Molecules, 2017, 22(4), e608.
[http://dx.doi.org/10.3390/molecules22040608] [PMID: 28394271]
[67]
Geethalakshmi, R.; Sarada, V.L.D. In vitro and in silico antimicrobial activity of sterol and flavonoid isolated from Trianthema decandra L. Microb. Pathog., 2018, 121, 77-86.
[http://dx.doi.org/10.1016/j.micpath.2018.05.018] [PMID: 29763728]
[68]
Osonga, F.J.; Akgul, A.; Miller, R.M.; Eshun, G.B.; Yazgan, I.; Akgul, A.; Sadik, O.A. Antimicrobial activity of a new class of phosphor-ylated and modified flavonoids. ACS Omega, 2019, 4(7), 12865-12871.
[http://dx.doi.org/10.1021/acsomega.9b00077] [PMID: 31460413]
[69]
Collins Njonte Wouamba, S.; Mouthé Happi, G.; Nguiam Pouofo, M.; Tchamgoue, J.; Jouda, J.B.; Longo, F.; Ndjakou Lenta, B.; Sewald, N.; Fogue Kouam, S. Antibacterial flavonoids and other compounds from the aerial parts of Vernonia guineensis Benth. (Asteraceae). Chem. Biodivers., 2020, 17(9), e2000296.
[http://dx.doi.org/10.1002/cbdv.202000296] [PMID: 32658364]
[70]
Dzoyem, J.P.; Tchamgoue, J.; Tchouankeu, J.C.; Kouam, S.F.; Choudhary, M.I.; Bakowsky, U. Antibacterial activity and cytotoxicity of flavonoids compounds isolated from Pseudarthria hookeri Wight & Arn. (Fabaceae). S. Afr. J. Bot., 2018, 114, 100-103.
[http://dx.doi.org/10.1016/j.sajb.2017.11.001]
[71]
Zuo, G.Y.; Yang, C.X.; Han, J.; Li, Y.Q.; Wang, G.C. Synergism of prenylflavonoids from Morus alba root bark against clinical MRSA isolates. Phytomedicine, 2018, 39, 93-99.
[http://dx.doi.org/10.1016/j.phymed.2017.12.023] [PMID: 29433688]
[72]
Polbuppha, I.; Suthiphasilp, V.; Maneerat, T.; Charoensup, R.; Limtharakul, T.; Cheenpracha, S.; Pyne, S.G.; Laphookhieo, S. Maclu-racochinones A-E, antimicrobial flavonoids from Maclura cochinchinensis (Lour.) Corner. Phytochemistry, 2021, 187, 112773.
[http://dx.doi.org/10.1016/j.phytochem.2021.112773] [PMID: 33873019]
[73]
Wang, H.; Jiang, H.M.; Li, F.X.; Chen, H.Q.; Liu, W.C.; Ren, S.Z.; Mei, W.L.; Dai, H.F. Flavonoids from artificially induced dragon’s blood of Dracaena cambodiana. Fitoterapia, 2017, 121, 1-5.
[http://dx.doi.org/10.1016/j.fitote.2017.06.019] [PMID: 28648631]
[74]
Chen, Y.; Zhao, J.; Qiu, Y.; Yuan, H.; Khan, S.I.; Hussain, N.; Iqbal Choudhary, M.; Zeng, F.; Guo, D.A.; Khan, I.A.; Wang, W. Prenyl-ated flavonoids from the stems and roots of Tripterygium wilfordii. Fitoterapia, 2017, 119, 64-68.
[http://dx.doi.org/10.1016/j.fitote.2017.04.003] [PMID: 28389278]
[75]
Peleyeju, G.B.; Emmanuel, T.; Tata, C.M.; Djuidje Fotsing, M.C.; Niemann, N.; Rhyman, L.; Arderne, C.; Ndinteh, D.T.; Ramasami, P. Crystal structure and antibacterial activity of scandenone (warangalone) from Erythrina plants. J. Mol. Struct., 2019, 1191, 43-51.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.070]
[76]
Sianglum, W.; Muangngam, K.; Joycharat, N.; Voravuthikunchai, S.P. Mechanism of action and biofilm inhibitory activity of lupinifolin against multidrug-resistant enterococcal clinical isolates. Microb. Drug Resist., 2019, 25(10), 1391-1400.
[http://dx.doi.org/10.1089/mdr.2018.0391] [PMID: 31314663]
[77]
Leyte-Lugo, M.; Britton, E.R.; Foil, D.H.; Brown, A.R.; Todd, D.A.; Rivera-Chávez, J.; Oberlies, N.H.; Cech, N.B. Secondary metabolites from the leaves of the medicinal plant goldenseal (Hydrastis canadensis). Phytochem. Lett., 2017, 20, 54-60.
[http://dx.doi.org/10.1016/j.phytol.2017.03.012] [PMID: 28736584]
[78]
Ma, J.; Zhang, X.L.; Wang, Y.; Zheng, J.Y.; Wang, C.Y.; Shao, C.L. Aspergivones A and B, two new flavones isolated from a gorgonian-derived Aspergillus candidus fungus. Nat. Prod. Res., 2017, 31(1), 32-36.
[http://dx.doi.org/10.1080/14786419.2016.1207073] [PMID: 27448033]
[79]
Hossain, M.A.; Sohail Akhtar, M.; Said, S.; Al-Abri, T.H.A. Two new flavonoids from Adenium obesum grown in Oman. J. King Saud Univ. Sci., 2017, 29(1), 62-69.
[http://dx.doi.org/10.1016/j.jksus.2016.04.004]
[80]
Rajeswari, K.; Rao, T.B.; Sharma, G.V.R.; Krishna, R.M. Antimicrobial activities of extracts of some species of mangrove plants and a new compound isolated towards some selected strains. Orient. J. Chem., 2017, 33(2), 1011-1016.
[http://dx.doi.org/10.13005/ojc/330256]
[81]
Mouffouk, S.; Marcourt, L.; Benkhaled, M.; Boudiaf, K.; Wolfender, J.L.; Haba, H. Two new prenylated isoflavonoids from Erinacea anthyllis with antioxidant and antibacterial activities. Nat. Prod. Commun., 2017, 12(7), 1065-1068.
[http://dx.doi.org/10.1177/1934578X1701200716]
[82]
Sharma, S.; Patial, V.; Singh, D.; Sharma, U.; Kumar, D. Antimicrobial homoisoflavonoids from the rhizomes of Polygonatum verticilla-tum. Chem. Biodivers., 2018, 15(12), e1800430.
[PMID: 30334349]
[83]
Algreiby, A.A.; Hammer, K.A.; Durmic, Z.; Vercoe, P.; Flematti, G.R. Antibacterial compounds from the Australian native plant Ere-mophila glabra. Fitoterapia, 2018, 126, 45-52.
[http://dx.doi.org/10.1016/j.fitote.2017.11.008] [PMID: 29155275]
[84]
Ahmed, F.A.; El Mesallamy, A.M.D.; El Bassossy, T.A.I. Phytochemical analysis and biological evaluation of Forsskaolea viridis aerial parts. Acta Pol. Pharm., 2019, 76(5), 815-823.
[http://dx.doi.org/10.32383/appdr/108519]
[85]
Deipenbrock, M.; Hensel, A. Polymethoxylated flavones from Orthosiphon stamineus leaves as antiadhesive compounds against uro-pathogenic E. coli. Fitoterapia, 2019, 139, 104387.
[http://dx.doi.org/10.1016/j.fitote.2019.104387] [PMID: 31678632]
[86]
Wei, L.; Yang, M.; Huang, L.; Lin, Li. J. Antibacterial and antioxidant flavonoid derivatives from the fruits of Metaplexis japonica. Food Chem., 2019, 289, 308-312.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.070] [PMID: 30955617]
[87]
Li, Y.; Qin, X.B.; Liu, H.X.; Xu, Z.F.; Tan, H.B.; Qiu, S.X. Two pairs of enantiomeric propylated flavonoids and a new lignan from the aerial parts of Abrus precatorius. Fitoterapia, 2019, 133, 125-129.
[http://dx.doi.org/10.1016/j.fitote.2018.12.019] [PMID: 30599185]
[88]
Pang, D.; Wang, W.; Li, E.; Shen, W.; Mu, L.; Liao, S.; Liu, F. Sanggenon D from root bark of mulberry inhibits the growth of Staphylo-coccus aureus by moderating the fatty acid biosynthesis system. Ind. Crops Prod., 2019, 140, e111719.
[http://dx.doi.org/10.1016/j.indcrop.2019.111719]
[89]
Pervez, S.; Saeed, M.; Ali, M.S.; Fatima, I.; Khan, H.; Ullah, I. Antimicrobial and antioxidant potential of berberisinol, a new flavone from Berberis baluchistanica. Chem. Nat. Compd., 2019, 55(2), 247-251.
[http://dx.doi.org/10.1007/s10600-019-02660-4]
[90]
Pan, Y.; Zheng, W.; Yang, S. Chemical and activity investigation on metabolites produced by an endophytic fungi Psathyrella candolle-ana from the seed of Ginkgo biloba. Nat. Prod. Res., 2020, 34(21), 3130-3133.
[http://dx.doi.org/10.1080/14786419.2019.1607335] [PMID: 31112042]
[91]
Terán Baptista, Z.P.; de Los Angeles Gómez, A.; Kritsanida, M.; Grougnet, R.; Mandova, T.; Aredes Fernandez, P.A.; Sampietro, D.A. Antibacterial activity of native plants from Northwest Argentina against phytopathogenic bacteria. Nat. Prod. Res., 2020, 34(12), 1782-1785.
[http://dx.doi.org/10.1080/14786419.2018.1525716] [PMID: 30417714]
[92]
Linden, M.; Brinckmann, C.; Feuereisen, M.M. Review; Schieber, A. Effects of structural differences on the antibacterial activity of biflavonoids from fruits of the Brazilian peppertree (Schinus terebinthifolius Raddi). Food Res. Int., 2020, 133, 109134.
[http://dx.doi.org/10.1016/j.foodres.2020.109134] [PMID: 32466911]
[93]
Liu, F.; Wu, Y.; Li, N.P.; Liu, J.W.; Wang, L.; Ye, W.C. Chiral isolation and absolute configuration of (+)- and (-)-Xanchryones F and G from Xanthostemon chrysanthus. Chem. Biodivers., 2020, 17(1), e1900683.
[http://dx.doi.org/10.1002/cbdv.201900683] [PMID: 31797569]
[94]
Greatrex, B.W.; Lyddiard, D.; Ozga, T. Diterpene and flavonoid constituents of the newly identified Australian species Olearia fulgens. Phytochem. Lett., 2020, 39, 19-24.
[http://dx.doi.org/10.1016/j.phytol.2020.06.008]
[95]
Bisio, A.; Schito, A.M.; Pedrelli, F.; Danton, O.; Reinhardt, J.K.; Poli, G.; Tuccinardi, T.; Bürgi, T.; De Riccardis, F.; Giacomini, M.; Cal-zia, D.; Panfoli, I.; Schito, G.C.; Hamburger, M.; De Tommasi, N. Antibacterial and ATP synthesis modulating compounds from salvia tingitana. J. Nat. Prod., 2020, 83(4), 1027-1042.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01024] [PMID: 32182064]
[96]
Dlamini, B.S.; Chen, C.R.; Shyu, D.J.H.; Chang, C.I. Flavonoids from Tithonia diversifolia and their antioxidant and antibacterial activity. Chem. Nat. Compd., 2020, 56(5), 906-908.
[http://dx.doi.org/10.1007/s10600-020-03182-0]
[97]
Shan, T.; Wang, Y.; Wang, S.; Xie, Y.; Cui, Z.; Wu, C.; Sun, J.; Wang, J.; Mao, Z. A new p-terphenyl derivative from the insect-derived fungus Aspergillus candidus Bdf-2 and the synergistic effects of terphenyllin. PeerJ, 2020, 8, e8221.
[http://dx.doi.org/10.7717/peerj.8221] [PMID: 31915570]
[98]
da Silva, H.C.; Leal, A.L.A.B.; de Oliveira, M.M.; Barreto, H.M.; Coutinho, H.D.; dos Santos, H.S.; Santiago, G.M.P.; de Freitas, T.S.; Lima, I.K.C.; Teixeira, A.M.R.; Nogueira, C.E.S. Structural characterization, antibacterial activity and NorA efflux pump inhibition of flavonoid fisetinidol. S. Afr. J. Bot., 2020, 132, 140-145.
[http://dx.doi.org/10.1016/j.sajb.2020.03.023]
[99]
Macaúbas-Silva, C.; Félix, M.D.G.; Aquino, A.K.S.; Pereira-Júnior, P.G.; Brito, E.V.O.; Oliveira-Filho, A.A.; Igoli, J.O.; Watson, D.G.; Teles, Y.C.F. Araçain, a tyrosol derivative and other phytochemicals from Psidium guineense Sw. Nat. Prod. Res., 2021, 35(14), 2424-2428.
[http://dx.doi.org/10.1080/14786419.2019.1672683] [PMID: 31581838]
[100]
Khan, S.A.; Khan, S.U.; Fozia, S.; Ullah, N.; Shah, M.; Ullah, R.; Ahmad, I.; Alotaibi, A. Isolation, structure elucidation and in silico prediction of potential drug-like flavonoids from Onosma chitralicum targeted towards functionally important proteins of drug-resistant bad bugs. Molecules, 2021, 26(7), e2048.
[http://dx.doi.org/10.3390/molecules26072048] [PMID: 33918531]
[101]
González, U.; Morales-Jiménez, J.; Nieto-Camacho, A.; Martínez, M.; Maldonado, E. Elemenolides from Zinnia peruviana and evalua-tion of their antibacterial and α-glucosidase inhibitory activities. Nat. Prod. Res., 2021, 35(12), 1977-1984.
[http://dx.doi.org/10.1080/14786419.2019.1648461] [PMID: 31401868]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy