Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Review of Post-translational Modification of Human Serum Albumin

Author(s): Surya Kannan* and Serhiy Souchelnytskyi

Volume 23, Issue 2, 2022

Published on: 17 March, 2022

Page: [114 - 120] Pages: 7

DOI: 10.2174/1389203723666220217150332

Price: $65

Abstract

Post-translational modifications (PTMs) may affect the functions of human serum albumin. Here we review reports of novel PTMs of human serum albumin. This study reviewed one hundred twenty-three recently reported novel O-phosphorylation, glycation, methylation, carbonylation, and acetylation of albumin. Furthermore, the potential impact of these PTMs on albumin functions is discussed. Knowledge of these PTMs of albumin is important for the use of albumin in medical applications, e.g., in transfusion, drug formulations, and remedies.

Keywords: Human serum albumin, post-translational modifications, phosphorylation, glycation, carbonylation, acetylation.

Graphical Abstract
[1]
Caraceni, P.; Tufoni, M.; Bonavita, M.E. Clinical use of albumin. Blood Transfus., 2013, 11(Suppl. 4), s18-s25.
[PMID: 24333308]
[2]
Watanabe, H.; Imafuku, T.; Otagiri, M.; Maruyama, T. Clinical implications associated with the posttranslational modification-induced functional impairment of albumin in oxidative stress-related diseases. J. Pharm. Sci., 2017, 106(9), 2195-2203.
[http://dx.doi.org/10.1016/j.xphs.2017.03.002] [PMID: 28302542]
[3]
Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albumin-more than just a serum protein. Front. Physiol., 2014, 5, 299.
[PMID: 25161624]
[4]
Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: from bench to bedside. Mol. Aspects Med., 2012, 33(3), 209-290.
[http://dx.doi.org/10.1016/j.mam.2011.12.002] [PMID: 22230555]
[5]
Kragh-Hansen, U; Minchiotti, L; Galliano, M; Peters, T Human serum albumin isoforms: Genetic and molecular aspects and functional consequences. Biochimica et Biophysica Acta - General Subjects., 2013, 1830(12), 5405-5417.
[6]
Al-Harthi, S.; Lachowicz, J.I.; Nowakowski, M.E.; Jaremko, M.; Jaremko, Ł. Towards the functional high-resolution coordination chemistry of blood plasma human serum albumin. J. Inorg. Biochem., 2019, 198, 110716.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110716] [PMID: 31153112]
[7]
Nicholson, J.P.; Wolmarans, M.R.; Park, G.R. The role of albumin in critical illness. Br. J. Anaesth., 2000, 85(4), 599-610.
[http://dx.doi.org/10.1093/bja/85.4.599] [PMID: 11064620]
[8]
Leblanc, Y.; Berger, M.; Seifert, A.; Bihoreau, N.; Chevreux, G. Human serum albumin presents isoform variants with altered neonatal Fc receptor interactions. Protein Sci., 2019, 28(11), 1982-1992.
[http://dx.doi.org/10.1002/pro.3733] [PMID: 31583777]
[9]
Brennan, S.O.; Robert, P.; Boswell, D.R. Novel human proalbumin variant with intact dibasic sequence facilitates identification of its converting enzyme. Biochim. Biophys. Acta, 1989, 993, 48-50.
[http://dx.doi.org/10.1016/0304-4165(89)90141-4]
[10]
Valasek, M.A.; Hopley, R.T.; Wians, F.H. Resolving the baneful and banal: bisalbuminemia in an adult with waldenström macroglobulinemia. Lab. Med., 2008, 39(12), 723-726.
[http://dx.doi.org/10.1309/LMD51RR5FXHKDHRX]
[11]
Chhabra, S. BansalF.SaikiaB.MinzR.W.Bisalbuminemia: A rarely encountered protein anomaly. J. Lab. Physicians, 2013, 5(02), 144-145.
[12]
Brennan, S.O.; Myles, T.; Peach, R.J.; Donaldson, D.; George, P.M. Albumin redhill (-1 Arg, 320 Ala-Thr): A glycoprotein variant of human serum albumin whose precursor has an aberrant signal peptidase cleavage site. Proc. Natl. Acad. Sci. USA, 1990, 87(1), 26-30.
[http://dx.doi.org/10.1073/pnas.87.1.26] [PMID: 2104980]
[13]
Ishima, Y.; Sawa, T.; Kragh-Hansen, U.; Miyamoto, Y.; Matsushita, S.; Akaike, T.; Otagiri, M. S-Nitrosylation of human variant albumin Liprizzi (R410C) confers potent antibacterial and cytoprotective properties. J. Pharmacol. Exp. Ther., 2007, 320(3), 969-977.
[http://dx.doi.org/10.1124/jpet.106.114959] [PMID: 17135341]
[14]
Chen, B.J.; Lam, T.C.; Liu, L.Q.; To, C.H. Post-translational modifications and their applications in eye research. Mol. Med. Rep., 2017, 15(6), 3923-3935.
[http://dx.doi.org/10.3892/mmr.2017.6529] [PMID: 28487982]
[15]
Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation, 2006, 114(6), 597-605.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.621854] [PMID: 16894049]
[16]
Martin, S.C.; Ekman, P. In vitro phosphorylation of serum albumin by two protein kinases: A potential pitfall in protein phosphorylation reactions. Anal. Biochem., 1986, 154(2), 395-399.
[http://dx.doi.org/10.1016/0003-2697(86)90004-7] [PMID: 3460368]
[17]
Chen, S.L.; Kim, K.H. Effect of sulfhydryl-disulfide state on protein phosphorylation: Phosphorylation of bovine serum albumin. Arch. Biochem. Biophys., 1985, 239(1), 163-171.
[http://dx.doi.org/10.1016/0003-9861(85)90823-9] [PMID: 2988443]
[18]
Qiu, H.; Jin, L.; Chen, J.; Shi, M.; Shi, F.; Wang, M.; Li, D.; Xu, X.; Su, X.; Yin, X.; Li, W.; Zhou, X.; Linhardt, R.J.; Wang, Z.; Chi, L.; Zhang, Q. Comprehensive glycomic analysis reveals that human serum albumin glycation specifically affects the pharmacokinetics and efficacy of different anticoagulant drugs in diabetes. Diabetes, 2020, 69(4), 760-770.
[http://dx.doi.org/10.2337/db19-0738] [PMID: 31974145]
[19]
Anguizola, J.; Matsuda, R.; Barnaby, O.S.; Hoy, K.S.; Wa, C.; DeBolt, E.; Koke, M.; Hage, D.S. Review: Glycation of human serum albumin. Clin. Chim. Acta, 2013, 425, 64-76.
[http://dx.doi.org/10.1016/j.cca.2013.07.013] [PMID: 23891854]
[20]
Frolov, A.; Hoffmann, R. Identification and relative quantification of specific glycation sites in human serum albumin. Anal. Bioanal. Chem., 2010, 397(6), 2349-2356.
[http://dx.doi.org/10.1007/s00216-010-3810-9] [PMID: 20496030]
[21]
Morris, M.A.; Preddy, L. Glycosylation accelerates albumin degradation in normal and diabetic dogs. Biochem. Med. Metab. Biol., 1986, 35(3), 267-270.
[http://dx.doi.org/10.1016/0885-4505(86)90082-4] [PMID: 3521682]
[22]
Lee, P.; Wu, X. Review: Modifications of human serum albumin and their binding effect. Curr. Pharm. Des., 2015, 21(14), 1862-1865.
[http://dx.doi.org/10.2174/1381612821666150302115025] [PMID: 25732553]
[23]
Ramos-Fernández, E.; Tajes, M.; Palomer, E.; Ill-Raga, G.; Bosch-Morató, M.; Guivernau, B.; Román-Dégano, I.; Eraso-Pichot, A.; Alcolea, D.; Fortea, J.; Nuñez, L.; Paez, A.; Alameda, F.; Fernández-Busquets, X.; Lleó, A.; Elosúa, R.; Boada, M.; Valverde, M.A.; Muñoz, F.J. Posttranslational nitro-glycative modifications of albumin in Alzheimer’s disease: Implications in cytotoxicity and amyloid-β peptide aggregation. J. Alzheimers Dis., 2014, 40(3), 643-657.
[http://dx.doi.org/10.3233/JAD-130914] [PMID: 24503620]
[24]
Giglio, R.V.; Lo Sasso, B.; Agnello, L.; Bivona, G.; Maniscalco, R.; Ligi, D.; Mannello, F.; Ciaccio, M. Recent updates and advances in the use of glycated albumin for the diagnosis and monitoring of diabetes and renal, cerebro- and cardio-metabolic diseases. J. Clin. Med., 2020, 9(11), 3634.
[http://dx.doi.org/10.3390/jcm9113634] [PMID: 33187372]
[25]
Lepedda, A.J.; Zinellu, A.; Nieddu, G.; Muro, P. De, Carru, C.; Spirito, R. Human serum albumin Cys 34 oxidative modifications following infiltration in the carotid atherosclerotic plaque. Oxid. Med. Cell. Longev., 2014, 2014, 690953.
[26]
Nagumo, K.; Tanaka, M.; Chuang, V.T.G.; Setoyama, H.; Watanabe, H.; Yamada, N.; Kubota, K.; Tanaka, M.; Matsushita, K.; Yoshida, A.; Jinnouchi, H.; Anraku, M.; Kadowaki, D.; Ishima, Y.; Sasaki, Y.; Otagiri, M.; Maruyama, T. Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases. PLoS One, 2014, 9(1), e85216.
[http://dx.doi.org/10.1371/journal.pone.0085216] [PMID: 24416365]
[27]
Merlino, A. Cisplatin binding to human serum albumin: A structural study. Chem. Commun., 2015, 51(46), 9436-9439.
[28]
Liyasova, M.S.; Schopfer, L.M.; Lockridge, O. Reaction of human albumin with aspirin in vitro: Mass spectrometric identification of acetylated lysines 199, 402, 519, and 545. Biochem. Pharmacol., 2010, 79(5), 784-791.
[http://dx.doi.org/10.1016/j.bcp.2009.10.007] [PMID: 19836360]
[29]
Hawkins, D.; Pinckard, R.N.; Crawford, I.P.; Farr, R.S. Structural changes in human serum albumin induced by ingestion of acetylsalicylic acid. J. Clin. Invest., 1969, 48(3), 536-542.
[http://dx.doi.org/10.1172/JCI106011] [PMID: 5773090]
[30]
Pavone, B.; Sirolli, V.; Giardinelli, A.; Bucci, S.; Forlì, F.; Di Cesare, M.; Sacchetta, P.; Di Pietro, N.; Pandolfi, A.; Urbani, A.; Bonomini, M. Plasma protein carbonylation in chronic uremia. J. Nephrol., 2011, 24(4), 453-464.
[http://dx.doi.org/10.5301/JN.2011.8342] [PMID: 21607919]
[31]
Colombo, G.; Aldini, G.; Orioli, M.; Giustarini, D.; Gornati, R.; Rossi, R.; Colombo, R.; Carini, M.; Milzani, A.; Dalle-Donne, I. Water-Soluble α,β-unsaturated aldehydes of cigarette smoke induce carbonylation of human serum albumin. Antioxid. Redox Signal., 2010, 12(3), 349-364.
[http://dx.doi.org/10.1089/ars.2009.2806] [PMID: 19686037]
[32]
Ugur, Z.; Gronert, S. A robust analytical approach for the identification of specific protein carbonylation sites: Metal-catalyzed oxidations of human serum albumin. Anal. Lett., 2017, 50(3), 567-579.
[http://dx.doi.org/10.1080/00032719.2016.1186171] [PMID: 28303033]
[33]
Hackett, T.L.; Scarci, M.; Zheng, L.; Tan, W.; Treasure, T.; Warner, J.A. Oxidative modification of albumin in the parenchymal lung tissue of current smokers with chronic obstructive pulmonary disease. Respir. Res., 2010, 11(1), 180.
[http://dx.doi.org/10.1186/1465-9921-11-180] [PMID: 21176186]
[34]
Nativel, M.; Schneider, F.; Saulnier, P.J.; Gand, E.; Ragot, S.; Meilhac, O.; Rondeau, P.; Burillo, E.; Cournot, M.; Potier, L.; Velho, G.; Marre, M.; Roussel, R.; Rigalleau, V.; Mohammedi, K.; Hadjadj, S. Prognostic values of inflammatory and redox status biomarkers on the risk of major lower-extremity artery disease in individuals with type 2 diabetes. Diabetes Care, 2018, 41(10), 2162-2169.
[http://dx.doi.org/10.2337/dc18-0695] [PMID: 30072406]
[35]
Colombo, G.; Clerici, M.; Giustarini, D.; Rossi, R.; Milzani, A.; Dalle-Donne, I. Redox albuminomics: Oxidized albumin in human diseases. Antioxid. Redox Signal., 2012, 17(11), 1515-1527.
[http://dx.doi.org/10.1089/ars.2012.4702] [PMID: 22587567]
[36]
Bracht, A.; Silveira, S.S.; Castro-Ghizoni, C.V.; Sá-Nakanishi, A.B.; Oliveira, M.R.N.; Bersani-Amado, C.A.; Peralta, R.M.; Comar, J.F. Oxidative changes in the blood and serum albumin differentiate rats with monoarthritis and polyarthritis. Springerplus, 2016, 5(1), 36.
[http://dx.doi.org/10.1186/s40064-016-1671-1] [PMID: 26835218]
[37]
Chubarov, A.S. Homocysteine thiolactone: biology and chemistry. Encyclopedia., 2021, 1(2), 445-459.
[http://dx.doi.org/10.3390/encyclopedia1020037]
[38]
Głowacki, R.; Jakubowski, H. Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-homocysteinylation. J. Biol. Chem., 2004, 279(12), 10864-10871.
[http://dx.doi.org/10.1074/jbc.M313268200] [PMID: 14701829]
[39]
Jakubowski, H. Homocysteine modification in protein structure/function and human disease. Physiol. Rev., 2019, 99(1), 555-604.
[http://dx.doi.org/10.1152/physrev.00003.2018] [PMID: 30427275]
[40]
Nakashima, F.; Shibata, T.; Kamiya, K.; Yoshitake, J.; Kikuchi, R.; Matsushita, T.; Ishii, I.; Giménez-Bastida, J.A.; Schneider, C.; Uchida, K. Structural and functional insights into S-thiolation of human serum albumins. Sci. Rep., 2018, 8(1), 932.
[http://dx.doi.org/10.1038/s41598-018-19610-9] [PMID: 29343798]
[41]
Zinellu, A.; Sotgia, S.; Scanu, B.; Arru, D.; Cossu, A.; Posadino, A.M.; Giordo, R.; Mangoni, A.A.; Pintus, G.; Carru, C. N- and S-homocysteinylation reduce the binding of human serum albumin to catechins. Eur. J. Nutr., 2017, 56(2), 785-791.
[http://dx.doi.org/10.1007/s00394-015-1125-5] [PMID: 26658763]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy