Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Review on Plants with Traditional Uses and Bio-activity against Hair Graying

Author(s): Ahmed H. Arbab*, Elwaleed E. Zaroug and Mahmoud M.E. Mudawi

Volume 8, Issue 3, 2022

Published on: 18 March, 2022

Article ID: e080222200916 Pages: 11

DOI: 10.2174/2215083808666220208105012

Price: $65

Abstract

Hair graying occurs worldwide, and it has a high impact on an individual’s self-esteem. Hair graying is a melanogenesis disorder attributed to many factors, including age, oxidative stress, psychological stress, and malnutrition. Though there are effective p-phenylenediamine based hair dyes, they often cause allergy and systematic toxicity. Plants are a popular traditional remedy for the management of hair disorders. Due to their high chemical diversity, phytoproducts offer great promises to develop an effective and safe product to manage hair graying and melanogenesis disorders. The present article aims to review plants with traditional uses and bio-activity against hair graying. An extensive literature search was conducted on PubMed, Science Direct, and Google Scholar databases using many combinations of the following keywords: plants used to treat gray hair, natural products, hair graying, melanogenesis, pigmentation, and tyrosinase activity. This review documented about sixty-one plants, including a summary of 47 plants frequently used in traditional medicine and a brief review of fourteen plants showing promising activity against hair graying. The active constituents and the mechanisms by which active constituents exert anti-hair graying effects were reviewed.

Keywords: Gray hair, melanin synthesis, melanogenesis, tyrosinase, traditional use, medicinal plants.

Graphical Abstract
[1]
Jo SK, Lee JY, Lee Y, Kim CD, Lee JH, Lee YH. Three streams for the mechanism of hair graying. Ann Dermatol 2018; 30(4): 397-401.
[http://dx.doi.org/10.5021/ad.2018.30.4.397] [PMID: 30065578]
[2]
Choi HI, Choi GI, Kim EK, et al. Hair greying is associated with active hair growth. Br J Dermatol 2011; 165(6): 1183-9.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10625.x] [PMID: 21916889]
[3]
Seiberg M. Age-induced hair greying - the multiple effects of oxidative stress. Int J Cosmet Sci 2013; 35(6): 532-8.
[http://dx.doi.org/10.1111/ics.12090] [PMID: 24033376]
[4]
Yale K, Juhasz M, Atanaskova Mesinkovska N. Medication-induced repigmentation of gray hair: A systematic review. Skin Appendage Disord 2020; 6(1): 1-10.
[5]
Arbab AHH, Eltahir MM. Review on skin whitening agents. Khartoum Pharm J 2010; 13(1): 5-9.
[6]
Kaur K, Kaur R, Bala I. Therapeutics of premature hair graying: A long journey ahead. J Cosmet Dermatol 2019. [Epub ahead of print].
[http://dx.doi.org/10.1111/jocd.13000] [PMID: 31115162]
[7]
El-Sheikh AM, Elfar NN, Mourad HA, Hewedy ESS. Relationship between trace elements and premature hair graying. Int J Trichology 2018; 10(6): 278-83.
[http://dx.doi.org/10.4103/ijot.ijot_8_18] [PMID: 30783336]
[8]
Trüeb RM. Pharmacologic interventions in aging hair. Clin Interv Aging 2006; 1(2): 121-9.
[http://dx.doi.org/10.2147/ciia.2006.1.2.121] [PMID: 18044109]
[9]
Lee JH, Fisher DE. Melanocyte stem cells as potential therapeutics in skin disorders. Expert Opin Biol Ther 2014; 14(11): 1569-79.
[http://dx.doi.org/10.1517/14712598.2014.935331]
[10]
Wood JM, Decker H, Hartmann H, et al. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J 2009; 23(7): 2065-75.
[http://dx.doi.org/10.1096/fj.08-125435] [PMID: 19237503]
[11]
Stout R, Birch-Machin M. Mitochondria’s role in skin ageing. Biology (Basel) 2019; 8(2): 29.
[http://dx.doi.org/10.3390/biology8020029] [PMID: 31083540]
[12]
Mendelsohn AR, Larrick JW. The danger of being too sympathetic: Norepinephrine in Alzheimer’s Disease and graying of hair. Rejuvenation Res 2020; 23(1): 68-72.
[http://dx.doi.org/10.1089/rej.2020.2309] [PMID: 31989871]
[13]
Huang S, Rompolas P. The psychology of gray hair. Dev Cell 2020; 52(5): 548-9.
[http://dx.doi.org/10.1016/j.devcel.2020.02.008] [PMID: 32155437]
[14]
Clark SA, Deppmann CD. How the stress of fight or flight turns hair white. Nature 2020; 577(7792): 623-4.
[http://dx.doi.org/10.1038/d41586-019-03949-8] [PMID: 31988402]
[15]
Nelson A J. Dietary supplement for promotion of healthy hair and pigment. US6149933 A 20001121, 2000.
[16]
Qadir IM, Rao B. Is there any correlation between the presence of blood in urine and premature greying of hair. J Bio Innov 2019; 8(5): 591-4.
[17]
Noppakun N, Swasdikul D. Reversible hyperpigmentation of skin and nails with white hair due to vitamin B12 deficiency. Arch Dermatol 1986; 122(8): 896-9.
[http://dx.doi.org/10.1001/archderm.1986.01660200068018] [PMID: 3740873]
[18]
Sagar D, Yadav SS. A review on palitya chikitsa in brihattrayi. Int J Res Ayurveda Pharm 2018; 9: 111-4.
[http://dx.doi.org/10.7897/2277-4343.09372]
[19]
Im KM, Kim TW, Jeon JR. Metal-chelation-assisted deposition of polydopamine on human hair: A ready-to-use eumelanin-based hair dyeing methodology. ACS Biomater Sci Eng 2017; 3(4): 628-36.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00031] [PMID: 33429630]
[20]
Hong SH, Sim MJ, Kim YC. Melanogenesis-promoting effects of Rhynchosia nulubilis and Rhynchosia volubilis ethanol extracts in melan-a cells. Toxicol Res 2016; 32(2): 141-7.
[http://dx.doi.org/10.5487/TR.2016.32.2.141] [PMID: 27123165]
[21]
Dong Y, Qiu Y, Gao D, et al. Melanin-mimetic multicolor and low-toxicity hair dye. RSC Advances 2019; 9: 33617-24.
[http://dx.doi.org/10.1039/C9RA07466J]
[22]
Hoffman RM. Topical liposome targeting of dyes, melanins, genes, and proteins selectively to hair follicles. J Drug Target 1998; 5(2): 67-74.
[http://dx.doi.org/10.3109/10611869808995860] [PMID: 9588863]
[23]
Cragg GM, Newman DJ. Biodiversity: A continuing source of novel drug leads. Pure Appl Chem 2005; 77(1): 7-24.
[http://dx.doi.org/10.1351/pac200577010007]
[24]
Sharma L, Agarwa G, Kumar A. Medicinal plants for skin and hair care. IJTK 2003; 2: 62-8.
[25]
Basheer M, Babu AA, Rahman TA. Treatment for hair fall and premature hair greying by poly herbal formulation. Int J Med Heal Res 2017; 3(9): 40-3.
[26]
Rani S. Management of greying of hairs (Sheeb) and use of hair dyes (Khizaab) in Unani Medicine. Cell Med 2018; 2: 7e.
[27]
Sundaram SS, Suresh K. Prevention of hair fall and whitening of hair by valuable medicinal plants in selected areas of Madurai district, Tamil Nadu, India. J Med Plants Stud 2019; 7(3): 74-7.
[28]
Amit G, Rishabha M, Tej Prakash S, Pramod Kumar S. Indian medicinal plants used in hair care cosmetics: A short review. 2010; 2(10): 361-4.
[29]
Murali-Krishna C, Sivaram G, Malini S, Babu G. Review of ayurvedic herbs with kesharanjana property in the management of caniites (Palitya). Int J Ayurvedic Med 2018; 9(1): 9-12.
[30]
Punjani B, Kumar V. Plants used in traditional phytotherapy for hair care by tribals in Sabarkantha district, Gujarat, India. Indian J Tradit Knowl 2003; 02(1): 74-8.
[31]
Huang J, Zhang Y, Dong L, et al. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. J Ethnopharmacol 2018; 213: 280-301.
[http://dx.doi.org/10.1016/j.jep.2017.11.010] [PMID: 29155174]
[32]
An YA, Hwang JY, Lee JS, Kim YC. Cornus officinalis methanol extract upregulates melanogenesis in melan-a cells. Toxicol Res 2015; 31(2): 165-72.
[http://dx.doi.org/10.5487/TR.2015.31.2.165] [PMID: 26191383]
[33]
Nawa Y, Endo J, Ohta T. The inhibitory effect of the components of Cornus officinalis on melanogenesis. Int J Cosmet Sci 2008; 30(5): 383-4.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00421_3.x]
[34]
Oh SW, Park SH, Lee HS, Kang M, Lee SE, Yoo JA, et al. Melanogenic mechanism of ethanolic extract of Dalbergia odorifera. Mol Cell Toxicol 2017; 13(4): 453-9.
[http://dx.doi.org/10.1007/s13273-017-0049-y]
[35]
The SN. A review on the medicinal plant Dalbergia odorifera species: Phytochemistry and biological activity. Evid Based Complement Alternat Med 2017; 2017: 7142370.
[http://dx.doi.org/10.1155/2017/7142370] [PMID: 29348771]
[36]
Mukhopadhyay G, Kundu S, Sarkar A, et al. A review on physicochemical & pharmacological activity of Eclipta alba. Pharma Innov J 2018; 7(9): 78-83.
[37]
Saraswat VK, Verma S, Musale SV. A review on traditional and folklore uses, phytochemistry and pharmacology of Eclipta alba (L) hassk. (L). IAMJ 2015; 3(8): 2463-9.
[38]
Udayashankar AC, Nandhini M, Rajini SB, Prakash HS. Pharmacological significance of medicinal herb Eclipta alba L.-a Review. Int J Pharm Sci Res 2019; 10(8): 3592.
[39]
Batm YN. Determination of free radical protective activity from hydrogen peroxide, antioxidant and melanogenesis stimulating activities of Eclipta prostrate Linn. and sapindus rarak DC for hair dye product. J Med Assoc Thai 2017; 100(Suppl. 5): S192-9.
[40]
Hong IPS, Mun WWY. A study of melanin synthesis pathway of the ethanol extract of eclipta prostrata in vitro study. In: J Korean Med Ophthalmol Otolaryngol Dermatol. 2017; 30: pp. 37-48.
[41]
Taguchi N, Hata T, Kamiya E, et al. Eriodictyon angustifolium extract, but not Eriodictyon californicum extract, reduces human hair greying. Int J Cosmet Sci 2020; 42(4): 336-45.
[http://dx.doi.org/10.1111/ics.12620] [PMID: 32324292]
[42]
Reichelt KV, Hartmann B, Weber B, Ley JP, Krammer GE, Engel KH. Identification of bisprenylated benzoic acid derivatives from Yerba santa (Eriodictyon ssp.) using sensory-guided fractionation. J Agric Food Chem 2010; 58(3): 1850-9.
[http://dx.doi.org/10.1021/jf903286s] [PMID: 20058867]
[43]
Walker J, Reichelt KV, Obst K, et al. Identification of an anti-inflammatory potential of Eriodictyon angustifolium compounds in human gingival fibroblasts. Food Funct 2016; 7(7): 3046-55.
[http://dx.doi.org/10.1039/C6FO00482B] [PMID: 27248833]
[44]
Shiraki K, Toyama N, Clinic TD, City N. Reduction in human hair graying by sterubin, an active flavonoid of Eriodictyon angustifolium. 2018; 92: 286-9.
[45]
Taguchi N, Yuriguchi M, Ando T, Kitai R, Aoki H, Kunisada T. Flavonoids with two OH Groups in the B-Ring promote pigmented hair regeneration. Biol Pharm Bull 1446; 42(9): 1446-9.
[46]
Yamauchi K, Mitsunaga T, Batubara I. Novel quercetin glucosides from Helminthostachys zeylanica root and acceleratory activity of melanin biosynthesis. J Nat Med 2013; 67(2): 369-74.
[http://dx.doi.org/10.1007/s11418-012-0672-9] [PMID: 22580713]
[47]
Wu KC, Kao CP, Ho YL, Chang YS. Quality control of the root and rhizome of Helminthostachys zeylanica (Daodi-Ugon) by HPLC using quercetin and ugonins as markers. Molecules 2017; 22(7): 1115.
[http://dx.doi.org/10.3390/molecules22071115] [PMID: 28678195]
[48]
Takekoshi S, Matsuzaki K, Kitatani K. Quercetin stimulates melanogenesis in hair follicle melanocyte of the mouse. Tokai J Exp Clin Med 2013; 38(4): 129-34.
[49]
Mitsunaga T, Yamauchi K. Effect of quercetin derivatives on melanogenesis stimulation of melanoma cells. J Wood Sci 2015; 61(4): 351-63.
[http://dx.doi.org/10.1007/s10086-015-1476-9]
[50]
Yamauchi K, Mitsunaga T. Methylquercetins stimulate melanin biosynthesis in a three-dimensional skin model. J Nat Med 2018; 72(2): 563-9.
[http://dx.doi.org/10.1007/s11418-018-1175-0] [PMID: 29442220]
[51]
Chinnasamy G, Chandrasekharan S, Bhatnagar S. Biosynthesis of silver nanoparticles from Melia azedarach: Enhancement of antibacterial, wound healing, antidiabetic and antioxidant activities. Int J Nanomedicine 2019; 14: 9823-36.
[http://dx.doi.org/10.2147/IJN.S231340] [PMID: 31849471]
[52]
Kim MO, Park SJ, Park SH, et al. Ethanolic extract of Melia azedarach L. induces melanogenesis through the cAMP-PKA-CREB signaling pathway. Mol Cell Toxicol 2019; 15(1): 75-83.
[http://dx.doi.org/10.1007/s13273-019-0009-9]
[53]
Yao C, Jin CL, Oh INNG, Park C, Chung JINHO. Melia azedarach extract stimulates melanogenesis through increase of tyrosinase-related protein 1 expression in B16F10 mouse melanoma cells. Int J Mol Med 2015; 35(6): 1761.
[http://dx.doi.org/10.3892/ijmm.2015.2182]
[54]
Hwang JH, Lee BM. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. In: J Toxicol Environ Heal. 2007; 70: pp. (5)393-407.
[http://dx.doi.org/10.1080/10937400600882871]
[55]
Sable NV, Pagar SA. A review on Lotus: use in herbal cosmetics. Res J Top Cosmet Sci 2013; 4(2): 81-3.
[56]
Jeon S, Kim N, Koo B, Kim J, Lee A. Lotus (Nelumbo nuficera) flower essential oil increased melanogenesis in normal human melanocytes. EMM 2009; 41(7): 517-24.
[57]
Cabanting RMF, Perez LM. An ethnobotanical study of traditional rice landraces (Oryza sativa L.) used for medical treatment in selected local communities of the Philippines. J Ethnopharmacol 2016; 194: 767-73.
[http://dx.doi.org/10.1016/j.jep.2016.10.021] [PMID: 27742407]
[58]
Kim B, Woo S, Kim M, Kwon S, Lee J, Hyun S. Identi fi cation and quanti fi cation of fl avonoids in yellow grain mutant of rice (Oryza sativa L.). Food Chem 2018; 241: 154-62.
[59]
Soradech S. Radical scavenging, antioxidant and melanogenesis stimulating activities of different species of rice (Oryza sativa L.) extracts for hair treatment formulation. Thaiphesatchasan 2016; 40: 92-5.
[60]
Soradech S, Kusolkumbot P, Reungpatthanaphong P, Thubthimthed S. Investigation of DPPH radical scavenging, antioxidant and melanogenesis stimulating activities of various pigment extracts from Thai herbal plants. Res J Pharm Biol Chem Sci 2016; 7(4): 392-9.
[61]
Lee E, Kim M. Effect of black rice (Oryza sativa L. indica). ethanolic extract on tyrosinase activity and antioxidant activity related to melanin production. J Life Sci 2018; 28(5): 532-9.
[62]
Jeon S, Kim M. Ethanolic extract of Oryza sativa displays antioxidative activity and promotes melanin synthesis. J Life Sci 2018; 28(8): 908-16.
[63]
Jang H, Seo Y. Pigmentation effect of rice bran extracted minerals comprising soluble silicic acids. Evid Based Complement Altern Med 2016; 2016: 3137486.
[64]
Kim YM, Lee EC, Lim HM, Seo YK. Rice bran ash mineral extract increases pigmentation through the p-ERK pathway in Zebrafish (Danio rerio). Int J Mol Sci 2019; 20(9): E2172.
[http://dx.doi.org/10.3390/ijms20092172] [PMID: 31052497]
[65]
Bounda GA, Feng YU. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds. Pharmacognosy Res 2015; 7(3): 225-36.
[http://dx.doi.org/10.4103/0974-8490.157957] [PMID: 26130933]
[66]
Han MN, Lu JM, Zhang GY, Yu J, Zhao RH. Mechanistic studies on the use of polygonum multiflorum for the treatment of hair graying. BioMed Res Int 2015; 2015: 651048.
[http://dx.doi.org/10.1155/2015/651048] [PMID: 26640791]
[67]
Jiang Z, Xu J, Long M, Tu Z, Yang G, He G. 2, 3, 5, 4′-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG) induces melanogenesis in B16 cells by MAP kinase activation and tyrosinase upregulation. Life Sci 2009; 85(9-10): 345-50.
[http://dx.doi.org/10.1016/j.lfs.2009.05.022] [PMID: 19527735]
[68]
Liu S, Jen Ma L. Effects of chinese herbal extracts on tyrosinase activity and melanogenesis. Nat Prod Chem Res 2015; 3(4): 1000183.
[69]
Thang ND, Diep PN, Lien PTH, Lien LT. Polygonum multiflorum root extract as a potential candidate for treatment of early graying hair. J Adv Pharm Technol Res 2017; 8(1): 8-13.
[http://dx.doi.org/10.4103/2231-4040.197332] [PMID: 28217548]
[70]
Liu Y, Wang Q, Yang J, et al. Polygonum multiflorum Thunb.: A review on chemical analysis, processing mechanism, quality evaluation, and hepatotoxicity. Front Pharmacol 2018; 9: 364.
[http://dx.doi.org/10.3389/fphar.2018.00364] [PMID: 29713283]
[71]
Tungmunnithum D, Intharuksa A, Sasaki Y. A promising view of kudzu plant: Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep: Flavonoid phytochemical compounds, taxonomic data, traditional uses and potential biological activities for future cosmetic application. Cosmetics 2020; 2020(7): 1-12.
[http://dx.doi.org/10.3390/cosmetics7010012]
[72]
Zhang Z, Lam TN, Zuo Z. Radix Puerariae: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 2013; 53(8): 787-811.
[http://dx.doi.org/10.1002/jcph.96] [PMID: 23677886]
[73]
Ulbricht C, Costa D, Dam C, et al. An evidence-based systematic review of kudzu (Pueraria lobata) by the Natural Standard Research Collaboration. J Diet Suppl 2015; 12(1): 36-104.
[http://dx.doi.org/10.3109/19390211.2014.904123] [PMID: 24848872]
[74]
Cherdshewasart W, Sutjit W, Pulcharoen K, Chulasiri M. The mutagenic and antimutagenic effects of the traditional phytoestrogen-rich herbs, Pueraria mirifica and Pueraria lobata. Braz J Med Biol Res 2009; 42(9): 816-23.
[http://dx.doi.org/10.1590/S0100-879X2009000900008] [PMID: 19738987]
[75]
Jo SJ, Shin H, Paik SH, et al. Efficacy and safety of Pueraria lobata extract in gray hair prevention: A randomized, double-blind, placebo-controlled study. Ann Dermatol 2013; 25(2): 218-22.
[http://dx.doi.org/10.5021/ad.2013.25.2.218] [PMID: 23717015]
[76]
Park WS, Kwon O, Yoon TJ, Chung JH. Anti-graying effect of the extract of Pueraria thunbergiana via upregulation of cAMP/MITF-M signaling pathway. J Dermatol Sci 2014; 75(2): 153-5.
[http://dx.doi.org/10.1016/j.jdermsci.2014.05.003] [PMID: 24924521]
[77]
Park MH, Kim M. Antioxidant and anti-inflammatory activity and cytotoxicity of ethanol extracts from Rhynchosia nulubilis cultivated with ganoderma lucidum mycelium. 2018; 23: 326-34.
[http://dx.doi.org/10.3746/pnf.2018.23.4.326]
[78]
Kim J, Kim M. Effect of Rhynchosia nulubilis ethanolic extract on DOPA oxidation and melanin synthesis. J Life Sci 2018; 28(3): 331-8.
[79]
Wang L, Ma R, Liu C, et al. Salvia miltiorrhiza: A potential red light to the development of cardiovascular diseases. Curr Pharm Des 2017; 23(7): 1077-97.
[http://dx.doi.org/10.2174/1381612822666161010105242] [PMID: 27748194]
[80]
Lin T-H, Hsieh C-L. Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction. Chin Med 2010; 5(1): 22.
[http://dx.doi.org/10.1186/1749-8546-5-22] [PMID: 20565944]
[81]
Chiang S-H. The enhancement effect of Salvia miltiorrhiza on melanin production of B16F10 melanoma cells. J Med Plants Res 2012; 6(26): 4338-42.
[82]
Yamauchi K, Mitsunaga T, Mahmoud A. Screening for melanogenesis-controlled agents using Sudanese medicinal plants and identification of active compounds in the methanol extract of Terminalia brownii bark. J Wood Sci 2016; 62(3): 285-93.
[http://dx.doi.org/10.1007/s10086-016-1546-7]
[83]
Midiwo JO, Jacob M, Khan S, Tekwani B. Phytochemical, antimicrobial and antiplasmodial Investigations of Terminalia browni. 2015.
[84]
Salih EYA, Fyhrquist P, Abdalla AMA, Abdelgadir AY. LC-MS / MS tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of Terminalia brownii ( Fresen ). 2017; 2017: 1-18.
[85]
Mbwambo ZH, Moshi MJ, Masimba PJ, Kapingu MC, Nondo RSO. Antimicrobial activity and brine shrimp toxicity of extracts of Terminalia brownii roots and stem. BMC Complement Altern Med 2007; 7: 9.
[http://dx.doi.org/10.1186/1472-6882-7-9] [PMID: 17394672]
[86]
Mbiri JW. Antinociceptive properties of methanolic bark extracts of Terminalia brownii in wistar rats. J Pain Relief 2016; 5(5): 261.
[http://dx.doi.org/10.4172/2167-0846.1000261]
[87]
Alema NM, Periasamy G, Gebremedhin G, Hintsa G, Gebrelibanos M. Antidiabetic activity of extracts of Terminalia brownii Fresen. In: Dovepress. 2020; 12: pp. 61-71.
[88]
Chaveerach A, Lertsatitthanakorn P, Tanee T, Puangjit N, Patarapadungkit N, Sudmoon R. Chemical constituents, antioxidant property, cytotoxicity and genotoxicity of Tiliacora triandra. Int J Pharmacogn Phytochem Res 2016; 8(5): 722-9.
[89]
Katisart T, Rattana S. Hypoglycemic activity of leaf extracts from Tiliacora triandra in normal and streptozotocin-induced diabetic rats. 2017; 9(5): 621-5.
[http://dx.doi.org/10.5530/pj.2017.5.99]
[90]
Soradech S, Kusolkumbot P, Thubthimthed S. Development and characterization of microemulsions containing Tiliacora triandra Diels as an active ingredient for antioxidant and melanogenesis stimulating activities. J Appl Pharm Sci 2018; 8(3): 46-54.
[91]
Teansuwan N, Sripanidkulchai B, Jaipakdee N. Effect of four herb extracts on melanin synthesis. IJPS 2016; 11: 96-7.
[92]
Matsuyama K, Villareal MO, El Omri A, Han J, Kchouk ME, Isoda H. Effect of Tunisian Capparis spinosa L. extract on melanogenesis in B16 murine melanoma cells. J Nat Med 2009; 63(4): 468-72.
[http://dx.doi.org/10.1007/s11418-009-0355-3] [PMID: 19685105]
[93]
Kim HJ, Kim IS, Dong Y, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci 2015; 16(4): 8772-88.
[http://dx.doi.org/10.3390/ijms16048772] [PMID: 25903150]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy