Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Facile and Environment-friendly Fluorinations using Ionic Liquids

Author(s): Komal Jakhar*

Volume 19, Issue 8, 2022

Published on: 10 May, 2022

Page: [849 - 873] Pages: 25

DOI: 10.2174/1570179419666220208104453

Price: $65

Abstract

Significant advancement in the preparation of fascinating fluoroorganics is highly desirable in view of their limited natural occurrence and ever-increasing applications in medicinal and material sciences. Ionic liquids act as the most promising green media for a variety of nucleophilic and electrophilic fluorinations in terms of chemoselectivity, reaction yields, reusability, operational simplicity and scalability. The use of these designer solvents in stimulating the electrified synthesis of fluorinated compounds is also appreciable due to their tuneable electrochemical characteristics. Recent innovations in fluorination techniques depict the substantial role of ionic liquids in fluorotransformations such as the use of tagged ionic liquids in nucleophilic fluorinations, ionic liquid assisted biological fluorination, enantioselective fluorinations using chiral electrophilic reagents along with ionic liquid media, use of task-specific ionic liquids with mediators in electrochemical fluorinations and ionic liquid promoted electrifying synthesis of medicinally important fluorinated heteroaromatics and radiopharmaceuticals.

Keywords: Ionic liquids, fluorinations, nucleophilic, electrophilic, electrochemical, environment-friendly.

Graphical Abstract
[1]
Ni, C.; Hu, J. The unique fluorine effects in organic reactions: recent facts and insights into fluoroalkylations. Chem. Soc. Rev., 2016, 45(20), 5441-5454.
[http://dx.doi.org/10.1039/C6CS00351F] [PMID: 27499359]
[2]
Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00258] [PMID: 26200936]
[3]
Al-Harthy, T.; Zoghaib, W.; Abdel-Jalil, R. Importance of fluorine in benzazole compounds. Molecules, 2020, 25(20), 4677.
[http://dx.doi.org/10.3390/molecules25204677] [PMID: 33066333]
[4]
Filler, R.; Saha, R. Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med. Chem., 2009, 1(5), 777-791.
[http://dx.doi.org/10.4155/fmc.09.65] [PMID: 21426080]
[5]
Shah, P.; Westwell, A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 527-540.
[http://dx.doi.org/10.1080/14756360701425014] [PMID: 18035820]
[6]
Sowmiah, S.; Cheng, C.I.; Chu, Y-H. Ionic liquids for green organic synthesis. Curr. Org. Synth., 2012, 9, 74-95.
[http://dx.doi.org/10.2174/157017912798889116]
[7]
Qureshi, Z.S.; Deshmukh, K.M.; Bhanage, B.M. Applications of ionic liquids in organic synthesis and catalysis. Clean Technol. Environ. Policy, 2014, 16, 1487-1513.
[http://dx.doi.org/10.1007/s10098-013-0660-0]
[8]
Yue, C.; Fang, D.; Liu, L.; Yi, T-F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J. Mol. Liq., 2011, 163(3), 99-121.
[http://dx.doi.org/10.1016/j.molliq.2011.09.001]
[9]
Sawant, A.D.; Raut, D.G.; Darvatkar, N.B.; Salunkhe, M.M. Recent developments of task-specific ionic liquids in organic synthesis. Green Chem. Lett. Rev., 2011, 4(1), 41-54.
[http://dx.doi.org/10.1080/17518253.2010.500622]
[10]
Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Yadav, P.; Sharma, R.K. Magnetically supported ionic liquids: A sustainable catalytic route for organic transformations. Mater. Horiz., 2020, 7, 3097-3130.
[http://dx.doi.org/10.1039/D0MH01088J]
[11]
Okoromoba, O.E.; Han, J.; Hammond, G.B.; Xu, B. Designer HF-based fluorination reagent: highly regioselective synthesis of fluoroalkenes and gem-difluoromethylene compounds from alkynes. J. Am. Chem. Soc., 2014, 136(41), 14381-14384.
[http://dx.doi.org/10.1021/ja508369z] [PMID: 25260170]
[12]
Okoromoba, O.E.; Hammond, G.B.; Xu, B. Preparation of fluorinated tetrahydropyrans and piperidines using a new nucleophilic fluorination reagent DMPU/HF. Org. Lett., 2015, 17(16), 3975-3977.
[http://dx.doi.org/10.1021/acs.orglett.5b01919] [PMID: 26262944]
[13]
Clark, J.H.; Hyde, A.J.; Smith, D.K. Calcium fluoride-supported alkali metal fluorides. New reagents for nucleophilic fluorine transfer reactions. J. Chem. Soc. Chem. Commun., 1986, 791-793.
[http://dx.doi.org/10.1039/c39860000791]
[14]
Bram, G.; Loupy, A.; Pigeon, P. Easy and efficient heterogeneous nucleophilic fluorination without solvent. Synth. Commun., 1988, 18(14), 1661-1668.
[http://dx.doi.org/10.1080/00397918808081327]
[15]
Lee, J.W.; Shin, J.Y.; Chun, Y.S.; Jang, H.B.; Song, C.E.; Lee, S.G. Toward understanding the origin of positive effects of ionic liquids on catalysis: formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids. Acc. Chem. Res., 2010, 43(7), 985-994.
[http://dx.doi.org/10.1021/ar9002202] [PMID: 20345123]
[16]
Laali, K.K.; Gettwert, V.J. Fluorodediazoniation in ionic liquid solvents: New life for the Balz-Schiemann reaction. J. Fluor. Chem., 2001, 107(1), 31-34.
[http://dx.doi.org/10.1016/S0022-1139(00)00337-7]
[17]
Laali, K.K.; Okazaki, T.; Bunge, S.D.N.N. -(trifluoromethylsulfonyl)aryloxytrifluoromethylsulfoximines [ArO-SO(CF3)=NTf] and N-aryltriflimides Ar-N(Tf)2 by thermal and photolytic dediazoniation of [ArN2][BF4] in [BMIM][Tf2N] ionic liquid: exploiting the ambident nucleophilic character of a “nonnucleophilic” anion. J. Org. Chem., 2007, 72(18), 6758-6762.
[http://dx.doi.org/10.1021/jo0708801] [PMID: 17665954]
[18]
Hubbard, A.; Okazaki, T.; Laali, K.K. Halo- and azidodediazoniation of arenediazonium tetrafluoroborates with trimethylsilyl halides and trimethylsilyl azide and sandmeyer-type bromodediazoniation with Cu(I)Br in [BMIM][PF6] ionic liquid. J. Org. Chem., 2008, 73(1), 316-319.
[http://dx.doi.org/10.1021/jo701937e] [PMID: 18067314]
[19]
Kim, D.W.; Song, C.E.; Chi, D.Y. New method of fluorination using potassium fluoride in ionic liquid: significantly enhanced reactivity of fluoride and improved selectivity. J. Am. Chem. Soc., 2002, 124(35), 10278-10279.
[http://dx.doi.org/10.1021/ja026242b] [PMID: 12197720]
[20]
Kim, D.W.; Song, C.E.; Chi, D.Y. Significantly enhanced reactivities of the nucleophilic substitution reactions in ionic liquid. J. Org. Chem., 2003, 68(11), 4281-4285.
[http://dx.doi.org/10.1021/jo034109b] [PMID: 12762727]
[21]
Kim, D.W.; Chi, D.Y. Polymer-supported ionic liquids: imidazolium salts as catalysts for nucleophilic substitution reactions including fluorinations. Angew. Chem. Int. Ed., 2004, 43(4), 483-485.
[http://dx.doi.org/10.1002/anie.200352760] [PMID: 14735541]
[22]
Kim, D.W.; Hong, D.J.; Jang, K.S.; Chi, D.Y. Structural modification of polymer- supported ionic liquids as catalysts for nucleophilic substitution reactions including fluorination. Adv. Synth. Catal., 2006, 348(12-13), 1719-1727.
[http://dx.doi.org/10.1002/adsc.200606119]
[23]
Kim, D.W.; Jeong, H-J.; Lim, S.T.; Sohn, M-H.; Chi, D.Y. Facile nucleophilic fluorination by synergistic effect between polymer-supported ionic liquid catalyst and tert-alcohol reaction media system. Tetrahedron, 2008, 64(19), 4209-4214.
[http://dx.doi.org/10.1016/j.tet.2008.02.094]
[24]
Shinde, S.S.; Lee, B.S.; Chi, D.Y. Synergistic effect of two solvents, tert-alcohol and ionic liquid, in one molecule in nucleophilic fluorination. Org. Lett., 2008, 10(5), 733-735.
[http://dx.doi.org/10.1021/ol702679d] [PMID: 18251545]
[25]
Shinde, S.S.; Patil, S.N.; Ghatge, A.; Kumar, P. Nucleophilic fluorination using imidazolium based ionic liquid bearing tert-alcohol moiety. New J. Chem., 2015, 39, 4368-4374.
[http://dx.doi.org/10.1039/C5NJ00481K]
[26]
Oh, Y-H.; Jang, H.B. Im, S.; Song, M.J.; Kim, S.Y.; Park, S.W.; Chi, D.Y.; Song, C.E.; Lee, S. SN2 fluorination reactions in ionic liquids: a mechanistic study towards solvent engineering. Org. Biomol. Chem., 2011, 9(2), 418-422.
[http://dx.doi.org/10.1039/C0OB00426J] [PMID: 20949216]
[27]
Shinde, S.S.; Patil, S.N. One molecule of ionic liquid and tert-alcohol on a polystyrene-support as catalysts for efficient nucleophilic substitution including fluorination. Org. Biomol. Chem., 2014, 12(45), 9264-9271.
[http://dx.doi.org/10.1039/C4OB01781A] [PMID: 25302765]
[28]
Shinde, S.S.; Lee, B.S.; Chi, D.Y. Polymer-supported protic functionalized ionic liquids for nucleophilic substitution reactions: Superior catalytic activity compared to other ionic resins. Tetrahedron Lett., 2008, 49(27), 4245-4248.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.151]
[29]
Taher, A.; Lee, K.C.; Han, H.J.; Kim, D.W. Pyrene-tagged ionic liquids: Separable organic catalysts for SN2 fluorination. Org. Lett., 2017, 19(13), 3342-3345.
[http://dx.doi.org/10.1021/acs.orglett.7b01064] [PMID: 28631468]
[30]
Min, B.K.; Lee, S-S.; Kang, S.M.; Kim, J.; Kim, D.W.; Lee, S. Mechanism of nucleophilic fluorination facilitated by a pyrene-tagged ionic liquids: Synergistic effects of pyrene-metal cation π-interactions. Bull. Korean Chem. Soc., 2018, 39(9), 1047-1053.
[http://dx.doi.org/10.1002/bkcs.11548]
[31]
Taher, A.; Kim, D.W. Pyrene-tagged alcoholic ionic liquids as phase transfer catalysts for nucleophilic fluorination. Bull. Korean Chem. Soc., 2020, 41(12), 1140-1146.
[http://dx.doi.org/10.1002/bkcs.12123]
[32]
Jadhav, V.H.; Kim, J.G.; Park, S.H.; Kim, D.W. Task-specific hexaethylene glycol bridged di-cationic ionic liquids as catalysts for nucleophilic fluorination using potassium fluoride. Chem. Eng. J., 2017, 308, 664-668.
[http://dx.doi.org/10.1016/j.cej.2016.09.118]
[33]
Paramanik, M.; Singh, R.; Mukhopadhyay, S.; Ghosh, S.K. Catalytic nucleophilic fluorination by an imidazolium ionic liquid possessing trialkylphosphine oxide functionality. J. Fluor. Chem., 2015, 178, 47-55.
[http://dx.doi.org/10.1016/j.jfluchem.2015.06.022]
[34]
Gaur, A.; Avula, N.V.S.; Balasubramanian, S. Insights into the stabilization of fluoride ions in ionic liquids: Pointers to better fluorinating agents. J. Phys. Chem. B, 2020, 124(40), 8844-8856.
[http://dx.doi.org/10.1021/acs.jpcb.0c04939] [PMID: 32930587]
[35]
Lee, J-W.; Oliveira, M.T.; Jang, H.B.; Lee, S.; Chi, D.Y.; Kim, D.W.; Song, C.E. Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography. Chem. Soc. Rev., 2016, 45(17), 4638-4650.
[http://dx.doi.org/10.1039/C6CS00286B] [PMID: 27264160]
[36]
O’Hagan, D.; Schaffrath, C.; Cobb, S.L.; Hamilton, J.T.G.; Murphy, C.D. Biochemistry: biosynthesis of an organofluorine molecule. Nature, 2002, 416(6878), 279-279.
[http://dx.doi.org/10.1038/416279a] [PMID: 11907567]
[37]
O’Hagan, D.; Deng, H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem. Rev., 2015, 115(2), 634-649.
[http://dx.doi.org/10.1021/cr500209t] [PMID: 25253234]
[38]
Oh, Y-H.; Lee, S. Origin of salt effects in SN2 fluorination using KF promoted by ionic liquids: Quantum chemical analysis. Molecules, 2021, 26(19), 5738.
[http://dx.doi.org/10.3390/molecules26195738] [PMID: 34641282]
[39]
Oh, Y-H.; Choi, H.; Park, C.; Kim, D.W.; Lee, S. Harnessing ionic interactions and hydrogen bonding for nucleophilic fluorination. Molecules, 2020, 25(3), 721.
[http://dx.doi.org/10.3390/molecules25030721] [PMID: 32046021]
[40]
Liang, S.; Hammond, G.B.; Xu, B. Hydrogen bonding: Regulator for nucleophilic fluorination. Chemistry, 2017, 23(71), 17850-17861.
[http://dx.doi.org/10.1002/chem.201702664] [PMID: 28833711]
[41]
Sinha, A.K.; Singh, R.; Kumar, R. Towards an understanding of the “Ambiphilic” character of ionic liquids for green synthesis of chemically diverse architectures. Asian J. Org. Chem., 2020, 9(5), 706-720.
[http://dx.doi.org/10.1002/ajoc.202000065]
[42]
Chen, Z.; Tonouchi, Y.; Matsumoto, K.; Saimura, M.; Atkin, R.; Nagata, T.; Katahira, M.; Hagiwara, R. Partially naked fluoride in solvate ionic liquids. J. Phys. Chem. Lett., 2018, 9(22), 6662-6667.
[http://dx.doi.org/10.1021/acs.jpclett.8b03117] [PMID: 30398357]
[43]
See, Y.Y.; Morales-Colón, M.T.; Bland, D.C.; Sanford, M.S. Development of SNAr nucleophilic fluorination: A fruitful academia-industry collaboration. Acc. Chem. Res., 2020, 53(10), 2372-2383.
[http://dx.doi.org/10.1021/acs.accounts.0c00471] [PMID: 32969213]
[44]
Sánchez-Badillo, J.; Gallo, M.; Guirado-López, R.A.; González-García, R. Potential of mean force calculations for an SN2 fluorination reaction in five different imidazolium ionic liquid solvents using quantum mechanics/molecular mechanics molecular dynamics simulations. J. Phys. Chem. B, 2020, 124(21), 4338-4357.
[http://dx.doi.org/10.1021/acs.jpcb.0c03192] [PMID: 32352290]
[45]
Murray, C.B.; Sandford, G.; Korn, S.R. Ionic liquids as media for nucleophilic fluorination. J. Fluor. Chem., 2003, 123(1), 81-84.
[http://dx.doi.org/10.1016/S0022-1139(03)00132-5]
[46]
Zhong, P.; Hu, H.; Guo, S. Direct formation of 2, 3, 5‐trichloropyridine and its nucleophilic displacement reactions in ionic liquid. Synth. Commun., 2004, 34(23), 4301-4311.
[http://dx.doi.org/10.1081/SCC-200039365]
[47]
Sun, L.; Pei, W. Researches on a novel method for fluorination of halopyridazine derivatives in ionic liquid. Chin. J. Chem., 2007, 25(7), 1005-1007.
[http://dx.doi.org/10.1002/cjoc.200790160]
[48]
Kishi, Y.; Nagura, H.; Inagi, S.; Fuchigami, T. Facile and highly efficient synthesis of fluorinated heterocycles via Prins cyclization in ionic liquid hydrogen fluoride salts. Chem. Commun. (Camb.), 2008, 3876-3878(33), 3876-3878.
[http://dx.doi.org/10.1039/b806389c] [PMID: 18726020]
[49]
Arya, K.; Rawat, D.S.; Dandia, A.; Sasai, H. Brønsted acidic ionic liquids: Green, efficient and reusable catalyst for synthesis of fluorinated spiro [indole-thiazinones/thiazolidinones] as antihistamic agents. J. Fluor. Chem., 2012, 137, 117-122.
[http://dx.doi.org/10.1016/j.jfluchem.2012.03.003]
[50]
Kitazume, T.; Ebata, T. Fluorination of carbinols with 2, 2-difluoro-1, 3- dimethylimidazolidine in ionic liquid. J. Fluor. Chem., 2004, 125(10), 1509-1511.
[http://dx.doi.org/10.1016/j.jfluchem.2004.06.001]
[51]
Das, S.; Chandrasekhar, S.; Yadav, J.S.; Gree, R. Ionic liquids as recyclable solvents for diethylaminosulfur trifluoride (DAST) mediated fluorination of alcohols and carbonyl compounds. Tetrahedron Lett., 2007, 48(30), 5305-5307.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.107]
[52]
Yoshino, H.; Matsubara, S.; Oshima, K.; Matsumoto, K.; Hagiwara, R.; Ito, Y. Halofluorination of alkenes with ionic liquid EMIMF(HF)2.3. J. Fluor. Chem., 2004, 125(3), 455-458.
[http://dx.doi.org/10.1016/j.jfluchem.2003.11.015]
[53]
Yoshino, H.; Matsumoto, K.; Hagiwara, R.; Ito, Y.; Oshima, K.; Matsubara, S. Fluorination with ionic liquid EMIMF(HF)2.3 as mild HF source. J. Fluor. Chem., 2006, 127(1), 29-35.
[http://dx.doi.org/10.1016/j.jfluchem.2005.09.016]
[54]
Yoshino, H.; Nomura, K.; Matsubara, S.; Oshima, K.; Matsumoto, K.; Hagiwara, R.; Ito, Y. A mild ring opening fluorination of epoxide with ionic liquid 1-ethyl-3-methylimidazorium oligo hydrogenfluoride (EMIMF(HF)2.3). J. Fluor. Chem., 2004, 125(7), 1127-1129.
[http://dx.doi.org/10.1016/j.jfluchem.2004.02.002]
[55]
Singh, R.P.; Martin, J.L. Fluorination of a-bromomethyl aryl ketones with fluorohydrogenate-based ionic liquids. J. Fluor. Chem., 2016, 181, 7-10.
[http://dx.doi.org/10.1016/j.jfluchem.2015.10.014]
[56]
Kim, J.; Shreeve, J.M. The first Cu(I)-mediated nucleophilic trifluoromethylation reactions using (trifluoromethyl)trimethylsilane in ionic liquids. Org. Biomol. Chem., 2004, 2(19), 2728-2734.
[http://dx.doi.org/10.1039/b412480b] [PMID: 15455143]
[57]
Anguille, S.; Garayt, M.; Schanen, V.; Gree, R. Activation of nucleophilic fluorination by salts in ionic liquids and in sulfolane. Adv. Synth. Catal., 2006, 348, 1149-1153.
[http://dx.doi.org/10.1002/adsc.200606086]
[58]
Chen, Z.; Deng, M.; Gao, Z.; Jiang, Z.; Li, L.; Tang, H. Reaction evolution of a solvate fluoride ionic liquid induced fluorination process probed by Raman spectroscopy. J. Mol. Liq., 2020, 305112819
[http://dx.doi.org/10.1016/j.molliq.2020.112819]
[59]
Bouvet, S.; Pegot, B.; Marrot, J.; Magnier, E. Solvent free nucleophilic introduction of fluorine with. Tetrahedron Lett., 2014, 55(4), 826-829. [bmim]. [F].
[http://dx.doi.org/10.1016/j.tetlet.2013.12.020]
[60]
Choi, H.; Oh, Y-H. Mechanism of promotion of SN2 fluorination by [Bmim]F in solvent- free environment: Quantum chemical analysis. Chem. Phys. Lett., 2020, 756137857
[http://dx.doi.org/10.1016/j.cplett.2020.137857]
[61]
Anselmi, E.; Simon, C.; Marrot, J.; Bernardelli, P.; Schio, L.; Pegot, B.; Magnier, E. Ionic liquids for fast and solvent-free nucleophilic trifluoromethylthiolation of alkyl halides and alcohols. Eur. J. Org. Chem., 2017, 42, 6319-6326.
[http://dx.doi.org/10.1002/ejoc.201701222]
[62]
Iwai, N.; Tanaka, T.; Kitazume, T. Utility of ionic liquid for improvement of fluorination reaction with immobilized fluorinase. J. Mol. Catal., B Enzym., 2009, 59(1-3), 131-133.
[http://dx.doi.org/10.1016/j.molcatb.2009.02.002]
[63]
Chu, C-K.; Kim, J-H.; Kim, D.W.; Chung, K-H.; Katzenellenbogen, J.A.; Chi, D.Y. Aromatic fluorination by decomposition of triazenes in ionic liquids. Bull. Korean Chem. Soc., 2005, 26(4), 599-602.
[http://dx.doi.org/10.5012/bkcs.2005.26.4.599]
[64]
Snead, D.R.; Levesque, F.; Morris, W.J.; Naber, J.R. An improved Balz-Schiemann reaction enabled by ionic liquids and continuous processing. Tetrahedron, 2019, 75(32), 4261-4265.
[http://dx.doi.org/10.1016/j.tet.2019.05.020]
[65]
Miyazaki, T.; Muroyama, S. Factors governing the fluorination of hydroxyapatite by an ionic liquid. Ceram. Int., 2021, 47(11), 16225-16231.
[http://dx.doi.org/10.1016/j.ceramint.2021.02.201]
[66]
Kim, D.W.; Choe, Y.S.; Chi, D.Y. A new nucleophilic fluorine-18 labeling method for aliphatic mesylates: reaction in ionic liquids shows tolerance for water. Nucl. Med. Biol., 2003, 30(4), 345-350.
[http://dx.doi.org/10.1016/S0969-8051(03)00017-9] [PMID: 12767390]
[67]
Schirrmacher, R.; Wangler, C.; Schirrmacher, E. Recent developments and trends in 18F- radiochemistry: Syntheses and applications. Mini Rev. Org. Chem., 2007, 4(4), 317-329.
[http://dx.doi.org/10.2174/157019307782411699]
[68]
Kim, H.W.; Jeong, J.M.; Lee, Y-S.; Chi, D.Y.; Chung, K-H.; Lee, D.S.; Chung, J-K.; Lee, M.C. Rapid synthesis of [18F]FDG without an evaporation step using an ionic liquid. Appl. Radiat. Isot., 2004, 61(6), 1241-1246.
[http://dx.doi.org/10.1016/j.apradiso.2004.02.027] [PMID: 15388116]
[69]
Moon, B.S.; Lee, K.C.; An, G.I.; Chi, D.Y.; Yang, S.D.; Choi, C.W.; Lim, S.M.; Chun, K.S. Preparation of 3′‐deoxy‐3′‐[18F]fluorothymidine ([18F]FLT) in ionic liquid. J. Labelled Comp. Radiopharm., 2006, 49(3), 287-293. [bmim]. [OTf].
[http://dx.doi.org/10.1002/jlcr.1046]
[70]
Pascali, G.; Kiesewetter, D.O.; Salvadori, P.A.; Eckelman, W.C. Use of 1, 8‐bis‐ (dimethylamino)‐naphthalene/H18F complex as new radiofluorinating agent. J. Labelled Comp. Radiopharm., 2004, 47(6), 373-383.
[http://dx.doi.org/10.1002/jlcr.823]
[71]
Lal, G.S.; Pez, G.P.; Syvret, R.G. Electrophilic NF fluorinating agents. Chem. Rev., 1996, 96(5), 1737-1756.
[http://dx.doi.org/10.1021/cr941145p] [PMID: 11848809]
[72]
Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. Engl., 2013, 52(32), 8214-8264.
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]
[73]
Laali, K.K.; Borodkin, G.I. First application of ionic liquids in electrophilic fluorination of arenes: Selectfluor™ (F-TEDA-BF4) for “green” fluorination. J. Chem. Soc., Perkin Trans., 2002, 2, 953-957.
[http://dx.doi.org/10.1039/b111725d]
[74]
Shamma, T.; Buchholz, H.; Prakash, G.K.S.; Olah, G.A. Electrophilic fluorination of aromatics with selectfluor™ and trifluoromethanesulfonic acid. Isr. J. Chem., 1999, 39(2), 207-210.
[http://dx.doi.org/10.1002/ijch.199900026]
[75]
Heravi, M.R.P. Fluorination of activated aromatic systems with selectfluor™ F-TEDA- BF4 in ionic liquids. J. Fluor. Chem., 2008, 129(3), 217-221.
[http://dx.doi.org/10.1016/j.jfluchem.2007.11.006]
[76]
Baudoux, J.; Salit, A-F.; Cahard, D.; Plaquevent, J-C. Ionic liquids as solvents of choice for electrophilic fluorination: fluorination of indoles by F-TEDA-BF4. Tetrahedron Lett., 2002, 43(37), 6573-6574.
[http://dx.doi.org/10.1016/S0040-4039(02)01417-X]
[77]
Borodkin, G.I.; Elanov, I.R.; Gatilov, Y.V.; Shubin, V.G. Promotional effect of ionic liquids in electrophilic fluorination of methylated uracils. RSC Advances, 2016, 6, 60556-60564.
[http://dx.doi.org/10.1039/C6RA10850D]
[78]
Borodkin, G.I.; Elanov, I.R.; Shubin, V.G. Promotional effect of ionic liquids in the electrophilic fluorination of phenols. ARKIVOC, 2018, ii, 60-71.
[http://dx.doi.org/10.24820/ark.5550190.p010.164]
[79]
Baudequin, C.; Plaquevent, J-C.; Audouard, C.; Cahard, D. Enantioselective electrophilic fluorination in ionic liquids. Green Chem., 2002, 4, 584-586.
[http://dx.doi.org/10.1039/b208817g]
[80]
Baudequin, C.; Loubassou, J-F.; Plaquevent, J-C.; Cahard, D. Enantioselective electrophilic fluorination: a study of the fluorine-transfer from achiral N–F reagents to cinchona alkaloids. J. Fluor. Chem., 2003, 122(2), 189-193.
[http://dx.doi.org/10.1016/S0022-1139(03)00085-X]
[81]
Hamashima, Y.; Takano, H.; Hotta, D.; Sodeoka, M. Immobilization and reuse of Pd complexes in ionic liquid: efficient catalytic asymmetric fluorination and Michael reactions with β-ketoesters. Org. Lett., 2003, 5(18), 3225-3228.
[http://dx.doi.org/10.1021/ol035053a] [PMID: 12943393]
[82]
Hamashima, Y.; Sodeoka, M. Enantioselective fluorination reactions catalyzed by chiral palladium complexes. Synlett, 2006, 1467-1478.
[http://dx.doi.org/10.1055/s-2006-941578]
[83]
Kim, S-M.; Kang, Y-K.; Lee, K-S.; Mang, J-Y.; Kim, D-Y. Asymmetric electrophilic fluorination of β-keto phosphonates in ionic liquid media catalyzed by chiral palladium complexes. Bull. Korean Chem. Soc., 2006, 27(3), 423-425.
[http://dx.doi.org/10.5012/bkcs.2006.27.3.423]
[84]
Serguchev, Y.A.; Lourie, L.F.; Ponomarenko, M.V.; Rusanov, E.B.; Ignat’ev, N.V. Fluorolactonization of unsaturated carboxylic acids with F-TEDA-BF4 in ionic liquids. Tetrahedron Lett., 2011, 52(40), 5166-5169.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.124]
[85]
Lourie, L.F.; Serguchev, Y.A.; Ponomarenko, M.V.; Rusanov, E.B.; Vovk, M.V.; Ignat’ev, N.V. Electrophilic fluorocyclization of unsaturated alcohols in ionic liquids. Tetrahedron, 2013, 69(2), 833-838.
[http://dx.doi.org/10.1016/j.tet.2012.10.094]
[86]
Zaikin, P.A.; Dyan, O.T.; Elanov, I.R.; Borodkin, G.I. Ionic liquid-assisted grinding: An electrophilic fluorination benchmark. Molecules, 2021, 26(19), 5756.
[http://dx.doi.org/10.3390/molecules26195756] [PMID: 34641300]
[87]
Zaikin, P.A.; Dyan, O.T.; Evtushok, D.V.; Usoltsev, A.N.; Borodkin, G.I.; Karpova, E.V.; Shubin, V.G. Solvent-free fluorination of electron-rich aromatic compounds with F-TEDA-BF4: Toward “Dry” processes. Eur. J. Org. Chem., 2017, 17, 2469-2474.
[http://dx.doi.org/10.1002/ejoc.201700179]
[88]
Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S.R. Electrifying organic synthesis. Angew. Chem. Int. Ed. Engl., 2018, 57(20), 5594-5619.
[http://dx.doi.org/10.1002/anie.201711060] [PMID: 29292849]
[89]
Minteer, S.D.; Baran, P. Electrifying synthesis: Recent advances in the methods, materials and techniques for organic electrosynthesis. Acc. Chem. Res., 2020, 53(3), 545-546.
[http://dx.doi.org/10.1021/acs.accounts.0c00049] [PMID: 32178522]
[90]
Pollok, D.; Waldvogel, S.R. Electro-organic synthesis - a 21st century technique. Chem. Sci. (Camb.), 2020, 11(46), 12386-12400.
[http://dx.doi.org/10.1039/D0SC01848A] [PMID: 34123227]
[91]
Khan, Z.U.H.; Kong, D.; Chen, Y.; Muhammad, N.; Khan, A.U.; Khan, F.U.; Tahir, K.; Ahmad, A.; Wang, L.; Wan, P. Ionic liquids based fluorination of organic compounds using electrochemical method. J. Ind. Eng. Chem., 2015, 31, 26-38.
[http://dx.doi.org/10.1016/j.jiec.2015.06.007]
[92]
Hasegawa, M.; Ishii, H.; Fuchigami, T. Electroorganic synthesis under solvent-free conditions. Highly regioselective anodic monofluorination of cyclic ethers, lactones, and a cyclic carbonate. Tetrahedron Lett., 2002, 43(8), 1503-1505.
[http://dx.doi.org/10.1016/S0040-4039(02)00047-3]
[93]
Hasegawa, M.; Ishii, H.; Fuchigami, T. Selective anodic fluorination of phthalides in ionic liquids. Green Chem., 2003, 5, 512-515.
[http://dx.doi.org/10.1039/B304617F]
[94]
Hasegawa, M.; Fuchigami, T. Electroorganic reactions in ionic liquids: 5 [1 Anodic fluorodesulfurization of phthalide, ethylene carbonate and glucopyranosides having arylthio groups. Electrochim. Acta, 2004, 49(20), 3367-3372.
[http://dx.doi.org/10.1016/j.electacta.2004.03.015]
[95]
Cao, Y.; Suzuki, K.; Tajima, T.; Fuchigami, T. Electrolytic partial fluorination of organic compounds. Part 78: Regioselective anodic fluorination of 2-oxazolidinones. Tetrahedron, 2005, 61(28), 6854-6859.
[http://dx.doi.org/10.1016/j.tet.2005.04.057]
[96]
Dawood, K.M.; Fuchigami, T. Electrolytic partial fluorination of organic compounds. 79. Anodic fluorination of spiropyrazoline-5,3′-chroman-4-ones and thiochromanone analogues. A route to aroyl fluoride derivatives. J. Org. Chem., 2005, 70(19), 7537-7541.
[http://dx.doi.org/10.1021/jo0507587] [PMID: 16149781]
[97]
Cao, Y.; Fuchigami, T. Electrochemical partial fluorination of organic compounds: 82: Anodic α-fluorination of five-membered cyclic thiocarbonates. Electrochim. Acta, 2006, 51(12), 2477-2482.
[http://dx.doi.org/10.1016/j.electacta.2005.07.031]
[98]
Tajima, T.; Nakajima, A.; Fuchigami, T. Electrolytic partial fluorination of organic compounds. 83. Anodic fluorination of N-substituted pyrroles and its synthetic applications to gem-difluorinated heterocyclic compounds. J. Org. Chem., 2006, 71(4), 1436-1441.
[http://dx.doi.org/10.1021/jo0520745] [PMID: 16468791]
[99]
Sunaga, T.; Atobe, M.; Inagi, S.; Fuchigami, T. Highly efficient and selective electrochemical fluorination of organosulfur compounds in Et3N.3HF ionic liquid under ultrasonication. Chem. Commun. (Camb.), 2009, 956-958(8), 956-958.
[http://dx.doi.org/10.1039/b817860g] [PMID: 19214328]
[100]
Suzuki, J.; Shida, N.; Inagi, S.; Fuchigami, T. Electrochemical properties and reactions of organoboronic acids in the presence of fluoride ions. Electroanalysis, 2016, 28(11), 2797-2801.
[http://dx.doi.org/10.1002/elan.201600130]
[101]
Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Use of task-specific ionic liquid for selective electrocatalytic fluorination. Org. Lett., 2010, 12(3), 644-646.
[http://dx.doi.org/10.1021/ol9028836] [PMID: 20050604]
[102]
Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Recyclable polymer-supported iodobenzene-mediated electrocatalytic fluorination in ionic liquid. Adv. Synth. Catal., 2010, 352(16), 2757-2760.
[http://dx.doi.org/10.1002/adsc.201000501]
[103]
Haupt, J.D.; Berger, M.; Waldvogel, S.R. Electrochemical fluorocyclization of N-allylcarboxamides to 2-oxazolines by hypervalent iodine mediator. Org. Lett., 2019, 21(1), 242-245.
[http://dx.doi.org/10.1021/acs.orglett.8b03682] [PMID: 30557030]
[104]
Sawamura, T.; Takahashi, K.; Inagi, S.; Fuchigami, T. Electrochemical fluorination using alkali-metal fluorides. Angew. Chem. Int. Ed. Engl., 2012, 51(18), 4413-4416.
[http://dx.doi.org/10.1002/anie.201200438] [PMID: 22419359]
[105]
Laudadio, G.; Bartolomeu, A.A.; Verwijlen, L.M.H.M.; Cao, Y.; de Oliveira, K.T.; Noël, T. Sulfonyl fluoride synthesis through electrochemical oxidative coupling of thiols and potassium fluoride. J. Am. Chem. Soc., 2019, 141(30), 11832-11836.
[http://dx.doi.org/10.1021/jacs.9b06126] [PMID: 31303004]
[106]
Balandeh, M.; Waldmann, C.; Shirazi, D.; Gomez, A.; Rios, A.; Allison, N.; Khan, A.; Sadeghi, S. Electrochemical fluorination and radiofluorination of methyl(phenylthio) acetate using tetrabutylammonium fluoride (TBAF). J. Electrochem. Soc., 2017, 164(9), G99-G103.
[http://dx.doi.org/10.1149/2.0941709jes] [PMID: 28890550]
[107]
Takahira, Y.; Chen, M.; Kawamata, Y.; Mykhailiuk, P.; Nakamura, H.; Peters, B.K.; Reisberg, S.H.; Li, C.; Chen, L.; Hoshikawa, T.; Shibuguchi, T.; Baran, P.S. Electrochemical C(sp3)-H fluorination. Synlett, 2019, 30(10), 1178-1182.
[http://dx.doi.org/10.1055/s-0037-1611737] [PMID: 33767531]
[108]
Xiong, P.; Long, H.; Xu, H-C. Electrochemical fluoroalkynylation of aryl alkenes with fluoride ions and alkynyltrifluoroborate salts. Asian J. Org. Chem., 2019, 8(5), 658-660.
[http://dx.doi.org/10.1002/ajoc.201900020]
[109]
Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[110]
Laali, K.K. Ionic liquids as novel media for electrophilic/onium ion chemistry and metal-mediated reactions: A progress summary. ARKIVOC, 2016, (i), 150-171.
[http://dx.doi.org/10.3998/ark.5550190.p009.490]
[111]
Irge, D.D. Ionic liquids: A review on greener chemistry applications, quality ionic liquid synthesis and economical viability in a chemical processes. Am. J. Phys. Chem., 2016, 5(3), 74-79.
[http://dx.doi.org/10.11648/j.ajpc.20160503.14]
[112]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[113]
Miao, W.; Chan, T.H. Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis. Acc. Chem. Res., 2006, 39(12), 897-908.
[http://dx.doi.org/10.1021/ar030252f] [PMID: 17176028]
[114]
Zhang, Q.; Zhang, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem., 2011, 13, 2619-2637.
[http://dx.doi.org/10.1039/c1gc15334j]
[115]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[116]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. (Camb.), 2001, (23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[117]
Ni, C.; Jiang, F.; Zeng, Y.; Hu, J. Chemically oxidative fluorination with fluoride ions. J. Fluor. Chem., 2015, 179, 3-13.
[http://dx.doi.org/10.1016/j.jfluchem.2015.06.026]
[118]
Chatalova-Sazepin, C.; Hemelaere, R.; Paquin, J-F.; Sammis, G.M. Recent Advances in Radical Fluorination. Synthesis, 2015, 47(17), 2554-2569.
[http://dx.doi.org/10.1055/s-0034-1378824]
[119]
Rehm, T.H. Photochemical fluorination reactions - a promising research field for continuous-flow synthesis. Chem. Eng. Technol., 2016, 39(1), 66-80.
[http://dx.doi.org/10.1002/ceat.201500195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy