Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Mini-Review Article

Passive Solar-driven Interfacial Evaporation Nanosystems: Beyond Desalination Towards Multiple Applications

Author(s): Minhao Sheng, Xiaoqing Bin, Yawei Yang* and Wenxiu Que

Volume 17, Issue 3, 2023

Published on: 18 April, 2022

Page: [176 - 182] Pages: 7

DOI: 10.2174/1872210516666220203093217

Price: $65

Abstract

Recently, passive solar-driven interfacial evaporation has become one of the fastest-growing technologies for solar energy utilization and desalination. Herein this patent, we provide an overview of other emerging and potential applications of evaporation nanosystems beyond desalination, i.e., electricity generation, organics rejection, and sterilization. These extended functions can be a benefit for energy and environmental issues.

Keywords: Solar energy, interfacial evaporation, desalination, electricity generation, organics rejection, sterilization.

Graphical Abstract
[1]
Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science 2011; 333(6043): 712-7.
[http://dx.doi.org/10.1126/science.1200488] [PMID: 21817042]
[2]
Chen C, Kuang Y, Hu L. Challenges and opportunities for solar evaporation. Joule 2019; 3: 683-718.
[http://dx.doi.org/10.1016/j.joule.2018.12.023]
[3]
Nawaz F, Yang Y, Zhao S, et al. Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. J Mater Chem A 2021; 9: 16233-54.
[http://dx.doi.org/10.1039/D1TA03610F]
[4]
Sheng M, Yang Y, Bin X, et al. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 2021; 89: 106468.
[http://dx.doi.org/10.1016/j.nanoen.2021.106468]
[5]
Wang P, Zhang L. Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination. US Patent 20150353385, 2015.
[6]
Que W, Yang Y, Du Y. A kind of solar energy water evaporation purifying and decomposer China Patent CN107879405A 2018.
[7]
Ali Fadlelmula MA. Method for the desalination of seawater using solar energy. US Patent 2021221708, 2021.
[8]
Cui H, Tian W, Ying Z. Graphene structure based on enhancing heat transfer effect and improving seawater desalination efficiency. US Patent 2021170344, 2021.
[9]
Yang P, Liu K, Chen Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ Sci 2017; 10: 1923-7.
[http://dx.doi.org/10.1039/C7EE01804E]
[10]
Zong L, Li M, Li C. Intensifying solar-thermal harvest of low-dimension biologic nanostructures for electric power and solar desalination. Nano Energy 2018; 50: 308-15.
[http://dx.doi.org/10.1016/j.nanoen.2018.05.042]
[11]
Yang Y, Zhao H, Yin Z, et al. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Mater Horiz 2018; 5: 1143-50.
[http://dx.doi.org/10.1039/C8MH00386F]
[12]
Zhu L, Gao M, Peh CKN,, et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv Energy Mater 2018; 8: 1702149.
[http://dx.doi.org/10.1002/aenm.201702149]
[13]
Li X, Min X, Li J, et al. Storage and recycling of interfacial solar steam enthalpy. Joule 2018; 2: 2477-84.
[http://dx.doi.org/10.1016/j.joule.2018.08.008]
[14]
Zhang Q, Chen S, Fu Z, et al. Temperature-difference-induced electricity during solar desalination with bilayer MXene-based monoliths. Nano Energy 2020; 76: 105060.
[http://dx.doi.org/10.1016/j.nanoen.2020.105060]
[15]
Hou B, Cui Z, Zhu X, et al. Functionalized carbon materials for efficient solar steam and electricity generation. Mater Chem Phys 2019; 222: 159-64.
[http://dx.doi.org/10.1016/j.matchemphys.2018.10.006]
[16]
Ma X, Li Z, Deng Z, et al. Efficiently cogenerating drinkable water and electricity from seawater via flexible MOF nanorod arrays. J Mater Chem A 2021; 9: 9048-55.
[http://dx.doi.org/10.1039/D0TA11870B]
[17]
Zhang D, Zhang M, Chen S, et al. Scalable, self-cleaning and self-floating bi-layered bacterial cellulose biofoam for efficient solar evaporator with photocatalytic purification. Desalination 2021; 500: 114899.
[http://dx.doi.org/10.1016/j.desal.2020.114899]
[18]
Zhang B, Wong PW,, An AK. Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification. Chem Eng J 2022; 430:: 133054..
[http://dx.doi.org/10.1016/j.cej.2021.133054]
[19]
Wang M, Wang P, Zhang J, Li C, Jin Y. A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. ChemSusChem 2019; 12(2): 467-72.
[http://dx.doi.org/10.1002/cssc.201802485] [PMID: 30565421]
[20]
Liu X, Cheng H, Guo Z, Zhan Q, Qian J, Wang X. Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation. ACS Appl Mater Interfaces 2018; 10(46): 39661-9.
[http://dx.doi.org/10.1021/acsami.8b13374] [PMID: 30362707]
[21]
Li T, Fang Q, Xi X, et al. Ultra-robust carbon fibers for multi-media purification via solar-evaporation. J Mater Chem A 2019; 7: 586-93.
[http://dx.doi.org/10.1039/C8TA08829B]
[22]
Fang Q, Li G, Lin H, et al. Solar-driven organic solvents purification enabled by robust cubic prussian blue. J Mater Chem A 2019; 6: 10939-46.
[http://dx.doi.org/10.1039/C9TA00798A]
[23]
Yang Y, Que W, Zhao J, et al. Membrane assembled from anti-fouling copper-zinc-tin-selenide nanocarambolas for solar-driven interfacial water evaporation. Chem Eng J 2019; 373: 955-62.
[http://dx.doi.org/10.1016/j.cej.2019.05.099]
[24]
Qi D, Liu Y, Liu Y, et al. Polymeric membranes with selective solution-diffusion for intercepting volatile organic compounds during solar-driven water remediation. Adv Mater 2020; 32(50): e2004401.
[http://dx.doi.org/10.1002/adma.202004401] [PMID: 33169447]
[25]
Li J, Du M, Lv G, et al. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv Mater 2018; 30(49): e1805159.
[http://dx.doi.org/10.1002/adma.201805159] [PMID: 30303571]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy