Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Moving Towards Dawn: KRas Signaling and Treatment in Pancreatic Ductal Adenocarcinoma

Author(s): Tarun Rajpurohit and Sankha Bhattacharya*

Volume 15, Issue 7, 2022

Published on: 29 April, 2022

Article ID: e280122200672 Pages: 25

DOI: 10.2174/1874467215666220128161647

Price: $65

Abstract

“Pancreatic ductal adenocarcinoma (PDAC)” is robust, nearly clueless, and all-around deadly among all tumors. Below 10 %, the general 5-year endurance period has remained adamantly unaltered in the last 30 years, regardless of enormous clinical and therapeutic endeavors. The yearly number of deaths is more than the number of recently analyzed cases. Not a classic one, but “Carbohydrate Antigen CA19- 9” remains the prevailing tool for diagnosis. MicroRNAs and non-invasive techniques are now incorporated for the effective prognosis of PDAC than just CA19-9. Mutated “Rat sarcoma virus Ras” conformation “V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRas” is 95 % accountable for PDAC, and its active (GTP-bound) formation activates signaling cascade comprising “Rapidly accelerated fibrosarcoma Raf”/“Mitogen-activated protein kinase MEK”/ “Extracellular signal-regulated kinase ERK” with “Phosphoinositide 3-kinase PI3K”/ “protein kinase B Akt”/ “mammalian target of rapamycin mTOR” pathways. KRas has acquired the label of ‘undruggable’ since the crosstalk in the nexus of pathways compensates for Raf and PI3K signaling cascade blocking. It is arduous to totally regulate KRascoordinated PDAC with traditional medicaments like “gemcitabine GEM” plus nabpaclitaxel/ FOLFIRINOX. For long-haul accomplishments aiming at KRas, future endeavors should be directed to combinatorial methodologies to adequately block KRas pathways at different standpoints. Currently they are contributing to healing PDAC. In this review article, we outline the function of KRas in carcinogenesis in PDAC, its signaling cascade, former techniques utilized in hindering Kras, current and future possibilities for targeting Kras.

Keywords: KRas, PDAC, pancreatic cancer, Akt, Raf, PI3K, MEK, G12D.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Stenhoff, A.; Steadman, L.; Nevitt, S.; Benson, L.; White, R.G. Acceptance and commitment therapy and subjective wellbeing: A systematic review and meta-analyses of randomised controlled trials in adults. J. Contextual Behav. Sci., 2020, 18, 256-272.
[http://dx.doi.org/10.1016/j.jcbs.2020.08.008]
[4]
Liu, P.; Wang, Y.; Li, X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm. Sin. B, 2019, 9(5), 871-879.
[http://dx.doi.org/10.1016/j.apsb.2019.03.002] [PMID: 31649840]
[5]
Waters, A.M.; Der, C.J. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med., 2018, 8(9), a031435.
[http://dx.doi.org/10.1101/cshperspect.a031435] [PMID: 29229669]
[6]
Hancock, J.F.; Paterson, H.; Marshall, C.J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell, 1990, 63(1), 133-139.
[http://dx.doi.org/10.1016/0092-8674(90)90294-O] [PMID: 2208277]
[7]
Ahearn, I.M.; Haigis, K.; Bar-Sagi, D.; Philips, M.R. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol., 2011, 13(1), 39-51.
[http://dx.doi.org/10.1038/nrm3255] [PMID: 22189424]
[8]
Wolfgang, C.L.; Herman, J.M.; Laheru, D.A.; Klein, A.P.; Erdek, M.A.; Fishman, E.K.; Hruban, R.H. Recent progress in pancreatic cancer. CA Cancer J. Clin., 2013, 63(5), 318-348.
[http://dx.doi.org/10.3322/caac.21190] [PMID: 23856911]
[9]
Wan, X.B.; Wang, A.Q.; Cao, J.; Dong, Z.C.; Li, N.; Yang, S.; Sun, M.M.; Li, Z.; Luo, S.X. Relationships among KRAS mutation status, expression of RAS pathway signaling molecules, and clinicopathological features and prognosis of patients with colorectal cancer. World J. Gastroenterol., 2019, 25(7), 808-823.
[http://dx.doi.org/10.3748/wjg.v25.i7.808] [PMID: 30809081]
[10]
Walker, J.E.; Saraste, M.; Runswick, M.J.; Gay, N.J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J., 1982, 1(8), 945-951.
[http://dx.doi.org/10.1002/j.1460-2075.1982.tb01276.x] [PMID: 6329717]
[11]
Saraste, M.; Sibbald, P.R.; Wittinghofer, A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci., 1990, 15(11), 430-434.
[http://dx.doi.org/10.1016/0968-0004(90)90281-F] [PMID: 2126155]
[12]
Stephen, A.G.; Esposito, D.; Bagni, R.K.; McCormick, F. Dragging ras back in the ring. Cancer Cell, 2014, 25(3), 272-281.
[http://dx.doi.org/10.1016/j.ccr.2014.02.017] [PMID: 24651010]
[13]
Muzumdar, M.D.; Chen, P.Y.; Dorans, K.J.; Chung, K.M.; Bhutkar, A.; Hong, E.; Noll, E.M.; Sprick, M.R.; Trumpp, A.; Jacks, T. Survival of pancreatic cancer cells lacking KRAS function. Nat. Commun., 2017, 8(1), 1090.
[http://dx.doi.org/10.1038/s41467-017-00942-5] [PMID: 29061961]
[14]
Santana-Codina, N.; Roeth, A.A.; Zhang, Y.; Yang, A.; Mashadova, O.; Asara, J.M.; Wang, X.; Bronson, R.T.; Lyssiotis, C.A.; Ying, H.; Kimmelman, A.C. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat. Commun., 2018, 9(1), 4945.
[http://dx.doi.org/10.1038/s41467-018-07472-8] [PMID: 30470748]
[15]
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet, 2011, 378(9791), 607-620.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[16]
Zhang, L.; Sanagapalli, S.; Stoita, A. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol., 2018, 24(19), 2047-2060.
[http://dx.doi.org/10.3748/wjg.v24.i19.2047] [PMID: 29785074]
[17]
Hamada, T.; Yasunaga, H.; Nakai, Y.; Isayama, H.; Horiguchi, H.; Matsuda, S.; Fushimi, K.; Koike, K. Severe bleeding and perforation are rare complications of endoscopic ultrasound-guided fine needle aspiration for pancreatic masses: an analysis of 3,090 patients from 212 hospitals. Gut Liver, 2014, 8(2), 215-218.
[http://dx.doi.org/10.5009/gnl.2014.8.2.215] [PMID: 24672664]
[18]
Bournet, B.; Buscail, C.; Muscari, F.; Cordelier, P.; Buscail, L. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. Eur. J. Cancer, 2016, 54, 75-83.
[http://dx.doi.org/10.1016/j.ejca.2015.11.012] [PMID: 26735353]
[19]
Buscail, L.; Faure, P.; Bournet, B.; Selves, J.; Escourrou, J. Interventional endoscopic ultrasound in pancreatic diseases. Pancreatology, 2006, 6(1-2), 7-16.
[http://dx.doi.org/10.1159/000090022] [PMID: 16327280]
[20]
Kamata, K.; Takenaka, M.; Omoto, S.; Miyata, T.; Minaga, K.; Yamao, K.; Imai, H.; Sakurai, T.; Nishida, N.; Chikugo, T.; Chiba, Y.; Matsumoto, I.; Takeyama, Y.; Kudo, M. Impact of avascular areas, as measured by contrast-enhanced harmonic EUS, on the accuracy of FNA for pancreatic adenocarcinoma. Gastrointest. Endosc., 2018, 87(1), 158-163.
[http://dx.doi.org/10.1016/j.gie.2017.05.052] [PMID: 28619244]
[21]
Buscail, L.; Bournet, B.; Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(3), 153-168.
[http://dx.doi.org/10.1038/s41575-019-0245-4] [PMID: 32005945]
[22]
Wang, X.; Gao, J.; Ren, Y.; Gu, J.; Du, Y.; Chen, J.; Jin, Z.; Zhan, X.; Li, Z.; Huang, H.; Lv, S.; Gong, Y. Detection of KRAS gene mutations in endoscopic ultrasound-guided fine-needle aspiration biopsy for improving pancreatic cancer diagnosis. Am. J. Gastroenterol., 2011, 106(12), 2104-2111.
[http://dx.doi.org/10.1038/ajg.2011.281] [PMID: 21876563]
[23]
Levy, M.J.; Kipp, B.R.; Milosevic, D.; Schneider, A.R.; Voss, J.S.; Avula, R.; Kerr, S.E.; Henry, M.R.; Highsmith, E., Jr; Liu, M.C.; Gleeson, F.C. Analysis of cell-free DNA to assess risk of tumoremia following endoscopic ultrasound fine-needle aspiration of pancreatic adenocarcinomas. Clin. Gastroenterol. Hepatol., 2018, 16(10), 1632-1640.e1.
[http://dx.doi.org/10.1016/j.cgh.2018.02.048] [PMID: 29526691]
[24]
Yang, C.; Luo, G.; Cheng, H.; Lu, Y.; Jin, K.; Wang, Z.; Liu, C.; Yu, X. Potential biomarkers to evaluate therapeutic response in advanced pancreatic cancer. Transl. Cancer Res., 2018, 7(1), 208-218.
[http://dx.doi.org/10.21037/tcr.2018.01.24]
[25]
Ako, S.; Nouso, K.; Kinugasa, H.; Dohi, C.; Matushita, H.; Mizukawa, S.; Muro, S.; Akimoto, Y.; Uchida, D.; Tomoda, T.; Matsumoto, K.; Horiguchi, S.; Tsutsumi, K.; Kato, H.; Okada, H. Utility of serum DNA as a marker for KRAS mutations in pancreatic cancer tissue. Pancreatology, 2017, 17(2), 285-290.
[http://dx.doi.org/10.1016/j.pan.2016.12.011] [PMID: 28139399]
[26]
Kahlert, C.; Melo, S.A.; Protopopov, A.; Tang, J.; Seth, S.; Koch, M.; Zhang, J.; Weitz, J.; Chin, L.; Futreal, A.; Kalluri, R. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem., 2014, 289(7), 3869-3875.
[http://dx.doi.org/10.1074/jbc.C113.532267] [PMID: 24398677]
[27]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[http://dx.doi.org/10.1016/S0021-9258(18)48095-7] [PMID: 3597417]
[28]
Simpson, R.J.; Lim, J.W.; Moritz, R.L.; Mathivanan, S. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomics, 2009, 6(3), 267-283.
[http://dx.doi.org/10.1586/epr.09.17] [PMID: 19489699]
[29]
Vidal, M.; Sainte-Marie, J.; Philippot, J.R.; Bienvenue, A. Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase”. J. Cell. Physiol., 1989, 140(3), 455-462.
[http://dx.doi.org/10.1002/jcp.1041400308] [PMID: 2777884]
[30]
Allenson, K.; Castillo, J.; San Lucas, F.A.; Scelo, G.; Kim, D.U.; Bernard, V.; Davis, G.; Kumar, T.; Katz, M.; Overman, M.J.; Foretova, L.; Fabianova, E.; Holcatova, I.; Janout, V.; Meric-Bernstam, F.; Gascoyne, P.; Wistuba, I.; Varadhachary, G.; Brennan, P.; Hanash, S.; Li, D.; Maitra, A.; Alvarez, H. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann. Oncol., 2017, 28(4), 741-747.
[http://dx.doi.org/10.1093/annonc/mdx004] [PMID: 28104621]
[31]
Zhou, B.; Xu, J.W.; Cheng, Y.G.; Gao, J.Y.; Hu, S.Y.; Wang, L.; Zhan, H.X. Early detection of pancreatic cancer: Where are we now and where are we going? Int. J. Cancer, 2017, 141(2), 231-241.
[http://dx.doi.org/10.1002/ijc.30670] [PMID: 28240774]
[32]
Chen, I.; Raymond, V.M.; Geis, J.A.; Collisson, E.A.; Jensen, B.V.; Hermann, K.L.; Erlander, M.G.; Tempero, M.; Johansen, J.S. Ultrasensitive plasma ctDNA KRAS assay for detection, prognosis, and assessment of therapeutic response in patients with unresectable pancreatic ductal adenocarcinoma. Oncotarget, 2017, 8(58), 97769-97786.
[http://dx.doi.org/10.18632/oncotarget.22080] [PMID: 29228650]
[33]
Perets, R.; Greenberg, O.; Shentzer, T.; Semenisty, V.; Epelbaum, R.; Bick, T.; Sarji, S.; Ben-Izhak, O.; Sabo, E.; Hershkovitz, D. Mutant KRAS circulating tumor DNA is an accurate tool for pancreatic cancer monitoring. Oncologist, 2018, 23(5), 566-572.
[http://dx.doi.org/10.1634/theoncologist.2017-0467] [PMID: 29371474]
[34]
Pleskow, D.K.; Berger, H.J.; Gyves, J.; Allen, E.; McLean, A.; Podolsky, D.K. Evaluation of a serologic marker, CA19-9, in the diagnosis of pancreatic cancer. Ann. Intern. Med., 1989, 110(9), 704-709.
[http://dx.doi.org/10.7326/0003-4819-110-9-704] [PMID: 2930108]
[35]
Winter, J.M.; Yeo, C.J.; Brody, J.R. Diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. J. Surg. Oncol., 2013, 107(1), 15-22.
[http://dx.doi.org/10.1002/jso.23192] [PMID: 22729569]
[36]
Luo, G.; Liu, C.; Guo, M.; Cheng, H.; Lu, Y.; Jin, K.; Liu, L.; Long, J.; Xu, J.; Lu, R.; Ni, Q.; Yu, X. Potential biomarkers in Lewis negative patients with pancreatic cancer. Ann. Surg., 2017, 265(4), 800-805.
[http://dx.doi.org/10.1097/SLA.0000000000001741] [PMID: 28267695]
[37]
Sefrioui, D.; Blanchard, F.; Toure, E.; Basile, P.; Beaussire, L.; Dolfus, C.; Perdrix, A.; Paresy, M.; Antonietti, M.; Iwanicki-Caron, I.; Alhameedi, R.; Lecleire, S.; Gangloff, A.; Schwarz, L.; Clatot, F.; Tuech, J.J.; Frébourg, T.; Jardin, F.; Sabourin, J.C.; Sarafan-Vasseur, N.; Michel, P.; Di Fiore, F. Diagnostic value of CA19.9, circulating tumour DNA and circulating tumour cells in patients with solid pancreatic tumours. Br. J. Cancer, 2017, 117(7), 1017-1025.
[http://dx.doi.org/10.1038/bjc.2017.250] [PMID: 28772284]
[38]
Song, J.Y.; Chen, M.Q.; Guo, J.H.; Lian, S.F.; Xu, B.H. Combined pretreatment serum CA19-9 and neutrophil-to-lymphocyte ratio as a potential prognostic factor in metastatic pancreatic cancer patients. Medicine (Baltimore), 2018, 97(4), e9707.
[http://dx.doi.org/10.1097/MD.0000000000009707] [PMID: 29369199]
[39]
Barhli, A.; Cros, J.; Bartholin, L.; Neuzillet, C. Prognostic stratification of resected pancreatic ductal adenocarcinoma: Past, present, and future. Dig. Liver Dis., 2018, 50(10), 979-990.
[http://dx.doi.org/10.1016/j.dld.2018.08.009] [PMID: 30205952]
[40]
Saad, E.D.; Machado, M.C.; Wajsbrot, D.; Abramoff, R.; Hoff, P.M.; Tabacof, J.; Katz, A.; Simon, S.D.; Gansl, R.C. Pretreatment CA 19-9 level as a prognostic factor in patients with advanced pancreatic cancer treated with gemcitabine. Int. J. Gastrointest. Cancer, 2002, 32(1), 35-41.
[http://dx.doi.org/10.1385/IJGC:32:1:35] [PMID: 12630768]
[41]
Sezgin, C.; Karabulut, B.; Uslu, R.; Sanli, U.A.; Goksel, G.; Yuzer, Y.; Goker, E. Gemcitabine treatment in patients with inoperable locally advanced/metastatic pancreatic cancer and prognostic factors. Scand. J. Gastroenterol., 2005, 40(12), 1486-1492.
[http://dx.doi.org/10.1080/00365520510023819] [PMID: 16293561]
[42]
Park, J.K.; Yoon, Y.B.; Kim, Y.T.; Ryu, J.K.; Yoon, W.J.; Lee, S.H. Survival and prognostic factors of unresectable pancreatic cancer. J. Clin. Gastroenterol., 2008, 42(1), 86-91.
[http://dx.doi.org/10.1097/01.mcg.0000225657.30803.9d] [PMID: 18097296]
[43]
Fernández, A.; Salgado, M.; García, A.; Buxò, E.; Vera, R.; Adeva, J.; Jiménez-Fonseca, P.; Quintero, G.; Llorca, C.; Cañabate, M.; López, L.J.; Muñoz, A.; Ramírez, P.; González, P.; López, C.; Reboredo, M.; Gallardo, E.; Sanchez-Cánovas, M.; Gallego, J.; Guillén, C.; Ruiz-Miravet, N.; Navarro-Pérez, V.; De la Cámara, J.; Alés-Díaz, I.; Pazo-Cid, R.A.; Carmona-Bayonas, A. Prognostic factors for survival with nab-paclitaxel plus gemcitabine in metastatic pancreatic cancer in real-life practice: the ANICE-PaC study. BMC Cancer, 2018, 18(1), 1185.
[http://dx.doi.org/10.1186/s12885-018-5101-3] [PMID: 30497432]
[44]
Glenn, J.; Steinberg, W.M.; Kurtzman, S.H.; Steinberg, S.M.; Sindelar, W.F. Evaluation of the utility of a radioimmunoassay for serum CA 19-9 levels in patients before and after treatment of carcinoma of the pancreas. J. Clin. Oncol., 1988, 6(3), 462-468.
[http://dx.doi.org/10.1200/JCO.1988.6.3.462] [PMID: 3162513]
[45]
Halm, U.; Schumann, T.; Schiefke, I.; Witzigmann, H.; Mössner, J.; Keim, V. Decrease of CA 19-9 during chemotherapy with gemcitabine predicts survival time in patients with advanced pancreatic cancer. Br. J. Cancer, 2000, 82(5), 1013-1016.
[http://dx.doi.org/10.1054/bjoc.1999.1035] [PMID: 10737382]
[46]
Ziske, C.; Schlie, C.; Gorschlüter, M.; Glasmacher, A.; Mey, U.; Strehl, J.; Sauerbruch, T.; Schmidt-Wolf, I.G. Prognostic value of CA 19-9 levels in patients with inoperable adenocarcinoma of the pancreas treated with gemcitabine. Br. J. Cancer, 2003, 89(8), 1413-1417.
[http://dx.doi.org/10.1038/sj.bjc.6601263] [PMID: 14562009]
[47]
Robert, M.; Jarlier, M.; Gourgou, S.; Desseigne, F.; Ychou, M.; Bouché, O.; Juzyna, B.; Conroy, T.; Bennouna, J. Retrospective analysis of CA19-9 decrease in patients with metastatic pancreatic carcinoma treated with FOLFIRINOX or gemcitabine in a randomized phase III study (ACCORD11/PRODIGE4). Oncology, 2017, 93(6), 367-376.
[http://dx.doi.org/10.1159/000477850] [PMID: 28982109]
[48]
Hess, V.; Glimelius, B.; Grawe, P.; Dietrich, D.; Bodoky, G.; Ruhstaller, T.; Bajetta, E.; Saletti, P.; Figer, A.; Scheithauer, W.; Herrmann, R. CA 19-9 tumour-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol., 2008, 9(2), 132-138.
[http://dx.doi.org/10.1016/S1470-2045(08)70001-9] [PMID: 18249033]
[49]
Luo, G.; Jin, K.; Deng, S.; Cheng, H.; Fan, Z.; Gong, Y.; Qian, Y.; Huang, Q.; Ni, Q.; Liu, C.; Yu, X. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188409.
[http://dx.doi.org/10.1016/j.bbcan.2020.188409] [PMID: 32827580]
[50]
Maitra, A.; Fukushima, N.; Takaori, K.; Hruban, R.H. Precursors to invasive pancreatic cancer. Adv. Anat. Pathol., 2005, 12(2), 81-91.
[http://dx.doi.org/10.1097/01.pap.0000155055.14238.25] [PMID: 15731576]
[51]
Distler, M.; Aust, D.; Weitz, J.; Pilarsky, C.; Grützmann, R. Precursor lesions for sporadic pancreatic cancer: PanIN, IPMN, and MCN. BioMed Res. Int., 2014, 2014, 474905.
[52]
Delpu, Y.; Hanoun, N.; Lulka, H.; Sicard, F.; Selves, J.; Buscail, L.; Torrisani, J.; Cordelier, P. Genetic and epigenetic alterations in pancreatic carcinogenesis. Curr. Genomics, 2011, 12(1), 15-24.
[http://dx.doi.org/10.2174/138920211794520132] [PMID: 21886451]
[53]
di Magliano, M.P.; Logsdon, C.D. Roles for KRAS in pancreatic tumor development and progression. Gastroenterology, 2013, 144(6), 1220-1229.
[http://dx.doi.org/10.1053/j.gastro.2013.01.071] [PMID: 23622131]
[54]
Löhr, M.; Klöppel, G.; Maisonneuve, P.; Lowenfels, A.B.; Lüttges, J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: A meta-analysis. Neoplasia, 2005, 7(1), 17-23.
[http://dx.doi.org/10.1593/neo.04445] [PMID: 15720814]
[55]
Hruban, R.H.; Maitra, A.; Goggins, M. Update on pancreatic intraepithelial neoplasia. Int. J. Clin. Exp. Pathol., 2008, 1(4), 306-316.
[PMID: 18787611]
[56]
Klimstra, D.S.; Longnecker, D.S. K-ras mutations in pancreatic ductal proliferative lesions. Am. J. Pathol., 1994, 145(6), 1547-1550.
[PMID: 7992857]
[57]
Moskaluk, C.A.; Hruban, R.H.; Kern, S.E. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res., 1997, 57(11), 2140-2143.
[PMID: 9187111]
[58]
Furukawa, T.; Kuboki, Y.; Tanji, E.; Yoshida, S.; Hatori, T.; Yamamoto, M.; Shibata, N.; Shimizu, K.; Kamatani, N.; Shiratori, K. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci. Rep., 2011, 1(1), 161.
[http://dx.doi.org/10.1038/srep00161] [PMID: 22355676]
[59]
Hong, S.M.; Vincent, A.; Kanda, M.; Leclerc, J.; Omura, N.; Borges, M.; Klein, A.P.; Canto, M.I.; Hruban, R.H.; Goggins, M. Genome-wide somatic copy number alterations in low-grade PanINs and IPMNs from individuals with a family history of pancreatic cancer. Clin. Cancer Res., 2012, 18(16), 4303-4312.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1075] [PMID: 22723370]
[60]
Kanda, M.; Matthaei, H.; Wu, J.; Hong, S.M.; Yu, J.; Borges, M.; Hruban, R.H.; Maitra, A.; Kinzler, K.; Vogelstein, B.; Goggins, M. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology, 2012, 142(4), 730-733.e9.
[http://dx.doi.org/10.1053/j.gastro.2011.12.042] [PMID: 22226782]
[61]
Amato, E.; Molin, M.D.; Mafficini, A.; Yu, J.; Malleo, G.; Rusev, B.; Fassan, M.; Antonello, D.; Sadakari, Y.; Castelli, P.; Zamboni, G.; Maitra, A.; Salvia, R.; Hruban, R.H.; Bassi, C.; Capelli, P.; Lawlor, R.T.; Goggins, M.; Scarpa, A. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J. Pathol., 2014, 233(3), 217-227.
[http://dx.doi.org/10.1002/path.4344] [PMID: 24604757]
[62]
Morris, J.P., IV; Cano, D.A.; Sekine, S.; Wang, S.C.; Hebrok, M. β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J. Clin. Invest., 2010, 120(2), 508-520.
[http://dx.doi.org/10.1172/JCI40045] [PMID: 20071774]
[63]
Eggers, J.P.; Grandgenett, P.M.; Collisson, E.C.; Lewallen, M.E.; Tremayne, J.; Singh, P.K.; Swanson, B.J.; Andersen, J.M.; Caffrey, T.C.; High, R.R.; Ouellette, M.; Hollingsworth, M.A. Cyclin-dependent kinase 5 is amplified and overexpressed in pancreatic cancer and activated by mutant K-Ras. Clin. Cancer Res., 2011, 17(19), 6140-6150.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2288] [PMID: 21825040]
[64]
Liou, G.Y.; Bastea, L.; Fleming, A.; Döppler, H.; Edenfield, B.H.; Dawson, D.W.; Zhang, L.; Bardeesy, N.; Storz, P. The presence of interleukin-13 at pancreatic ADM/PanIN lesions alters macrophage populations and mediates pancreatic tumorigenesis. Cell Rep., 2017, 19(7), 1322-1333.
[http://dx.doi.org/10.1016/j.celrep.2017.04.052] [PMID: 28514653]
[65]
Tu, Q.; Hao, J.; Zhou, X.; Yan, L.; Dai, H.; Sun, B.; Yang, D.; An, S.; Lv, L.; Jiao, B.; Chen, C.; Lai, R.; Shi, P.; Zhao, X. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene, 2018, 37(1), 128-138.
[http://dx.doi.org/10.1038/onc.2017.316] [PMID: 28892048]
[66]
Morton, J.P.; Timpson, P.; Karim, S.A.; Ridgway, R.A.; Athineos, D.; Doyle, B.; Jamieson, N.B.; Oien, K.A.; Lowy, A.M.; Brunton, V.G.; Frame, M.C.; Evans, T.R.; Sansom, O.J. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 246-251.
[http://dx.doi.org/10.1073/pnas.0908428107] [PMID: 20018721]
[67]
Mello, S.S.; Valente, L.J.; Raj, N.; Seoane, J.A.; Flowers, B.M.; McClendon, J.; Bieging-Rolett, K.T.; Lee, J.; Ivanochko, D.; Kozak, M.M.; Chang, D.T.A.; Longacre, T.A.; Koong, A.C.; Arrowsmith, C.H.; Kim, S.K.; Vogel, H.; Wood, L.D.; Hruban, R.H.; Curtis, C.; Attardi, L.D. p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell, 2017, 32(4), 460-473.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.09.007] [PMID: 29017057]
[68]
Collins, M.A.; Bednar, F.; Zhang, Y.; Brisset, J.C.; Galbán, S.; Galbán, C.J.; Rakshit, S.; Flannagan, K.S.; Adsay, N.V.; Pasca di Magliano, M. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest., 2012, 122(2), 639-653.
[http://dx.doi.org/10.1172/JCI59227] [PMID: 22232209]
[69]
Daniluk, J.; Liu, Y.; Deng, D.; Chu, J.; Huang, H.; Gaiser, S.; Cruz-Monserrate, Z.; Wang, H.; Ji, B.; Logsdon, C.D. An NF-κB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J. Clin. Invest., 2012, 122(4), 1519-1528.
[http://dx.doi.org/10.1172/JCI59743] [PMID: 22406536]
[70]
Lee, S.B.; Sellers, B.N.; DeNicola, G.M. The regulation of NRF2 by nutrient-responsive signaling and its role in anabolic cancer metabolism. Antioxid. Redox Signal., 2018, 29(17), 1774-1791.
[http://dx.doi.org/10.1089/ars.2017.7356] [PMID: 28899208]
[71]
Chio, I.I.C.; Jafarnejad, S.M.; Ponz-Sarvise, M.; Park, Y.; Rivera, K.; Palm, W.; Wilson, J.; Sangar, V.; Hao, Y.; Öhlund, D.; Wright, K.; Filippini, D.; Lee, E.J.; Da Silva, B.; Schoepfer, C.; Wilkinson, J.E.; Buscaglia, J.M.; DeNicola, G.M.; Tiriac, H.; Hammell, M.; Crawford, H.C.; Schmidt, E.E.; Thompson, C.B.; Pappin, D.J.; Sonenberg, N.; Tuveson, D.A. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell, 2016, 166(4), 963-976.
[http://dx.doi.org/10.1016/j.cell.2016.06.056] [PMID: 27477511]
[72]
Vetter, I.R.; Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science, 2001, 294(5545), 1299-1304.
[http://dx.doi.org/10.1126/science.1062023] [PMID: 11701921]
[73]
Bos, J.L.; Rehmann, H.; Wittinghofer, A. GEFs and GAPs: Critical elements in the control of small G proteins. Cell, 2007, 129(5), 865-877.
[http://dx.doi.org/10.1016/j.cell.2007.05.018] [PMID: 17540168]
[74]
Cox, A.D.; Der, C.J. Ras history: The saga continues. Small GTPases, 2010, 1(1), 2-27.
[http://dx.doi.org/10.4161/sgtp.1.1.12178] [PMID: 21686117]
[75]
Jonckheere, N.; Vasseur, R.; Van Seuningen, I. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit. Rev. Oncol. Hematol., 2017, 111, 7-19.
[http://dx.doi.org/10.1016/j.critrevonc.2017.01.002] [PMID: 28259298]
[76]
Koera, K.; Nakamura, K.; Nakao, K.; Miyoshi, J.; Toyoshima, K.; Hatta, T.; Otani, H.; Aiba, A.; Katsuki, M. K-ras is essential for the development of the mouse embryo. Oncogene, 1997, 15(10), 1151-1159.
[http://dx.doi.org/10.1038/sj.onc.1201284] [PMID: 9294608]
[77]
Fitzgerald, T.L.; Lertpiriyapong, K.; Cocco, L.; Martelli, A.M.; Libra, M.; Candido, S.; Montalto, G.; Cervello, M.; Steelman, L.; Abrams, S.L.; McCubrey, J.A. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv. Biol. Regul., 2015, 59, 65-81.
[http://dx.doi.org/10.1016/j.jbior.2015.06.003] [PMID: 26257206]
[78]
Oliveira-Cunha, M.; Newman, W.G.; Siriwardena, A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers (Basel), 2011, 3(2), 1513-1526.
[http://dx.doi.org/10.3390/cancers3021513] [PMID: 24212772]
[79]
Ardito, C.M.; Grüner, B.M.; Takeuchi, K.K.; Lubeseder-Martellato, C.; Teichmann, N.; Mazur, P.K.; Delgiorno, K.E.; Carpenter, E.S.; Halbrook, C.J.; Hall, J.C.; Pal, D.; Briel, T.; Herner, A.; Trajkovic-Arsic, M.; Sipos, B.; Liou, G.Y.; Storz, P.; Murray, N.R.; Threadgill, D.W.; Sibilia, M.; Washington, M.K.; Wilson, C.L.; Schmid, R.M.; Raines, E.W.; Crawford, H.C.; Siveke, J.T. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell, 2012, 22(3), 304-317.
[http://dx.doi.org/10.1016/j.ccr.2012.07.024] [PMID: 22975374]
[80]
Navas, C.; Hernández-Porras, I.; Schuhmacher, A.J.; Sibilia, M.; Guerra, C.; Barbacid, M. EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell, 2012, 22(3), 318-330.
[http://dx.doi.org/10.1016/j.ccr.2012.08.001] [PMID: 22975375]
[81]
Mann, K.M.; Ward, J.M.; Yew, C.C.; Kovochich, A.; Dawson, D.W.; Black, M.A.; Brett, B.T.; Sheetz, T.E.; Dupuy, A.J.; Chang, D.K.; Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Grimmond, S.M.; Rust, A.G.; Adams, D.J.; Jenkins, N.A.; Copeland, N.G. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. USA, 2012, 109(16), 5934-5941.
[http://dx.doi.org/10.1073/pnas.1202490109] [PMID: 22421440]
[82]
Pérez-Mancera, P.A.; Rust, A.G.; van der Weyden, L.; Kristiansen, G.; Li, A.; Sarver, A.L.; Silverstein, K.A.; Grützmann, R.; Aust, D.; Rümmele, P.; Knösel, T.; Herd, C.; Stemple, D.L.; Kettleborough, R.; Brosnan, J.A.; Li, A.; Morgan, R.; Knight, S.; Yu, J.; Stegeman, S.; Collier, L.S.; ten Hoeve, J.J.; de Ridder, J.; Klein, A.P.; Goggins, M.; Hruban, R.H.; Chang, D.K.; Biankin, A.V.; Grimmond, S.M.; Wessels, L.F.; Wood, S.A.; Iacobuzio-Donahue, C.A.; Pilarsky, C.; Largaespada, D.A.; Adams, D.J.; Tuveson, D.A. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature, 2012, 486(7402), 266-270.
[http://dx.doi.org/10.1038/nature11114] [PMID: 22699621]
[83]
Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.M.; Wu, J.; Chang, D.K.; Cowley, M.J.; Gardiner, B.B.; Song, S.; Harliwong, I.; Idrisoglu, S.; Nourse, C.; Nourbakhsh, E.; Manning, S.; Wani, S.; Gongora, M.; Pajic, M.; Scarlett, C.J.; Gill, A.J.; Pinho, A.V.; Rooman, I.; Anderson, M.; Holmes, O.; Leonard, C.; Taylor, D.; Wood, S.; Xu, Q.; Nones, K.; Fink, J.L.; Christ, A.; Bruxner, T.; Cloonan, N.; Kolle, G.; Newell, F.; Pinese, M.; Mead, R.S.; Humphris, J.L.; Kaplan, W.; Jones, M.D.; Colvin, E.K.; Nagrial, A.M.; Humphrey, E.S.; Chou, A.; Chin, V.T.; Chantrill, L.A.; Mawson, A.; Samra, J.S.; Kench, J.G.; Lovell, J.A.; Daly, R.J.; Merrett, N.D.; Toon, C.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Kakkar, N.; Zhao, F.; Wu, Y.Q.; Wang, M.; Muzny, D.M.; Fisher, W.E.; Brunicardi, F.C.; Hodges, S.E.; Reid, J.G.; Drummond, J.; Chang, K.; Han, Y.; Lewis, L.R.; Dinh, H.; Buhay, C.J.; Beck, T.; Timms, L.; Sam, M.; Begley, K.; Brown, A.; Pai, D.; Panchal, A.; Buchner, N.; De Borja, R.; Denroche, R.E.; Yung, C.K.; Serra, S.; Onetto, N.; Mukhopadhyay, D.; Tsao, M.S.; Shaw, P.A.; Petersen, G.M.; Gallinger, S.; Hruban, R.H.; Maitra, A.; Iacobuzio-Donahue, C.A.; Schulick, R.D.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Capelli, P.; Corbo, V.; Scardoni, M.; Tortora, G.; Tempero, M.A.; Mann, K.M.; Jenkins, N.A.; Perez-Mancera, P.A.; Adams, D.J.; Largaespada, D.A.; Wessels, L.F.; Rust, A.G.; Stein, L.D.; Tuveson, D.A.; Copeland, N.G.; Musgrove, E.A.; Scarpa, A.; Eshleman, J.R.; Hudson, T.J.; Sutherland, R.L.; Wheeler, D.A.; Pearson, J.V.; McPherson, J.D.; Gibbs, R.A.; Grimmond, S.M. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491(7424), 399-405.
[http://dx.doi.org/10.1038/nature11547] [PMID: 23103869]
[84]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095]
[85]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[86]
Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.M.; Gingras, M.C.; Miller, D.K.; Christ, A.N.; Bruxner, T.J.; Quinn, M.C.; Nourse, C.; Murtaugh, L.C.; Harliwong, I.; Idrisoglu, S.; Manning, S.; Nourbakhsh, E.; Wani, S.; Fink, L.; Holmes, O.; Chin, V.; Anderson, M.J.; Kazakoff, S.; Leonard, C.; Newell, F.; Waddell, N.; Wood, S.; Xu, Q.; Wilson, P.J.; Cloonan, N.; Kassahn, K.S.; Taylor, D.; Quek, K.; Robertson, A.; Pantano, L.; Mincarelli, L.; Sanchez, L.N.; Evers, L.; Wu, J.; Pinese, M.; Cowley, M.J.; Jones, M.D.; Colvin, E.K.; Nagrial, A.M.; Humphrey, E.S.; Chantrill, L.A.; Mawson, A.; Humphris, J.; Chou, A.; Pajic, M.; Scarlett, C.J.; Pinho, A.V.; Giry-Laterriere, M.; Rooman, I.; Samra, J.S.; Kench, J.G.; Lovell, J.A.; Merrett, N.D.; Toon, C.W.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Moran-Jones, K.; Jamieson, N.B.; Graham, J.S.; Duthie, F.; Oien, K.; Hair, J.; Grützmann, R.; Maitra, A.; Iacobuzio-Donahue, C.A.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Corbo, V.; Bassi, C.; Rusev, B.; Capelli, P.; Salvia, R.; Tortora, G.; Mukhopadhyay, D.; Petersen, G.M.; Munzy, D.M.; Fisher, W.E.; Karim, S.A.; Eshleman, J.R.; Hruban, R.H.; Pilarsky, C.; Morton, J.P.; Sansom, O.J.; Scarpa, A.; Musgrove, E.A.; Bailey, U.M.; Hofmann, O.; Sutherland, R.L.; Wheeler, D.A.; Gill, A.J.; Gibbs, R.A.; Pearson, J.V.; Waddell, N.; Biankin, A.V.; Grimmond, S.M. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531(7592), 47-52.
[http://dx.doi.org/10.1038/nature16965] [PMID: 26909576]
[87]
Lim, K.H.; Counter, C.M. Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell, 2005, 8(5), 381-392.
[http://dx.doi.org/10.1016/j.ccr.2005.10.014] [PMID: 16286246]
[88]
Bei, Y. Myocardial extraction from suckling rats HHS Public Access. Physiol. Behav., 2019, 176, 139-148.
[89]
Collisson, E.A.; Trejo, C.L.; Silva, J.M.; Gu, S.; Korkola, J.E.; Heiser, L.M.; Charles, R.P.; Rabinovich, B.A.; Hann, B.; Dankort, D.; Spellman, P.T.; Phillips, W.A.; Gray, J.W.; McMahon, M. A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov., 2012, 2(8), 685-693.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0347] [PMID: 22628411]
[90]
Eser, S.; Reiff, N.; Messer, M.; Seidler, B.; Gottschalk, K.; Dobler, M.; Hieber, M.; Arbeiter, A.; Klein, S.; Kong, B.; Michalski, C.W.; Schlitter, A.M.; Esposito, I.; Kind, A.J.; Rad, L.; Schnieke, A.E.; Baccarini, M.; Alessi, D.R.; Rad, R.; Schmid, R.M.; Schneider, G.; Saur, D. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell, 2013, 23(3), 406-420.
[http://dx.doi.org/10.1016/j.ccr.2013.01.023] [PMID: 23453624]
[91]
Zebisch, A.; Troppmair, J. Back to the roots: the remarkable RAF oncogene story. Cell. Mol. Life Sci., 2006, 63(11), 1314-1330.
[http://dx.doi.org/10.1007/s00018-006-6005-y] [PMID: 16649144]
[92]
Nantel, A.; Huber, M.; Thomas, D.Y. Localization of endogenous Grb10 to the mitochondria and its interaction with the mitochondrial-associated Raf-1 pool. J. Biol. Chem., 1999, 274(50), 35719-35724.
[http://dx.doi.org/10.1074/jbc.274.50.35719] [PMID: 10585452]
[93]
Yuryev, A.; Ono, M.; Goff, S.A.; Macaluso, F.; Wennogle, L.P. Isoform-specific localization of A-RAF in mitochondria. Mol. Cell. Biol., 2000, 20(13), 4870-4878.
[http://dx.doi.org/10.1128/MCB.20.13.4870-4878.2000] [PMID: 10848612]
[94]
Wellbrock, C.; Karasarides, M.; Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol., 2004, 5(11), 875-885.
[http://dx.doi.org/10.1038/nrm1498] [PMID: 15520807]
[95]
Strumberg, D.; Seeber, S. Raf kinase inhibitors in oncology. Onkologie, 2005, 28(2), 101-107.
[PMID: 15665559]
[96]
Thompson, N.; Lyons, J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr. Opin. Pharmacol., 2005, 5(4), 350-356.
[http://dx.doi.org/10.1016/j.coph.2005.04.007] [PMID: 15955734]
[97]
Zhu, J.; Balan, V.; Bronisz, A.; Balan, K.; Sun, H.; Leicht, D.T.; Luo, Z.; Qin, J.; Avruch, J.; Tzivion, G. Identification of Raf-1 S471 as a novel phosphorylation site critical for Raf-1 and B-Raf kinase activities and for MEK binding. Mol. Biol. Cell, 2005, 16(10), 4733-4744.
[http://dx.doi.org/10.1091/mbc.e05-02-0090] [PMID: 16093354]
[98]
Dent, P.; Jelinek, T.; Morrison, D.K.; Weber, M.J.; Sturgill, T.W. Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science, 1995, 268(5219), 1902-1906.
[http://dx.doi.org/10.1126/science.7604263] [PMID: 7604263]
[99]
Long, G.V.; Menzies, A.M.; Nagrial, A.M.; Haydu, L.E.; Hamilton, A.L.; Mann, G.J.; Hughes, T.M.; Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J. Clin. Oncol., 2011, 29(10), 1239-1246.
[http://dx.doi.org/10.1200/JCO.2010.32.4327] [PMID: 21343559]
[100]
Garnett, M.J.; Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell, 2004, 6(4), 313-319.
[http://dx.doi.org/10.1016/j.ccr.2004.09.022] [PMID: 15488754]
[101]
Wang, H.G.; Rapp, U.R.; Reed, J.C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell, 1996, 87(4), 629-638.
[http://dx.doi.org/10.1016/S0092-8674(00)81383-5] [PMID: 8929532]
[102]
Bondar, V.M.; Sweeney-Gotsch, B.; Andreeff, M.; Mills, G.B.; McConkey, D.J. Inhibition of the phosphatidylinositol 3′-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol. Cancer Ther., 2002, 1(12), 989-997.
[PMID: 12481421]
[103]
Schlieman, M.G.; Fahy, B.N.; Ramsamooj, R.; Beckett, L.; Bold, R.J. Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br. J. Cancer, 2003, 89(11), 2110-2115.
[http://dx.doi.org/10.1038/sj.bjc.6601396] [PMID: 14647146]
[104]
Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene, 2008, 27(41), 5497-5510.
[http://dx.doi.org/10.1038/onc.2008.245] [PMID: 18794884]
[105]
Schild, C.; Wirth, M.; Reichert, M.; Schmid, R.M.; Saur, D.; Schneider, G. PI3K signaling maintains c‐myc expression to regulate transcription of E2F1 in pancreatic cancer cells. Mol. Carcinog., 2009, 48(12), 1149.
[106]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[107]
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol., 2010, 11(5), 329-341.
[http://dx.doi.org/10.1038/nrm2882] [PMID: 20379207]
[108]
Castellano, E.; Downward, J. RAS interaction with PI3K: more than just another effector pathway. Genes Cancer, 2011, 2(3), 261-274.
[http://dx.doi.org/10.1177/1947601911408079] [PMID: 21779497]
[109]
Mao, Y.; Xi, L.; Li, Q.; Cai, Z.; Lai, Y.; Zhang, X.; Yu, C. Regulation of cell apoptosis and proliferation in pancreatic cancer through PI3K/Akt pathway via Polo-like kinase 1. Oncol. Rep., 2016, 36(1), 49-56.
[http://dx.doi.org/10.3892/or.2016.4820] [PMID: 27220401]
[110]
Edling, C.E.; Selvaggi, F.; Buus, R.; Maffucci, T.; Di Sebastiano, P.; Friess, H.; Innocenti, P.; Kocher, H.M.; Falasca, M. Key role of phosphoinositide 3-kinase class IB in pancreatic cancer. Clin. Cancer Res., 2010, 16(20), 4928-4937.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1210] [PMID: 20876794]
[111]
Falasca, M.; Maffucci, T. Role of class II phosphoinositide 3-kinase in cell signalling. Biochem. Soc. Trans., 2007, 35(Pt 2), 211-214.
[http://dx.doi.org/10.1042/BST0350211] [PMID: 17371240]
[112]
Lien, E.C.; Dibble, C.C.; Toker, A. PI3K signaling in cancer: beyond AKT. Curr. Opin. Cell Biol., 2017, 45, 62-71.
[http://dx.doi.org/10.1016/j.ceb.2017.02.007] [PMID: 28343126]
[113]
Yamamoto, S.; Tomita, Y.; Hoshida, Y.; Morooka, T.; Nagano, H.; Dono, K.; Umeshita, K.; Sakon, M.; Ishikawa, O.; Ohigashi, H.; Nakamori, S.; Monden, M.; Aozasa, K. Prognostic significance of activated Akt expression in pancreatic ductal adenocarcinoma. Clin. Cancer Res., 2004, 10(8), 2846-2850.
[http://dx.doi.org/10.1158/1078-0432.CCR-02-1441] [PMID: 15102693]
[114]
Kumar, C.C.; Madison, V. AKT crystal structure and AKT-specific inhibitors. Oncogene, 2005, 24(50), 7493-7501.
[http://dx.doi.org/10.1038/sj.onc.1209087] [PMID: 16288296]
[115]
James, S.R.; Downes, C.P.; Gigg, R.; Grove, S.J.; Holmes, A.B.; Alessi, D.R. Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem. J., 1996, 315(Pt 3), 709-713.
[http://dx.doi.org/10.1042/bj3150709] [PMID: 8645147]
[116]
Alessi, D.R.; James, S.R.; Downes, C.P.; Holmes, A.B.; Gaffney, P.R.; Reese, C.B.; Cohen, P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol., 1997, 7(4), 261-269.
[http://dx.doi.org/10.1016/S0960-9822(06)00122-9] [PMID: 9094314]
[117]
Sarbassov, D.D.; Guertin, D.A.; Ali, S.M.; Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005, 307(5712), 1098-1101.
[http://dx.doi.org/10.1126/science.1106148] [PMID: 15718470]
[118]
Cardone, M.H.; Roy, N.; Stennicke, H.R.; Salvesen, G.S.; Franke, T.F.; Stanbridge, E.; Frisch, S.; Reed, J.C. Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998, 282(5392), 1318-1321.
[http://dx.doi.org/10.1126/science.282.5392.1318] [PMID: 9812896]
[119]
Brunet, A.; Bonni, A.; Zigmond, M.J.; Lin, M.Z.; Juo, P.; Hu, L.S.; Anderson, M.J.; Arden, K.C.; Blenis, J.; Greenberg, M.E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 1999, 96(6), 857-868.
[120]
Zhong, H.; Chiles, K.; Feldser, D.; Laughner, E.; Hanrahan, C.; Georgescu, M.M.; Simons, J.W.; Semenza, G.L. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res., 2000, 60(6), 1541-1545.
[PMID: 10749120]
[121]
Huang, J.; Manning, B.D. The TSC1-TSC2 complex: A molecular switchboard controlling cell growth. Biochem. J., 2008, 412(2), 179-190.
[http://dx.doi.org/10.1042/BJ20080281] [PMID: 18466115]
[122]
Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR signalling pathway in human cancer. Int. J. Mol. Sci., 2012, 13(2), 1886-1918.
[http://dx.doi.org/10.3390/ijms13021886] [PMID: 22408430]
[123]
Faivre, S.; Kroemer, G.; Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov., 2006, 5(8), 671-688.
[http://dx.doi.org/10.1038/nrd2062] [PMID: 16883305]
[124]
Rozengurt, E.; Sinnett-Smith, J.; Kisfalvi, K. Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin. Cancer Res., 2010, 16(9), 2505-2511.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2229] [PMID: 20388847]
[125]
Kalender, A.; Selvaraj, A.; Kim, S.Y.; Gulati, P.; Brûlé, S.; Viollet, B.; Kemp, B.E.; Bardeesy, N.; Dennis, P.; Schlager, J.J.; Marette, A.; Kozma, S.C.; Thomas, G. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab., 2010, 11(5), 390-401.
[http://dx.doi.org/10.1016/j.cmet.2010.03.014] [PMID: 20444419]
[126]
Ben Sahra, I.; Laurent, K.; Loubat, A.; Giorgetti-Peraldi, S.; Colosetti, P.; Auberger, P.; Tanti, J.F.; Le Marchand-Brustel, Y.; Bost, F. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 2008, 27(25), 3576-3586.
[http://dx.doi.org/10.1038/sj.onc.1211024] [PMID: 18212742]
[127]
Jalving, M.; Gietema, J.A.; Lefrandt, J.D.; de Jong, S.; Reyners, A.K.; Gans, R.O.; de Vries, E.G. Metformin: taking away the candy for cancer? Eur. J. Cancer, 2010, 46(13), 2369-2380.
[http://dx.doi.org/10.1016/j.ejca.2010.06.012] [PMID: 20656475]
[128]
Driscoll, D.R.; Karim, S.A.; Sano, M.; Gay, D.M.; Jacob, W.; Yu, J.; Mizukami, Y.; Gopinathan, A.; Jodrell, D.I.; Evans, T.R.; Bardeesy, N.; Hall, M.N.; Quattrochi, B.J.; Klimstra, D.S.; Barry, S.T.; Sansom, O.J.; Lewis, B.C.; Morton, J.P. mTORC2 signaling drives the development and progression of pancreatic cancer. Cancer Res., 2016, 76(23), 6911-6923.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0810] [PMID: 27758884]
[129]
Stanger, B.Z.; Stiles, B.; Lauwers, G.Y.; Bardeesy, N.; Mendoza, M.; Wang, Y.; Greenwood, A.; Cheng, K.H.; McLaughlin, M.; Brown, D.; Depinho, R.A.; Wu, H.; Melton, D.A.; Dor, Y. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell, 2005, 8(3), 185-195.
[http://dx.doi.org/10.1016/j.ccr.2005.07.015] [PMID: 16169464]
[130]
Hill, R.; Calvopina, J.H.; Kim, C.; Wang, Y.; Dawson, D.W.; Donahue, T.R.; Dry, S.; Wu, H. PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res., 2010, 70(18), 7114-7124.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1649] [PMID: 20807812]
[131]
Maehama, T.; Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem., 1998, 273(22), 13375-13378.
[http://dx.doi.org/10.1074/jbc.273.22.13375] [PMID: 9593664]
[132]
Cantley, L.C.; Neel, B.G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. USA, 1999, 96(8), 4240-4245.
[http://dx.doi.org/10.1073/pnas.96.8.4240] [PMID: 10200246]
[133]
Di Cristofano, A.; Pandolfi, P.P. The multiple roles of PTEN in tumor suppression. Cell, 2000, 100(4), 387-390.
[http://dx.doi.org/10.1016/S0092-8674(00)80674-1] [PMID: 10693755]
[134]
Asano, T.; Yao, Y.; Zhu, J.; Li, D.; Abbruzzese, J.L.; Reddy, S.A. The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene, 2004, 23(53), 8571-8580.
[http://dx.doi.org/10.1038/sj.onc.1207902] [PMID: 15467756]
[135]
Ying, H.; Elpek, K.G.; Vinjamoori, A.; Zimmerman, S.M.; Chu, G.C.; Yan, H.; Fletcher-Sananikone, E.; Zhang, H.; Liu, Y.; Wang, W.; Ren, X.; Zheng, H.; Kimmelman, A.C.; Paik, J.H.; Lim, C.; Perry, S.R.; Jiang, S.; Malinn, B.; Protopopov, A.; Colla, S.; Xiao, Y.; Hezel, A.F.; Bardeesy, N.; Turley, S.J.; Wang, Y.A.; Chin, L.; Thayer, S.P.; DePinho, R.A. PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-κB-cytokine network. Cancer Discov., 2011, 1(2), 158-169.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0031] [PMID: 21984975]
[136]
Ma, J.; Sawai, H.; Ochi, N.; Matsuo, Y.; Xu, D.; Yasuda, A.; Takahashi, H.; Wakasugi, T.; Takeyama, H. PTEN regulates angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells. Mol. Cell. Biochem., 2009, 331(1-2), 161-171.
[http://dx.doi.org/10.1007/s11010-009-0154-x] [PMID: 19437103]
[137]
Lim, K.H.; Baines, A.T.; Fiordalisi, J.J.; Shipitsin, M.; Feig, L.A.; Cox, A.D.; Der, C.J.; Counter, C.M. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell, 2005, 7(6), 533-545.
[http://dx.doi.org/10.1016/j.ccr.2005.04.030] [PMID: 15950903]
[138]
Feldmann, G.; Mishra, A.; Hong, S.M.; Bisht, S.; Strock, C.J.; Ball, D.W.; Goggins, M.; Maitra, A.; Nelkin, B.D. Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling. Cancer Res., 2010, 70(11), 4460-4469.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1107] [PMID: 20484029]
[139]
Ostrem, J.M.; Shokat, K.M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov., 2016, 15(11), 771-785.
[http://dx.doi.org/10.1038/nrd.2016.139] [PMID: 27469033]
[140]
Taveras, A.G.; Remiszewski, S.W.; Doll, R.J.; Cesarz, D.; Huang, E.C.; Kirschmeier, P.; Pramanik, B.N.; Snow, M.E.; Wang, Y.S.; del Rosario, J.D.; Vibulbhan, B.; Bauer, B.B.; Brown, J.E.; Carr, D.; Catino, J.; Evans, C.A.; Girijavallabhan, V.; Heimark, L.; James, L.; Liberles, S.; Nash, C.; Perkins, L.; Senior, M.M.; Tsarbopoulos, A.; Webber, S.E. Ras oncoprotein inhibitors: The discovery of potent, ras nucleotide exchange inhibitors and the structural determination of a drug-protein complex. Bioorg. Med. Chem., 1997, 5(1), 125-133.
[http://dx.doi.org/10.1016/S0968-0896(96)00202-7] [PMID: 9043664]
[141]
Ganguly, A.K.; Wang, Y.S.; Pramanik, B.N.; Doll, R.J.; Snow, M.E.; Taveras, A.G.; Remiszewski, S.; Cesarz, D.; del Rosario, J.; Vibulbhan, B.; Brown, J.E.; Kirschmeier, P.; Huang, E.C.; Heimark, L.; Tsarbopoulos, A.; Girijavallabhan, V.M.; Aust, R.M.; Brown, E.L.; DeLisle, D.M.; Fuhrman, S.A.; Hendrickson, T.F.; Kissinger, C.R.; Love, R.A.; Sisson, W.A.; Webber, S.E. Interaction of a novel GDP exchange inhibitor with the Ras protein. Biochemistry, 1998, 37(45), 15631-15637.
[http://dx.doi.org/10.1021/bi9805691] [PMID: 9843367]
[142]
Leshchiner, E.S.; Parkhitko, A.; Bird, G.H.; Luccarelli, J.; Bellairs, J.A.; Escudero, S.; Opoku-Nsiah, K.; Godes, M.; Perrimon, N.; Walensky, L.D. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1761-1766.
[http://dx.doi.org/10.1073/pnas.1413185112] [PMID: 25624485]
[143]
Sun, Q.; Burke, J.P.; Phan, J.; Burns, M.C.; Olejniczak, E.T.; Waterson, A.G.; Lee, T.; Rossanese, O.W.; Fesik, S.W. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem. Int. Ed. Engl., 2012, 51(25), 6140-6143.
[http://dx.doi.org/10.1002/anie.201201358] [PMID: 22566140]
[144]
Hocker, H.J.; Cho, K.J.; Chen, C.Y.; Rambahal, N.; Sagineedu, S.R.; Shaari, K.; Stanslas, J.; Hancock, J.F.; Gorfe, A.A. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc. Natl. Acad. Sci. USA, 2013, 110(25), 10201-10206.
[http://dx.doi.org/10.1073/pnas.1300016110] [PMID: 23737504]
[145]
Bao, G.Q.; Shen, B.Y.; Pan, C.P.; Zhang, Y.J.; Shi, M.M.; Peng, C.H. Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer. Toxicol. Lett., 2013, 222(1), 23-35.
[http://dx.doi.org/10.1016/j.toxlet.2013.06.241] [PMID: 23845849]
[146]
Shu, Y.; Sun, J.; Cai, P.; Wang, W.; Han, X.; Gu, Y. An open-label, randomized, controlled clinical trial to explore the curative effects between the treatment of capecitabine and andrographolide and the single capecitabine in the patients with pathological and/or histologic diagnosed unresectable, advanced, recurrent, and metastatic colorectal cancer. J. Clin. Oncol., 2017, 35(Suppl. 4), TPS819.
[http://dx.doi.org/10.1200/JCO.2017.35.4_suppl.TPS819]
[147]
Shima, F.; Yoshikawa, Y.; Ye, M.; Araki, M.; Matsumoto, S.; Liao, J.; Hu, L.; Sugimoto, T.; Ijiri, Y.; Takeda, A.; Nishiyama, Y.; Sato, C.; Muraoka, S.; Tamura, A.; Osoda, T.; Tsuda, K.; Miyakawa, T.; Fukunishi, H.; Shimada, J.; Kumasaka, T.; Yamamoto, M.; Kataoka, T. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc. Natl. Acad. Sci. USA, 2013, 110(20), 8182-8187.
[http://dx.doi.org/10.1073/pnas.1217730110] [PMID: 23630290]
[148]
Zeitouni, D.; Pylayeva-Gupta, Y.; Der, C.J.; Bryant, K.L. KRAS mutant pancreatic cancer: no lone path to an effective treatment. Cancers (Basel), 2016, 8(4), 45.
[http://dx.doi.org/10.3390/cancers8040045] [PMID: 27096871]
[149]
Wilson, C.Y.; Tolias, P. Recent advances in cancer drug discovery targeting RAS. Drug Discov. Today, 2016, 21(12), 1915-1919.
[http://dx.doi.org/10.1016/j.drudis.2016.08.002] [PMID: 27506872]
[150]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. K-Ras and its inhibitors towards personalized cancer treatment: Pharmacological and structural perspectives. Eur. J. Med. Chem., 2017, 125, 299-314.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.049] [PMID: 27688185]
[151]
Matera, R.; Saif, M.W. New therapeutic directions for advanced pancreatic cancer: cell cycle inhibitors, stromal modifiers and conjugated therapies. Expert Opin. Emerg. Drugs, 2017, 22(3), 223-233.
[http://dx.doi.org/10.1080/14728214.2017.1362388] [PMID: 28783977]
[152]
Berndt, N.; Hamilton, A.D.; Sebti, S.M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer, 2011, 11(11), 775-791.
[http://dx.doi.org/10.1038/nrc3151] [PMID: 22020205]
[153]
Liu, M.; Sjogren, A.K.; Karlsson, C.; Ibrahim, M.X.; Andersson, K.M.; Olofsson, F.J.; Wahlstrom, A.M.; Dalin, M.; Yu, H.; Chen, Z.; Yang, S.H.; Young, S.G.; Bergo, M.O. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc. Natl. Acad. Sci. USA, 2010, 107(14), 6471-6476.
[http://dx.doi.org/10.1073/pnas.0908396107] [PMID: 20308544]
[154]
Chandra, A.; Grecco, H.E.; Pisupati, V.; Perera, D.; Cassidy, L.; Skoulidis, F.; Ismail, S.A.; Hedberg, C.; Hanzal-Bayer, M.; Venkitaraman, A.R.; Wittinghofer, A.; Bastiaens, P.I. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol., 2011, 14(2), 148-158.
[http://dx.doi.org/10.1038/ncb2394] [PMID: 22179043]
[155]
Zimmermann, G.; Papke, B.; Ismail, S.; Vartak, N.; Chandra, A.; Hoffmann, M.; Hahn, S.A.; Triola, G.; Wittinghofer, A.; Bastiaens, P.I.; Waldmann, H. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature, 2013, 497(7451), 638-642.
[http://dx.doi.org/10.1038/nature12205] [PMID: 23698361]
[156]
Papke, B.; Murarka, S.; Vogel, H.A.; Martín-Gago, P.; Kovacevic, M.; Truxius, D.C.; Fansa, E.K.; Ismail, S.; Zimmermann, G.; Heinelt, K.; Schultz-Fademrecht, C.; Al Saabi, A.; Baumann, M.; Nussbaumer, P.; Wittinghofer, A.; Waldmann, H.; Bastiaens, P.I. Identification of pyrazolopyridazinones as PDEδ inhibitors. Nat. Commun., 2016, 7(1), 11360.
[http://dx.doi.org/10.1038/ncomms11360] [PMID: 27094677]
[157]
Haluska, P.; Dy, G.K.; Adjei, A.A. Farnesyl transferase inhibitors as anticancer agents. Eur. J. Cancer, 2002, 38(13), 1685-1700.
[http://dx.doi.org/10.1016/S0959-8049(02)00166-1] [PMID: 12175684]
[158]
Adjei, A.A.; Mauer, A.; Bruzek, L.; Marks, R.S.; Hillman, S.; Geyer, S.; Hanson, L.J.; Wright, J.J.; Erlichman, C.; Kaufmann, S.H.; Vokes, E.E. Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J. Clin. Oncol., 2003, 21(9), 1760-1766.
[http://dx.doi.org/10.1200/JCO.2003.09.075] [PMID: 12721252]
[159]
Sharma, S.; Kemeny, N.; Kelsen, D.P.; Ilson, D.; O’Reilly, E.; Zaknoen, S.; Baum, C.; Statkevich, P.; Hollywood, E.; Zhu, Y.; Saltz, L.B. A phase II trial of farnesyl protein transferase inhibitor SCH 66336, given by twice-daily oral administration, in patients with metastatic colorectal cancer refractory to 5-fluorouracil and irinotecan. Ann. Oncol., 2002, 13(7), 1067-1071.
[http://dx.doi.org/10.1093/annonc/mdf173] [PMID: 12176785]
[160]
Winquist, E.; Moore, M.J.; Chi, K.N.; Ernst, D.S.; Hirte, H.; North, S.; Powers, J.; Walsh, W.; Boucher, T.; Patton, R.; Seymour, L. A multinomial Phase II study of lonafarnib (SCH 66336) in patients with refractory urothelial cancer. Urol. Oncol., 2005, 23(3), 143-149.
[161]
Gajewski, T.F.; Salama, A.K.; Niedzwiecki, D.; Johnson, J.; Linette, G.; Bucher, C.; Blaskovich, M.A.; Sebti, S.M.; Haluska, F. Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104). J. Transl. Med., 2012, 10(1), 246.
[http://dx.doi.org/10.1186/1479-5876-10-246] [PMID: 23228035]
[162]
Rao, S.; Cunningham, D.; de Gramont, A.; Scheithauer, W.; Smakal, M.; Humblet, Y.; Kourteva, G.; Iveson, T.; Andre, T.; Dostalova, J.; Illes, A.; Belly, R.; Perez-Ruixo, J.J.; Park, Y.C.; Palmer, P.A. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol., 2004, 22(19), 3950-3957.
[http://dx.doi.org/10.1200/JCO.2004.10.037] [PMID: 15459217]
[163]
Van Cutsem, E.; van de Velde, H.; Karasek, P.; Oettle, H.; Vervenne, W.L.; Szawlowski, A.; Schoffski, P.; Post, S.; Verslype, C.; Neumann, H.; Safran, H.; Humblet, Y.; Perez Ruixo, J.; Ma, Y.; Von Hoff, D. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol., 2004, 22(8), 1430-1438.
[http://dx.doi.org/10.1200/JCO.2004.10.112] [PMID: 15084616]
[164]
Whyte, D.B.; Kirschmeier, P.; Hockenberry, T.N.; Nunez-Oliva, I.; James, L.; Catino, J.J.; Bishop, W.R.; Pai, J.K. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem., 1997, 272(22), 14459-14464.
[http://dx.doi.org/10.1074/jbc.272.22.14459] [PMID: 9162087]
[165]
Lerner, E.C.; Zhang, T.T.; Knowles, D.B.; Qian, Y.; Hamilton, A.D.; Sebti, S.M. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene, 1997, 15(11), 1283-1288.
[http://dx.doi.org/10.1038/sj.onc.1201296] [PMID: 9315095]
[166]
Rowell, C.A.; Kowalczyk, J.J.; Lewis, M.D.; Garcia, A.M. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J. Biol. Chem., 1997, 272(22), 14093-14097.
[http://dx.doi.org/10.1074/jbc.272.22.14093] [PMID: 9162034]
[167]
Sogabe, S.; Kamada, Y.; Miwa, M.; Niida, A.; Sameshima, T.; Kamaura, M.; Yonemori, K.; Sasaki, S.; Sakamoto, J.I.; Sakamoto, K. Crystal structure of a human K-Ras G12D mutant in complex with GDP and the cyclic inhibitory peptide KRpep-2d. ACS Med. Chem. Lett., 2017, 8(7), 732-736.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00128] [PMID: 28740607]
[168]
Sun, J.; Qian, Y.; Hamilton, A.D.; Sebti, S.M. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene, 1998, 16(11), 1467-1473.
[http://dx.doi.org/10.1038/sj.onc.1201656] [PMID: 9525745]
[169]
Karasic, T.B.; Chiorean, E.G.; Sebti, S.M.; O’Dwyer, P.J. A phase I study of GGTI-2418 (geranylgeranyl transferase I inhibitor) in patients with advanced solid tumors. Target. Oncol., 2019, 14(5), 613-618.
[http://dx.doi.org/10.1007/s11523-019-00661-5] [PMID: 31372813]
[170]
Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013, 503(7477), 548-551.
[http://dx.doi.org/10.1038/nature12796] [PMID: 24256730]
[171]
Lim, S.M.; Westover, K.D.; Ficarro, S.B.; Harrison, R.A.; Choi, H.G.; Pacold, M.E.; Carrasco, M.; Hunter, J.; Kim, N.D.; Xie, T.; Sim, T.; Jänne, P.A.; Meyerson, M.; Marto, J.A.; Engen, J.R.; Gray, N.S. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 199-204.
[http://dx.doi.org/10.1002/anie.201307387] [PMID: 24259466]
[172]
Tichauer, R.H.; Favre, G.; Cabantous, S.; Landa, G.; Hemeryck, A.; Brut, M. Water distribution within wild-type NRas protein and Q61 mutants during unrestrained QM/MM dynamics. Biophys. J., 2018, 115(8), 1417-1430.
[http://dx.doi.org/10.1016/j.bpj.2018.07.042] [PMID: 30224050]
[173]
Chen, K.; Zhang, Y.; Qian, L.; Wang, P. Emerging strategies to target RAS signaling in human cancer therapy. J. Hematol. Oncol., 2021, 14(1), 116.
[http://dx.doi.org/10.1186/s13045-021-01127-w] [PMID: 34301278]
[174]
Janes, M.R.; Zhang, J.; Li, L-S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; Feng, J.; Chen, J.H.; Li, S.; Li, S.; Long, Y.O.; Thach, C.; Liu, Y.; Zarieh, A.; Ely, T.; Kucharski, J.M.; Kessler, L.V.; Wu, T.; Yu, K.; Wang, Y.; Yao, Y.; Deng, X.; Zarrinkar, P.P.; Brehmer, D.; Dhanak, D.; Lorenzi, M.V.; Hu-Lowe, D.; Patricelli, M.P.; Ren, P.; Liu, Y. Targeting KRAS mutant cancers with a covalent g12c-specific inhibitor. Cell, 2018, 172(3), 578-589.e17.
[http://dx.doi.org/10.1016/j.cell.2018.01.006] [PMID: 29373830]
[175]
Patricelli, M.P.; Janes, M.R.; Li, L-S.; Hansen, R.; Peters, U.; Kessler, L.V.; Chen, Y.; Kucharski, J.M.; Feng, J.; Ely, T.; Chen, J.H.; Firdaus, S.J.; Babbar, A.; Ren, P.; Liu, Y. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov., 2016, 6(3), 316-329.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1105]
[176]
Hansen, R.; Peters, U.; Babbar, A.; Chen, Y.; Feng, J.; Janes, M.R.; Li, L-S.; Ren, P.; Liu, Y.; Zarrinkar, P.P. The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors. Nat. Struct. Mol. Biol., 2018, 25(6), 454-462.
[http://dx.doi.org/10.1038/s41594-018-0061-5] [PMID: 29760531]
[177]
Hobbs, G.A.; Wittinghofer, A.; Der, C.J. Selective targeting of the KRAS G12C Mutant: Kicking KRAS when it’s down. Cancer Cell, 2016, 29(3), 251-253.
[http://dx.doi.org/10.1016/j.ccell.2016.02.015] [PMID: 26977877]
[178]
Fakih, M.; O’Neil, B.; Price, T.J.; Falchook, G.S.; Desai, J.; Kuo, J.; Govindan, R.; Rasmussen, E.; Morrow, P.K.H.; Ngang, J.; Henary, H.A.; Hong, D.S. Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor, in advanced solid tumors. J. Clin. Oncol., 2019, 37, 3003.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.3003]
[179]
Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; Lanman, B.A.; Werner, J.; Rapaport, A.S.; San Miguel, T.; Ortiz, R.; Osgood, T.; Sun, J-R.; Zhu, X.; McCarter, J.D.; Volak, L.P.; Houk, B.E.; Fakih, M.G.; O’Neil, B.H.; Price, T.J.; Falchook, G.S.; Desai, J.; Kuo, J.; Govindan, R.; Hong, D.S.; Ouyang, W.; Henary, H.; Arvedson, T.; Cee, V.J.; Lipford, J.R. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 2019, 575(7781), 217-223.
[http://dx.doi.org/10.1038/s41586-019-1694-1] [PMID: 31666701]
[180]
Hallin, J.; Engstrom, L.D.; Hargis, L.; Calinisan, A.; Aranda, R.; Briere, D.M.; Sudhakar, N.; Bowcut, V.; Baer, B.R.; Ballard, J.A.; Burkard, M.R.; Fell, J.B.; Fischer, J.P.; Vigers, G.P.; Xue, Y.; Gatto, S.; Fernandez-Banet, J.; Pavlicek, A.; Velastagui, K.; Chao, R.C.; Barton, J.; Pierobon, M.; Baldelli, E.; Patricoin, E.F.; Cassidy, D.P.; Marx, M.A.; Rybkin, I.I.; Johnson, M.L.; Ou, S.-H.I.; Lito, P.; Papadopoulos, K.P.; Jänne, P.A.; Olson, P.; Christensen, J.G. The KRASG12C inhibitor MRTX849 Provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients Cancer Discov.,, 2020, 10, 54-LP-71.
[181]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[182]
Cascinu, S.; Berardi, R.; Sobrero, A.; Bidoli, P.; Labianca, R.; Siena, S.; Ferrari, D.; Barni, S.; Aitini, E.; Zagonel, V.; Caprioni, F.; Villa, F.; Mosconi, S.; Faloppi, L.; Tonini, G.; Boni, C.; Conte, P.; Di Costanzo, F.; Cinquini, M. Sorafenib does not improve efficacy of chemotherapy in advanced pancreatic cancer: A GISCAD randomized phase II study. Dig. Liver Dis., 2014, 46(2), 182-186.
[http://dx.doi.org/10.1016/j.dld.2013.09.020] [PMID: 24189171]
[183]
Kindler, H.L.; Wroblewski, K.; Wallace, J.A.; Hall, M.J.; Locker, G.; Nattam, S.; Agamah, E.; Stadler, W.M.; Vokes, E.E. Gemcitabine plus sorafenib in patients with advanced pancreatic cancer: A phase II trial of the University of Chicago Phase II Consortium. Invest. New Drugs, 2012, 30(1), 382-386.
[http://dx.doi.org/10.1007/s10637-010-9526-z] [PMID: 20803052]
[184]
Poulikakos, P.I.; Zhang, C.; Bollag, G.; Shokat, K.M.; Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature, 2010, 464(7287), 427-430.
[http://dx.doi.org/10.1038/nature08902] [PMID: 20179705]
[185]
Heidorn, S.J.; Milagre, C.; Whittaker, S.; Nourry, A.; Niculescu-Duvas, I.; Dhomen, N.; Hussain, J.; Reis-Filho, J.S.; Springer, C.J.; Pritchard, C.; Marais, R. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell, 2010, 140(2), 209-221.
[http://dx.doi.org/10.1016/j.cell.2009.12.040] [PMID: 20141835]
[186]
Hatzivassiliou, G.; Song, K.; Yen, I.; Brandhuber, B.J.; Anderson, D.J.; Alvarado, R.; Ludlam, M.J.; Stokoe, D.; Gloor, S.L.; Vigers, G.; Morales, T.; Aliagas, I.; Liu, B.; Sideris, S.; Hoeflich, K.P.; Jaiswal, B.S.; Seshagiri, S.; Koeppen, H.; Belvin, M.; Friedman, L.S.; Malek, S. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature, 2010, 464(7287), 431-435.
[http://dx.doi.org/10.1038/nature08833] [PMID: 20130576]
[187]
Rinehart, J.; Adjei, A.A.; Lorusso, P.M.; Waterhouse, D.; Hecht, J.R.; Natale, R.B.; Hamid, O.; Varterasian, M.; Asbury, P.; Kaldjian, E.P.; Gulyas, S.; Mitchell, D.Y.; Herrera, R.; Sebolt-Leopold, J.S.; Meyer, M.B. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J. Clin. Oncol., 2004, 22(22), 4456-4462.
[http://dx.doi.org/10.1200/JCO.2004.01.185] [PMID: 15483017]
[188]
Mirzoeva, O.K.; Collisson, E.A.; Schaefer, P.M.; Hann, B.; Hom, Y.K.; Ko, A.H.; Korn, W.M. Subtype-specific MEK-PI3 kinase feedback as a therapeutic target in pancreatic adenocarcinoma. Mol. Cancer Ther., 2013, 12(10), 2213-2225.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0104] [PMID: 23918833]
[189]
Lugowska, I.; Koseła-Paterczyk, H.; Kozak, K.; Rutkowski, P. Trametinib: a MEK inhibitor for management of metastatic melanoma. OncoTargets Ther., 2015, 8, 2251-2259.
[PMID: 26347206]
[190]
Bodoky, G.; Timcheva, C.; Spigel, D.R.; La Stella, P.J.; Ciuleanu, T.E.; Pover, G.; Tebbutt, N.C. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Invest. New Drugs, 2012, 30(3), 1216-1223.
[http://dx.doi.org/10.1007/s10637-011-9687-4] [PMID: 21594619]
[191]
Infante, J.R.; Somer, B.G.; Park, J.O.; Li, C.P.; Scheulen, M.E.; Kasubhai, S.M.; Oh, D.Y.; Liu, Y.; Redhu, S.; Steplewski, K.; Le, N. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur. J. Cancer, 2014, 50(12), 2072-2081.
[http://dx.doi.org/10.1016/j.ejca.2014.04.024] [PMID: 24915778]
[192]
Ko, A.H.; Bekaii-Saab, T.; Van, Z. J.; Mirzoeva, O.M.; Joseph, N.M.; Talasaz, A.; Kuhn, P.; Tempero, M.A.; Collisson, E.A.; Kelley, R.K.; Venook, A.P.; Dito, E.; Ong, A.; Ziyeh, S.; Courtin, R.; Linetskaya, R.; Tahiri, S.; Korn, W.M. A multicenter, open-label phase II clinical trial of combined MEK plus EGFR inhibition for chemotherapy-refractory advanced pancreatic adenocarcinoma. Clin. Cancer Res., 2016, 22(1), 61-68.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0979] [PMID: 26251290]
[193]
Van Laethem, J.L.; Riess, H.; Jassem, J.; Haas, M.; Martens, U.M.; Weekes, C.; Peeters, M.; Ross, P.; Bridgewater, J.; Melichar, B.; Cascinu, S.; Saramak, P.; Michl, P.; Van, B. D.; Zaniboni, A.; Schmiegel, W.; Dueland, S.; Giurescu, M.; Garosi, V.L.; Roth, K.; Schulz, A.; Seidel, H.; Rajagopalan, P.; Teufel, M.; Childs, B.H. Phase I/II study of refametinib (BAY 86-9766) in combination with gemcitabine in advanced pancreatic cancer. Target. Oncol., 2017, 12(1), 97-109.
[http://dx.doi.org/10.1007/s11523-016-0469-y] [PMID: 27975152]
[194]
Van Cutsem, E.; Hidalgo, M.; Canon, J.L.; Macarulla, T.; Bazin, I.; Poddubskaya, E.; Manojlovic, N.; Radenkovic, D.; Verslype, C.; Raymond, E.; Cubillo, A.; Schueler, A.; Zhao, C.; Hammel, P. Phase I/II trial of pimasertib plus gemcitabine in patients with metastatic pancreatic cancer. Int. J. Cancer, 2018, 143(8), 2053-2064.
[http://dx.doi.org/10.1002/ijc.31603] [PMID: 29756206]
[195]
Bhagwat, S.V.; McMillen, W.T.; Cai, S.; Zhao, B.; Whitesell, M.; Shen, W.; Kindler, L.; Flack, R.S.; Wu, W.; Anderson, B.; Zhai, Y.; Yuan, X.J.; Pogue, M.; Van Horn, R.D.; Rao, X.; McCann, D.; Dropsey, A.J.; Manro, J.; Walgren, J.; Yuen, E.; Rodriguez, M.J.; Plowman, G.D.; Tiu, R.V.; Joseph, S.; Peng, S.B. ERK inhibitor LY3214996 targets ERK pathway-driven cancers: a therapeutic approach toward precision medicine. Mol. Cancer Ther., 2020, 19(2), 325-336.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0183] [PMID: 31744895]
[196]
Pant, S.; Bendell, J.C.; Sullivan, R.J.; Shapiro, G.; Millward, M.; Mi, G.; Yuen, E.; Willard, M.D.; Wang, D.; Joseph, S.; McMillen, WT phase I dose escalation (DE) study of ERK inhibitor, LY3214996, in advanced (adv) cancer (CA) patients (pts). J. Clin. Oncolo.,, 2020.
[197]
Xie, F.; Li, C.; Zhang, X.; Peng, W.; Wen, T. MiR-143-3p suppresses tumorigenesis in pancreatic ductal adenocarcinoma by targeting KRAS. Biomed. Pharmacother., 2019, 119, 109424.
[http://dx.doi.org/10.1016/j.biopha.2019.109424] [PMID: 31521891]
[198]
Khan, K.H.; Yap, T.A.; Yan, L.; Cunningham, D. Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin. J. Cancer, 2013, 32(5), 253-265.
[http://dx.doi.org/10.5732/cjc.013.10057] [PMID: 23642907]
[199]
Zahreddine, H.; Borden, K.L. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol., 2013, 4, 28.
[http://dx.doi.org/10.3389/fphar.2013.00028] [PMID: 23504227]
[200]
Yip-Schneider, M.T.; Wiesenauer, C.A.; Schmidt, C.M. Inhibition of the phosphatidylinositol 3′-kinase signaling pathway increases the responsiveness of pancreatic carcinoma cells to sulindac. J. Gastrointest. Surg., 2003, 7(3), 354-363.
[http://dx.doi.org/10.1016/S1091-255X(02)00156-7] [PMID: 12654560]
[201]
Van Dort, M.E.; Galbán, S.; Wang, H.; Sebolt-Leopold, J.; Whitehead, C.; Hong, H.; Rehemtulla, A.; Ross, B.D. Dual inhibition of allosteric mitogen-activated protein kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) oncogenic targets with a bifunctional inhibitor. Bioorg. Med. Chem., 2015, 23(7), 1386-1394.
[http://dx.doi.org/10.1016/j.bmc.2015.02.053] [PMID: 25766633]
[202]
Alagesan, B.; Contino, G.; Guimaraes, A.R.; Corcoran, R.B.; Deshpande, V.; Wojtkiewicz, G.R.; Hezel, A.F.; Wong, K.K.; Loda, M.; Weissleder, R.; Benes, C.H.; Engelman, J.; Bardeesy, N. Combined MEK and PI3K inhibition in a mouse model of pancreatic cancer. Clin. Cancer Res., 2015, 21(2), 396-404.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1591] [PMID: 25348516]
[203]
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
[204]
Wei, W.T.; Chen, H.; Wang, Z.H.; Ni, Z.L.; Liu, H.B.; Tong, H.F.; Guo, H.C.; Liu, D.L.; Lin, S.Z. Enhanced antitumor efficacy of gemcitabine by evodiamine on pancreatic cancer via regulating PI3K/Akt pathway. Int. J. Biol. Sci., 2012, 8(1), 1-14.
[http://dx.doi.org/10.7150/ijbs.8.1] [PMID: 22211100]
[205]
Gupta, S.; Ramjaun, A.R.; Haiko, P.; Wang, Y.; Warne, P.H.; Nicke, B.; Nye, E.; Stamp, G.; Alitalo, K.; Downward, J. Binding of ras to phosphoinositide 3-kinase p110α is required for ras-driven tumorigenesis in mice. Cell, 2007, 129(5), 957-968.
[http://dx.doi.org/10.1016/j.cell.2007.03.051] [PMID: 17540175]
[206]
Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer, 2015, 15(1), 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[207]
Scheid, M.P.; Woodgett, J.R. PKB/AKT: Functional insights from genetic models. Nat. Rev. Mol. Cell Biol., 2001, 2(10), 760-768.
[http://dx.doi.org/10.1038/35096067] [PMID: 11584303]
[208]
Yap, T.A.; Yan, L.; Patnaik, A.; Fearen, I.; Olmos, D.; Papadopoulos, K.; Baird, R.D.; Delgado, L.; Taylor, A.; Lupinacci, L.; Riisnaes, R.; Lorna, L.P.; Simon, P.H.; George, T.; Michelle, D.G.; Daniel, M.S.; Johann, S.B.; Anthony, W.T. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J. Clin. Oncol., 2011, 29(35), 4688-46895.
[209]
Hu, C.; Dadon, T.; Chenna, V.; Yabuuchi, S.; Bannerji, R.; Booher, R.; Strack, P.; Azad, N.; Nelkin, B.D.; Maitra, A. Combined inhibition of cyclin-dependent kinases (Dinaciclib) and AKT (MK-2206) blocks pancreatic tumor growth and metastases in patient-derived xenograft models. Mol. Cancer Ther., 2015, 14(7), 1532-1539.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0028] [PMID: 25931518]
[210]
Awasthi, N.; Kronenberger, D.; Stefaniak, A.; Hassan, M.S.; von Holzen, U.; Schwarz, M.A.; Schwarz, R.E. Dual inhibition of the PI3K and MAPK pathways enhances nab-paclitaxel/gemcitabine chemotherapy response in preclinical models of pancreatic cancer. Cancer Lett., 2019, 459, 41-49.
[http://dx.doi.org/10.1016/j.canlet.2019.05.037] [PMID: 31153980]
[211]
Douros, J.; Suffness, M. New antitumor substances of natural origin. Cancer Treat. Rev., 1981, 8(1), 63-87.
[http://dx.doi.org/10.1016/S0305-7372(81)80006-0] [PMID: 7248995]
[212]
Garber, K. Rapamycin’s resurrection: A new way to target the cancer cell cycle. J. Natl. Cancer Inst., 2001, 93(20), 1517-1519.
[http://dx.doi.org/10.1093/jnci/93.20.1517] [PMID: 11604470]
[213]
Utomo, W.K.; Narayanan, V.; Biermann, K.; van Eijck, C.H.; Bruno, M.J.; Peppelenbosch, M.P.; Braat, H. mTOR is a promising therapeutical target in a subpopulation of pancreatic adenocarcinoma. Cancer Lett., 2014, 346(2), 309-317.
[http://dx.doi.org/10.1016/j.canlet.2014.01.014] [PMID: 24467966]
[214]
Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A.; Staroslawska, E.; Sosman, J.; McDermott, D.; Bodrogi, I.; Kovacevic, Z.; Lesovoy, V.; Schmidt-Wolf, I.G.; Barbarash, O.; Gokmen, E.; O’Toole, T.; Lustgarten, S.; Moore, L.; Motzer, R.J. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med., 2007, 356(22), 2271-2281.
[http://dx.doi.org/10.1056/NEJMoa066838] [PMID: 17538086]
[215]
Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grünwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; Urbanowitz, G.; Berg, W.J.; Kay, A.; Lebwohl, D.; Ravaud, A. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet, 2008, 372(9637), 449-456.
[http://dx.doi.org/10.1016/S0140-6736(08)61039-9] [PMID: 18653228]
[216]
Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; Tomassetti, P.; Pavel, M.E.; Hoosen, S.; Haas, T.; Lincy, J.; Lebwohl, D.; Öberg, K. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med., 2011, 364(6), 514-523.
[http://dx.doi.org/10.1056/NEJMoa1009290] [PMID: 21306238]
[217]
Buck, E.; Eyzaguirre, A.; Brown, E.; Petti, F.; McCormack, S.; Haley, J.D.; Iwata, K.K.; Gibson, N.W.; Griffin, G. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol. Cancer Ther., 2006, 5(11), 2676-2684.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0166] [PMID: 17121914]
[218]
US National Library of Medicine. ClinicalTrials.gov 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT03825289
[219]
Kang, Y.W.; Lee, J.E.; Jung, K.H.; Son, M.K.; Shin, S.M.; Kim, S.J.; Fang, Z.; Yan, H.H.; Park, J.H.; Han, B.; Cheon, M.J.; Woo, M.G.; Lim, J.H.; Kim, Y.S.; Hong, S.S. KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Cancer Lett., 2018, 438, 174-186.
[http://dx.doi.org/10.1016/j.canlet.2018.09.013] [PMID: 30217561]
[220]
Brown, W.S.; McDonald, P.C.; Nemirovsky, O.; Awrey, S.; Chafe, S.C.; Schaeffer, D.F.; Li, J.; Renouf, D.J.; Stanger, B.Z.; Dedhar, S. Overcoming adaptive resistance to KRAS and MEK inhibitors by co-targeting mTORC1/2 complexes in pancreatic cancer. Cell Rep. Med., 2020, 1(8), 100131.
[http://dx.doi.org/10.1016/j.xcrm.2020.100131] [PMID: 33294856]
[221]
Cannataro, V.L.; Gaffney, S.G.; Stender, C.; Zhao, Z-M.; Philips, M.; Greenstein, A.E.; Townsend, J.P. Heterogeneity and mutation in KRAS and associated oncogenes: evaluating the potential for the evolution of resistance to targeting of KRAS G12C. Oncogene, 2018, 37(18), 2444-2455.
[http://dx.doi.org/10.1038/s41388-017-0105-z] [PMID: 29453361]
[222]
Xue, J.Y.; Zhao, Y.; Aronowitz, J.; Mai, T.T.; Vides, A.; Qeriqi, B.; Kim, D.; Li, C.; de Stanchina, E.; Mazutis, L.; Risso, D.; Lito, P. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature, 2020, 577(7790), 421-425.
[http://dx.doi.org/10.1038/s41586-019-1884-x] [PMID: 31915379]
[223]
Ozkan-Dagliyan, I.; Diehl, J.N.; George, S.D.; Schaefer, A.; Papke, B.; Klotz-Noack, K.; Waters, A.M.; Goodwin, C.M.; Gautam, P.; Pierobon, M.; Peng, S.; Gilbert, T.S.K.; Lin, K.H.; Dagliyan, O.; Wennerberg, K.; Petricoin, E.F., III; Tran, N.L.; Bhagwat, S.V.; Tiu, R.V.; Peng, S.B.; Herring, L.E.; Graves, L.M.; Sers, C.; Wood, K.C.; Cox, A.D.; Der, C.J. Low-dose vertical inhibition of the RAF-MEK-ERK cascade causes apoptotic death of KRAS mutant cancers. Cell Rep., 2020, 31(11), 107764.
[http://dx.doi.org/10.1016/j.celrep.2020.107764] [PMID: 32553168]
[224]
Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov., 2014, 13(11), 828-851.
[http://dx.doi.org/10.1038/nrd4389] [PMID: 25323927]
[225]
Aguirre, A.J.; Hahn, W.C. Synthetic lethal vulnerabilities in KRAS-mutant cancers. Cold Spring Harb. Perspect. Med., 2018, 8(8), a031518.
[http://dx.doi.org/10.1101/cshperspect.a031518] [PMID: 29101114]
[226]
Dietlein, F.; Kalb, B.; Jokic, M.; Noll, E.M.; Strong, A.; Tharun, L.; Ozretić, L.; Künstlinger, H.; Kambartel, K.; Randerath, W.J.; Jüngst, C.; Schmitt, A.; Torgovnick, A.; Richters, A.; Rauh, D.; Siedek, F.; Persigehl, T.; Mauch, C.; Bartkova, J.; Bradley, A.; Sprick, M.R.; Trumpp, A.; Rad, R.; Saur, D.; Bartek, J.; Wolf, J.; Büttner, R.; Thomas, R.K.; Reinhardt, H.C. A synergistic interaction between Chk1- and MK2 inhibitors in KRAS-mutant cancer. Cell, 2015, 162(1), 146-159.
[http://dx.doi.org/10.1016/j.cell.2015.05.053] [PMID: 26140595]
[227]
Corcoran, R.B.; Cheng, K.A.; Hata, A.N.; Faber, A.C.; Ebi, H.; Coffee, E.M.; Greninger, P.; Brown, R.D.; Godfrey, J.T.; Cohoon, T.J.; Song, Y.; Lifshits, E.; Hung, K.E.; Shioda, T.; Dias-Santagata, D.; Singh, A.; Settleman, J.; Benes, C.H.; Mino-Kenudson, M.; Wong, K.K.; Engelman, J.A. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell, 2013, 23(1), 121-128.
[http://dx.doi.org/10.1016/j.ccr.2012.11.007] [PMID: 23245996]
[228]
Principe, D.R.; Korc, M.; Kamath, S.D.; Munshi, H.G.; Rana, A. Trials and tribulations of pancreatic cancer immunotherapy. Cancer Lett., 2021, 504, 1-14.
[http://dx.doi.org/10.1016/j.canlet.2021.01.031] [PMID: 33549709]
[229]
Carpenter, E.; Nelson, S.; Bednar, F.; Cho, C.; Nathan, H.; Sahai, V.; di Magliano, M.P.; Frankel, T.L. Immunotherapy for pancreatic ductal adenocarcinoma. J. Surg. Oncol., 2021, 123(3), 751-759.
[http://dx.doi.org/10.1002/jso.26312] [PMID: 33595893]
[230]
Tran, E.; Robbins, P.F.; Lu, Y-C.; Prickett, T.D.; Gartner, J.J.; Jia, L.; Pasetto, A.; Zheng, Z.; Ray, S.; Groh, E.M.; Kriley, I.R.; Rosenberg, S.A. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. N. Engl. J. Med., 2016, 375(23), 2255-2262.
[http://dx.doi.org/10.1056/NEJMoa1609279] [PMID: 27959684]
[231]
Maurer, T.; Garrenton, L.S.; Oh, A.; Pitts, K.; Anderson, D.J.; Skelton, N.J.; Fauber, B.P.; Pan, B.; Malek, S.; Stokoe, D.; Ludlam, M.J.; Bowman, K.K.; Wu, J.; Giannetti, A.M.; Starovasnik, M.A.; Mellman, I.; Jackson, P.K.; Rudolph, J.; Wang, W.; Fang, G. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5299-5304.
[http://dx.doi.org/10.1073/pnas.1116510109] [PMID: 22431598]
[232]
Zhao, X.; Liu, L.; Lang, J.; Cheng, K.; Wang, Y.; Li, X.; Shi, J.; Wang, Y.; Nie, G.A. CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett., 2018, 431, 171-181.
[http://dx.doi.org/10.1016/j.canlet.2018.05.042] [PMID: 29870774]
[233]
Sakamoto, K.; Kamada, Y.; Sameshima, T.; Yaguchi, M.; Niida, A.; Sasaki, S.; Miwa, M.; Ohkubo, S.; Sakamoto, J.I.; Kamaura, M.; Cho, N.; Tani, A. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology. Biochem. Biophys. Res. Commun., 2017, 484(3), 605-611.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.147] [PMID: 28153726]
[234]
Niida, A.; Sasaki, S.; Yonemori, K.; Sameshima, T.; Yaguchi, M.; Asami, T.; Sakamoto, K.; Kamaura, M. Investigation of the structural requirements of K-Ras(G12D) selective inhibitory peptide KRpep-2d using alanine scans and cysteine bridging. Bioorg. Med. Chem. Lett., 2017, 27(12), 2757-2761.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.063] [PMID: 28457754]
[235]
Ryu, W.J.; Han, G.; Lee, S.H.; Choi, K.Y. Suppression of Wnt/β-catenin and RAS/ERK pathways provides a therapeutic strategy for gemcitabine-resistant pancreatic cancer. Biochem. Biophys. Res. Commun., 2021, 549, 40-46.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.076] [PMID: 33662667]
[236]
McCarthy, M.J.; Pagba, C.V.; Prakash, P.; Naji, A.K.; van der Hoeven, D.; Liang, H.; Gupta, A.K.; Zhou, Y.; Cho, K-J.; Hancock, J.F.; Gorfe, A.A. Discovery of high-affinity noncovalent allosteric KRAS inhibitors that disrupt effector binding. ACS Omega, 2019, 4(2), 2921-2930.
[http://dx.doi.org/10.1021/acsomega.8b03308] [PMID: 30842983]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy