Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Biodegradable Polymers and their Applications: A Review

Author(s): Venkatesh K. Bhovi*, Sulochana P. Melinmath and Ranjith Gowda

Volume 22, Issue 16, 2022

Published on: 20 May, 2022

Page: [2081 - 2101] Pages: 21

DOI: 10.2174/1389557522666220128152847

Price: $65

Abstract

Polymers have an endless scope due to their flexibility, amendment, and modification with the organic and inorganic compounds. There is an intense competition between natural and synthetic biodegradable polymers concerning biodegradability and compatibility with modern technology. Biodegradable polymers play a significant role in sustaining humanity on the earth due to nonenvironmental hazards. These polymers play a crucial role in biomedicine technology, such as tissue engineering, preparation of different scaffolds, drug delivery systems, industrial sector, agriculture, and food packaging. Here, we probed on various applications, challenges, and the limitations of biodegradable polymers in life.

Keywords: Biodegradable polymers, natural polymers, synthetic polymer, biomedical applications, technologicals applications, agriculture, packaging applications.

Graphical Abstract
[1]
Luckachan, G.E.; Pillai, C.K.S. Biodegradable polymers- a review on recent trends and emerging perspectives. J. Polym. Environ., 2011, 19, 637.
[http://dx.doi.org/10.1007/s10924-011-0317-1]
[2]
Ghanbarzadeh, B.; Almasi, H. Biodegradable Polymers; Intech Open Science: UK London, , 2013.
[http://dx.doi.org/10.5772/56230]
[3]
Hurley, L.A.; Stinchfield, F.E.; Bassett, C.A.L.; Lyon, W.H. The role of soft tissues in steogenesis. J. Bone Joint Surg. Am., 1959, 41, 1243-1266.
[http://dx.doi.org/10.2106/00004623-195941070-00007] [PMID: 13852565]
[4]
Kwon, G.S.; Furgeson, D.Y. Biodegradable polymers for drug delivery systems. Biomed. Polym, 2007, 83-110.
[http://dx.doi.org/10.1533/9781845693640.83]
[5]
Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci., B, Polym. Phys., 2011, 49(12), 832-864.
[http://dx.doi.org/10.1002/polb.22259] [PMID: 21769165]
[6]
Dumitru, L.; Doina, D.; Lucian, H.; Constantin, P.T.; Daniela, C. Biocompatible polymers for 3D printing. Farmacia, 2018, 66(5), 737-746.
[http://dx.doi.org/10.31925/farmacia.2018.5.1]
[7]
Park, J.; Kim, J.K.; Park, S.A.; Lee, D.W. Biodegradable polymer material based smart stent: Wireless pressure sensor and 3D printed stent. Microelectron. Eng., 2018, 216, 1-5.
[http://dx.doi.org/10.1016/j.mee.2018.12.007]
[8]
Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol., 2008, 19, 634-643.
[http://dx.doi.org/10.1016/j.tifs.2008.07.003]
[9]
Guilbert, S.; Feuilloley, P.; Bewa, H.; Maurel, V.B. Biodegradable polymers in agricultural applications. Biodegradable Polymer for Industrial Applications, 2005, 494-516.
[http://dx.doi.org/10.1533/9781845690762.4.494]
[10]
Stroganov, V.; Al-Hussein, M.; Sommer, J.U.; Janke, A.; Zakharchenko, S.; Ionov, L. Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization. Nano Lett., 2015, 15(3), 1786-1790.
[http://dx.doi.org/10.1021/nl5045023] [PMID: 25650779]
[11]
Ma, P.; Spoelstra, A.B.; Schmit, P.; Lemstra, P.J. Toughening of poly (lactic acid) by poly (β-hydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content. Eur. Polym. J., 2013, 49(6), 1523-1531.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.01.016]
[12]
Ajay, C.S.; Ganesh, S.B.; Suresh, S.U. Synthesis, characterization, and biodegradation studies of poly(1,4-cyclohexanedimethylene-adipate-carbonate). J. Polym., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/547325]
[13]
Ouchi, T.; Fujino, A. Synthesis of poly(α-malic acid) and its hydrolysis behaviour in vitro . Makromol. Chem., 2003, 190(7), 1523-1530.
[http://dx.doi.org/10.1002/macp.1989.021900703]
[14]
Kumara, Y.; Shirotani, K.; Yamane, H.; Kitao, T. Ring-opening polymerisation of 3(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: A new route to poly(α-hydroxy acid) with pendant carboxyl groups. Macromolecules, 1988, 21(11), 3338-3340.
[http://dx.doi.org/10.1021/ma00189a037]
[15]
Gerhardt, W.W.; Noga, D.E.; Hardcastle, K.I.; García, A.J.; Collard, D.M.; Weck, M. Functional lactide monomers: Methodology and polymerization. Biomacromolecules, 2006, 7(6), 1735-1742.
[http://dx.doi.org/10.1021/bm060024j] [PMID: 16768392]
[16]
Bozzarri, R.; Chiellini, F.; Ober, C.K.; Saltzman, W.M.; Solaro, R. Influence of structural parameters on the ring-opening polymerization of new alkyl malolactonate monomers and biocompatibility of polymers therefrom. Macromol. Chem. Phys., 2002, 203, 1684-1693.
[http://dx.doi.org/10.1002/1521-3935(200207)203:10/11<1684:AID-MACP1684>3.0.CO;2-L]
[17]
Zhou, Y. R., X. Zhuo; Liu, L.Z. Synthesis and characterisation of novel aliphatic poly(carbonate-ester)s with functional pendent groups. Macromol. Rapid Commun., 2005, 26, 1309-1312.
[http://dx.doi.org/10.1002/marc.200500222]
[18]
Xie, Z.G.; Hu, H.L.; Chen, X.S.; Mo, G.J.; Sun, J.; Jing, X.B. A novel biodegradable and light-breakable diblock copolymer micelle for drug delivery. Adv. Eng. Mater., 2009, 11, 7-11.
[http://dx.doi.org/10.1002/adem.200800254]
[19]
Lee, R.S.; Yang, J.M.; Lin, T.F. Novel biodegradable functional poly(ester carbonate) by copolymerization of trans-4-hydroxy-L-Proline with cyclic carbonate bearing a pendent carboxylic group. J. Pol. Sci. Part. Polym. Chem., 2004, 42(10), 2303-2312.
[http://dx.doi.org/10.1002/pola.20052]
[20]
Trollsas, M.; Lee, V.Y.; Mecerreyes, D.; Lowenhielm, P.; Moller, M.; Miller, R.D.; Hedrick, J.L. hydrophilic aliphatic polyesters: Design, synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecles., 2000, 33(13), 4619-4627.
[http://dx.doi.org/10.1021/ma992161x]
[21]
Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc., 2002, 124(31), 9074-9082.
[http://dx.doi.org/10.1021/ja0257319] [PMID: 12149011]
[22]
Scheller, H.V.; Jensen, J.K.; Sorensen, S.O.; Harholt, J.; Geshi, N. Biosynthesis of pectin. Physiol. Plant., 2007, 129, 283-295.
[http://dx.doi.org/10.1111/j.1399-3054.2006.00834.x]
[23]
Purohit, A.P.; Kokate, C.K.; Gokhale, S.B. Pharmacognosy, 13th ed; NiraliPrakashan, 2002, pp. 1-14.
[24]
Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A.K. Buccal bioadhesive drug delivery-a promising option for orally less efficient drugs. J. Control. Release, 2006, 114(1), 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.012] [PMID: 16828915]
[25]
Artham, T.; Doble, M. Biodegradation of aliphatic and aromatic polycarbonates. Macromol. Biosci., 2008, 8(1), 14-24.
[http://dx.doi.org/10.1002/mabi.200700106] [PMID: 17849431]
[26]
Bikiaris, D.N.; Papageorgiou, G.Z.; Giliopoulos, D.J.; Stergiou, C.A. Correlation between chemical and solid-state structures and enzymatic hydrolysis in novel biodegradable polyesters. The case of poly(propylene alkanedicarboxylate)s. Macromol. Biosci., 2008, 8(8), 728-740.
[http://dx.doi.org/10.1002/mabi.200800035] [PMID: 18615455]
[27]
Chen, C.C.; Chueh, J.Y.; Tseng, H.; Huang, H.M.; Lee, S.Y. Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 2003, 24(7), 1167-1173.
[http://dx.doi.org/10.1016/S0142-9612(02)00466-0] [PMID: 12527257]
[28]
Uyama, H.; Kelgraf, E.; Wada, S.; Kobayashi, S. Regioselective polymerization of sorbitol and divinylsebacate using ligase catalyst. Chem. Lett., 2000, 29, 800-801.
[http://dx.doi.org/10.1246/cl.2000.800]
[29]
Yuen, A.Y.; Porcarelli, L.; Aguirresarobe, R.H.; Sanchez, A.S.; Agua, I.; Ismailov, U.; Malliaras, G.G.; Mecerreyes, D.; Ismailov, E.; Sardon, H. Biodegradable polycarbonate iongels for electrophysiology measurements, MDPI. J. Polym., 2018, 10, 989.
[http://dx.doi.org/10.3390/polym10090989]
[30]
Yuen, A.Y.; Lopez-Martinez, E.; Gomez-Bengoa, E.; Cortajarena, A.L.; Aguirresarobe, R.H.; Bossion, A.; Mecerreyes, D.; Hedrick, J.L.; Yang, Y.Y.; Sardon, H. Preparation of biodegradable cationic polycarbonates and hydrogels through the direct polymerization of quaternized cyclic carbonates. ACS Biomater. Sci. Eng, 2017, 3(8) 1567-1575, 1567-1575.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00335] [PMID: 33429642]
[31]
Pascual, A.; Tan, J.P.K.; Yuen, A.Y.; Chan, J.M.W.; Coady, D.J.; Mecerreyes, D.; Hedrick, J.L.; Yang, Y.Y.; Sardon, H. Broad-spectrum antimicrobial polycarbonate hydrogels with fast degradability. Biomacromolecules, 2015, 16, 1169-1178.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00335]
[32]
Cao, A.; Okamura, T.; Ishiguro, C.; Nakayama, K.; Inoue, Y.; Masuda, T. Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-ε-caprolactone)s. Polymer (Guildf.), 2002, 43(3), 671-679.
[http://dx.doi.org/10.1016/S0032-3861(01)00658-9]
[33]
Yuan, H.; Luo, K.; Lai, Y.; Pu, Y.; He, B.; Wang, G.; Wu, Y.; Gu, Z. A novel poly(l-glutamic acid) dendrimer based drug delivery system with both pH-sensitive and targeting functions. Mol. Pharm., 2010, 7(4), 953-962.
[http://dx.doi.org/10.1021/mp1000923] [PMID: 20481567]
[34]
Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci., 2009, 10(9), 3722-3742.
[http://dx.doi.org/10.3390/ijms10093722] [PMID: 19865515]
[35]
Okada, M. Chemical syntheses of biodegradable polymers. prog. Polym. Sci, 2002, 27(1), 87-133.
[http://dx.doi.org/10.1016/S0079-6700(01)00039-9]
[36]
Müller, R.J.; Kleeberg, I.; Deckwer, W.D. Biodegradation of polyesters containing aromatic constituents. J. Biotechnol., 2001, 86(2), 87-95.
[http://dx.doi.org/10.1016/S0168-1656(00)00407-7] [PMID: 11245897]
[37]
Domb, A.J. Synthesis and characterization of biodegradable aromatic anhydride copolymers. Macromolecules, 1992, 25(1), 12-17.
[http://dx.doi.org/10.1021/ma00027a003]
[38]
Jiang, M.; Liu, Q.; Zhang, Q.; Ye, C.; Zhou, G. A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J. Polym. Sci, 2012, 50(5), 1026-1036.
[http://dx.doi.org/10.1002/pola.25859]
[39]
Kijchavengkul, T.; Auras, R.; Rubino, M.; Ngouajio, M.; Fernandez, R.T. Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part I: Field study. Chemosphere, 2008, 71(5), 942-953.
[http://dx.doi.org/10.1016/j.chemosphere.2007.10.074] [PMID: 18262221]
[40]
Wanga, B.; Zhangb, Y.; Songa, P.; Guob, Z.; Chengb, J.; Fanga, Z. Biodegradable aliphatic/aromatic copolyesters based on terephthalic acid and poly(L-lactic acid): Synthesis, characterization and hydrolytic degradation. Chin. J. Polym. Sci., 2010, 28(3), 405-415.
[http://dx.doi.org/10.1007/s10118-010-9032-y]
[41]
Du, J.; Fang, Y.; Zheng, Y. Synthesis, characterization, and biodegradation of biodegradable-cum-photoactive liquid-crystalline copolyesters derived from ferulic acid. Polymer (Guildf.), 2007, 48(19), 5541-5547.
[http://dx.doi.org/10.1016/j.polymer.2007.07.040]
[42]
Jiang, H.L.; Zhu, K.J. Synthesis, characterization and in vitro degradation of a new family of alternate poly(ester-anhydrides) based on aliphatic and aromatic diacids. Biomaterials, 2001, 22(3), 211-218.
[http://dx.doi.org/10.1016/S0142-9612(00)00176-9] [PMID: 11197496]
[43]
Rivers, T.J.; Hudson, T.W.; Schmidt, C.E. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv. Funct. Mater., 2002, 12(1), 33-37.
[http://dx.doi.org/10.1002/1616-3028(20020101)12:1<33:AID-ADFM33>3.0.CO;2-E]
[44]
Wang, L.; Wang, Y.; Ren, L. Synthesis and characterization of novel biodegradable aromatic–aliphatic poly(ester amide)s containing ethylene oxide moieties. J. Appl. Polym. Sci., 2008, 109(2), 1310-1318.
[http://dx.doi.org/10.1002/app.28103]
[45]
Ikada, Y.; Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun., 2000, 21(3), 117-132.
[http://dx.doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117:AID-MARC117>3.0.CO;2-X]
[46]
Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J-E. Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere, 2008, 73(4), 429-442.
[http://dx.doi.org/10.1016/j.chemosphere.2008.06.064] [PMID: 18723204]
[47]
Pillai, O.; Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol., 2001, 5(4), 447-451.
[http://dx.doi.org/10.1016/S1367-5931(00)00227-1] [PMID: 11470609]
[48]
Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17(2), 103-114.
[http://dx.doi.org/10.1016/0142-9612(96)85755-3] [PMID: 8624387]
[49]
Joshi, J.R.; Patel, R.P. Role of biodegradable polymers in drug delivery Int. J. Curr. Pharm. Res., 2012, 4, 74-81.
[50]
Dhaliwal, K.; Dosanjh, P. Biodegradable polymers and their role in drug delivery systems. Biomed. J. Sci. Tech. Res., 2018, 11, 8315-8320.
[http://dx.doi.org/10.26717/BJSTR.2018.11.002056]
[51]
Sinha, V.R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-ε-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm., 2004, 278(1), 1-23.
[http://dx.doi.org/10.1016/j.ijpharm.2004.01.044] [PMID: 15158945]
[52]
Heller, J.; Barr, J.; Ng, S.Y.; Shen, H.R.; Schwach-Abdellaoui, K.; Einmahl, S.; Rothen-Weinhold, A.; Gurny, R. Poly(ortho esters) - their development and some recent applications. Eur. J. Pharm. Biopharm., 2000, 50(1), 121-128.
[http://dx.doi.org/10.1016/S0939-6411(00)00085-0] [PMID: 10840196]
[53]
Shive, M.S.; Anderson, J.M. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev., 1997, 28(1), 5-24.
[http://dx.doi.org/10.1016/S0169-409X(97)00048-3] [PMID: 10837562]
[54]
Peppas, L.B. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int. J. Pharm., 1995, 116(1), 1-9.
[http://dx.doi.org/10.1016/0378-5173(94)00324-X]
[55]
Uhrich, K.E.; Cannizzaro, S.M.; Langer, R.S.; Shakesheff, K.M. Polymeric systems for controlled drug release. Chem. Rev., 1999, 99(11), 3181-3198.
[http://dx.doi.org/10.1021/cr940351u] [PMID: 11749514]
[56]
Ranjith Kumar, K. Chen-Guang, Liu; Da-Yun, Yang; Shi-Bin, Wang; Ai-Zheng, Chen Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chem. Eng. J., 2019, 123138.
[http://dx.doi.org/10.1016/j.cej.2019.123138]
[57]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[58]
Fonseca, A.C.; Serra, A.C.; Coelho, J.F.J. Bioabsorbable polymers in cancer therapy: latest developments. EPMA J., 2015, 6(1), 22.
[http://dx.doi.org/10.1186/s13167-015-0045-z] [PMID: 26605001]
[59]
Bhushan, B.; Dubey, P. UdayKumar, BS; Sachdev, A.; Matai, I.; Gopinath, P. Bionanotherapeutics: Niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy. RSC Advances, 2015, 5(16), 12078-12086.
[http://dx.doi.org/10.1039/C4RA15233F]
[60]
Feng, S.S. Nanomedicine: Nano particles of Biodegradable polymers for cancer diagnosis and treatment. Cosmos, 2008, 4(2), 185-201.
[http://dx.doi.org/10.1142/S0219607708000378]
[61]
Yu, Z.; Li, X.; Duan, J.; Yang, X.D. Targeted treatment of colon cancer with aptamer-guided albumin nanoparticles loaded with docetaxel. Int. J. Nanomedicine, 2020, 15(15), 6737-6748.
[http://dx.doi.org/10.2147/IJN.S267177] [PMID: 32982230]
[62]
Wang, J.; Wang, L.; Zhou, Z.; Lai, H.; Xu, P.; Liao, L.; Wei, J. Biodegradable polymer membranes applied in guided bone/tissue regeneration: A review. Polymers (Basel), 2016, 8(4), 115.
[http://dx.doi.org/10.3390/polym8040115] [PMID: 30979206]
[63]
Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T. Polymeric scaffolds in tissue engineering application: A review. Inter. J. Poly. Sci., 2011, 1-19.
[http://dx.doi.org/10.1155/2011/290602]
[64]
Kobayashi, H.; Terada, D.; Yokoyama, Y.; Moon, D.W.; Yasuda, Y.; Koyama, H.; Takato, T. Vascular-inducing poly(glycolic acid)-collagen nanocomposite-fiber scaffold. J. Biomed. Nanotechnol., 2013, 9(8), 1318-1326.
[http://dx.doi.org/10.1166/jbn.2013.1638] [PMID: 23926797]
[65]
Niu, Y.; Chen, K.C.; He, T.; Yu, W.; Huang, S.; Xu, K. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials, 2014, 35(14), 4266-4277.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.013] [PMID: 24582378]
[66]
Do, A.V.; Khorsand, B.; Geary, S.M.; Salem, A.K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater., 2015, 4(12), 1742-1762.
[http://dx.doi.org/10.1002/adhm.201500168] [PMID: 26097108]
[67]
Prasad, L.K.; Smyth, H. 3D Printing technologies for drug delivery: A review. Drug Dev. Ind. Pharm., 2016, 42(7), 1019-1031.
[http://dx.doi.org/10.3109/03639045.2015.1120743] [PMID: 26625986]
[68]
Preis, M.; Breitkreutz, J.; Sandler, N. Perspective: Concepts of printing technologies for oral film formulations. Int. J. Pharm., 2015, 494(2), 578-584.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.032] [PMID: 25683143]
[69]
Gnanasekarana, K.; Heijmans, T.; Van Bennekomb, S.; Woldhuis, H.; Wijnia, S.; de Witha, G.; Friedricha, H. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modelling. Appl. Mater. Today, 2017, 9, 21-28.
[http://dx.doi.org/10.1016/j.apmt.2017.04.003]
[70]
Rengier, F.; Mehndiratta, A.; von Tengg-Kobligk, H.; Zechmann, C.M.; Unterhinninghofen, R.; Kauczor, H.U.; Giesel, F.L. 3D printing based on imaging data: Review of medical applications. Int. J. CARS, 2010, 5(4), 335-341.
[http://dx.doi.org/10.1007/s11548-010-0476-x] [PMID: 20467825]
[71]
Zhou, Z.; Buchanan, F.; Mitchell, C.; Dunne, N. Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng. C, 2014, 38, 1-10.
[http://dx.doi.org/10.1016/j.msec.2014.01.027] [PMID: 24656346]
[72]
Abbadessa, A.; Blokzijl, M.M.; Mouser, V.H.M.; Marica, P.; Malda, J.; Hennink, W.E.; Vermonden, T. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications. Carbohydr. Polym., 2016, 149, 163-174.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.080] [PMID: 27261741]
[73]
Chen, Q.; Mangadlao, J.D.; Wallat, J.; De Leon, A.; Pokorski, J.K.; Advincula, R.C. 3D Printing biocompatible polyurethane/poly (lactic acid)/graphene oxide nanocomposites: Anisotropic properties. ACS Appl. Mater. Interfaces, 2017, 9(4), 4015-4023.
[http://dx.doi.org/10.1021/acsami.6b11793] [PMID: 28026926]
[74]
Serra, T.; Planell, J.A.; Navarro, M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater., 2013, 9(3), 5521-5530.
[http://dx.doi.org/10.1016/j.actbio.2012.10.041] [PMID: 23142224]
[75]
Avella, M. De Vlieger, Jan J.; Errico, M.E.; Fischer, S.; Vacca, P.; Volpe, M.G. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem., 2005, 93(3), 467-474.
[http://dx.doi.org/10.1016/j.foodchem.2004.10.024]
[76]
Corradini, E.; Curti, P.S.; Meniqueti, A.B.; Martins, A.F.; Rubira, A.F.; Muniz, E.C. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int. J. Mol. Sci., 2014, 15(12), 22438-22470.
[http://dx.doi.org/10.3390/ijms151222438] [PMID: 25486057]
[77]
Jin, T.; Zhang, H. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J. Food Sci., 2008, 73(3), M127-M134.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00681.x] [PMID: 18387115]
[78]
Bhatia, A.; Gupta, R.K.; Bhattacharya, S.N.; Choi, H.J. Compatibility of biodegradable poly (lactic acid) (pla) and poly (butylene succinate) (pbs) blends for packaging application Korea-Australia Rheol. J., 2007, 19(3), 125-131.
[79]
Martino, V.P.; Ruseckaite, R.A.; Jimenez, A. Thermal and mechanical characterization of plasticized poly (l-lactide-co-d,l-lactide) films for food packaging. J. Therm. Anal. Calorim., 2006, 86(3), 707-712.
[http://dx.doi.org/10.1007/s10973-006-7897-3]
[80]
Viljanmaa, M.; Sodergard, A.; Tormala, P. Lactic acid-based polymers as hot melt adhesives for packaging applications. Int. J. Adhes. Adhes., 2002, 22(3), 219-226.
[http://dx.doi.org/10.1016/S0143-7496(01)00057-4]
[81]
Arrieta, M.P.; Lopez, J.; Hernandez, A.; Rayon, E. Ternary PLA–PHB–limonene blends intended for biodegradable food packaging applications. Eur. Polym. J., 2013, 50, 255-270.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.11.009]
[82]
Arvanitoyannisa, I.; Biliaderis, C.G.; Ogawab, H.; Kawasakib, N. Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1. Carbohydr. Polym., 1998, 36(2-3), 89-104.
[http://dx.doi.org/10.1016/S0144-8617(98)00016-2]
[83]
Rhim, J.W.; Park, H.M.; Ha, C.S. Bio-nanocomposites for Food Packaging Applications. Prog. Polym. Sci., 2013, 38(10-11), 1629-1652.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008]
[84]
Sung, S.Y. Lee, Tin Sin; Tee, T.T.; Bee, S.T.; Rahmat, A.R.; Rahman, W.A.W.A.; Tan, A-C. Antimicrobial agents for food packaging applications. Trends Food Sci. Technol., 2013, 33(2), 110-123.
[http://dx.doi.org/10.1016/j.tifs.2013.08.001]
[85]
NurHanani Z.A.; Roos, Y.H.; Kerry, J.P. Use and application of gelatin as potential biodegradable packaging materials for food products. Int. J. Biol. Macromol., 2014, (71), 94-102.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.027]
[86]
Scarfato, P.; Avallone, E.; Galdi, M.R.; Di Maio, L.; Incarnato, L. Preparation, characterization, and oxygen scavenging capacity of biodegradable a-tocopherol/plamicroparticles for active food packaging applications. Polym. Compos., 2015, 38, 981-986.
[http://dx.doi.org/10.1002/pc.23661]
[87]
Ezeoha, S.L.; Ezenwanne, J.N. Production of biodegradable plastic packaging film from cassava starch. IOSR J. Eng., 2013, 3(10), 14-20.
[http://dx.doi.org/10.9790/3021-031051420]
[88]
Domenek, S.; Louaifi, A.; Guinault, A.; Baumberger, S. Potential of lignins as antioxidant additive in active biodegradable packaging materials. J. Polym. Environ., 2013, 21(3), 692-701.
[http://dx.doi.org/10.1007/s10924-013-0570-6]
[89]
Genovese, L.; Lotti, N.; Gazzano, M.; Siracusa, V.; Rosa, M.D.; Munari, A. Novel biodegradable aliphatic copolyesters based on poly(butylene succinate) containing thioether-linkages for sustainable food packaging applications. Polym. Degrad. Stabil., 2016, (132), 1-11.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.02.022]
[90]
Guzman, A.; Gnutek, N.; Janik, H. Biodegradable polymers for food packaging – factors influencing their degradation and certification types-A comprehensive review. ChemChem Tech., 2011, (5), 115-122.
[http://dx.doi.org/10.23939/chcht05.01.115]
[91]
Agriculture – Wikipedia Available from https://en.wikipedia.org/wiki/Agriculture
[92]
Puoci, F.; Iemma, F.; Spizzirri, U.G.; Cirillo, G.; Curcio, M.; Picci, N. Polymer in agriculture: A review. Am. J. Agric. Biol. Sci., 2008, 3(1), 299-314.
[http://dx.doi.org/10.3844/ajabssp.2008.299.314]
[93]
Anamika, R.; Sunil, S.K.; Jaya, B.; Anil, B.K. Controlled pesticide release from a biodegradable polymer. Cent. Eur. J. Chem., 2014, 12, 453-469.
[http://dx.doi.org/10.2478/s11532-013-0405-2]
[94]
Luo, M.; Martinez, A.W.; Song, C.; Herrault, F.; Allen, M.G. A microfabricated wireless rf pressure sensor made completely of biodegradable materials. J. Microelectromech. Syst., 2014, 23(1), 4-13.
[http://dx.doi.org/10.1109/JMEMS.2013.2290111]
[95]
Curry, E.J.; Ke, K.; Chorsi, M.T.; Wrobel, K.S.; Miller, A.N., III; Patel, A.; Kim, I.; Feng, J.; Yue, L.; Wu, Q.; Kuo, C-L.; Lo, K.W.H.; Laurencin, C.T.; Ilies, H.; Purohit, P.K.; Nguyen, T.D. Biodegradablepiezoelectric force sensor. Proc. Natl. Acad. Sci. USA, 2018, 115(5), 909-914.
[http://dx.doi.org/10.1073/pnas.1710874115] [PMID: 29339509]
[96]
Scaffaro, R.; Maio, A.; Lo Re, G.; Parisi, A.; Busacca, A. Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends. Comp. Sci. Tech, 2018, 156, 166-176.
[http://dx.doi.org/10.1016/j.compscitech.2018.01.008]
[97]
Nakagawa, K.; Aono, T.; Ueda, G.; Tsutsumi, C.; Hayase, N.; Mabuchi, M.; Sadaoka, Y. Development of an eco-friendly optical sensor element based on tetraphenylporphyrin derivatives dispersed in biodegradable polymer effects of substituents of tetraphenylporphyrins on HCl detection and biodegradation. Sens. Actuators B Chem., 2005, 108(1-2), 542-546.
[http://dx.doi.org/10.1016/j.snb.2004.11.079]
[98]
Gattiker, F.; Umbrecht, F.; Neuenschwander, J.; Sennhauser, U.; Hierold, C. Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS). Sensor Actuator Phys., 2008, 145-146, 291-298.
[http://dx.doi.org/10.1016/j.sna.2007.09.003]
[99]
Devaux, E.; Aubry, C.; Campagne, C.; Rochery, M. PLA/carbon nanotubes multifilament yarns for relative humidity textile sensor. J. Eng. Fibre. Fabric, 2011, 6, 13-24.
[http://dx.doi.org/10.1177/155892501100600302]
[100]
Matsuguchi, M.; Kadowaki, Y. Poly(acrylamide) derivatives for QCM-based HCl gas sensor applications. Sens. Actuators B Chem., 2008, 130(2), 842-847.
[http://dx.doi.org/10.1016/j.snb.2007.10.049]
[101]
Valentini, L.; Cardinali, M.; Kenny, J. Flexible triboelectric generator and pressure sensor based on poly[(r)-3-hydroxybutyric acid] biopolymer. J. Polym. Sci., B, Polym. Phys., 2014, 52(13), 859-863.
[http://dx.doi.org/10.1002/polb.23507]
[102]
Lee, K.H.; Ishikawa, T.; McNivena, S.; Nomura, Y.; Sasaki, S.; Arikawa, Y.; Karube, I. Chemical oxygen demand sensor employing a thin layer electrochemical cell. Anal. Chim. Acta, 1999, 386(3), 211-220.
[http://dx.doi.org/10.1016/S0003-2670(99)00041-0]
[103]
Smela, E. Conjugated polymer actuators for biomedical application. Adv. Mater., 2013, 15(6), 481-494.
[http://dx.doi.org/10.1002/adma.200390113]
[104]
Williams, R.L.; Doherty, P.J. A preliminary assessment of poly(pyrrole) in nerve guide studies. J. Mater. Sci. Mater. Med., 1994, 5, 429-433.
[http://dx.doi.org/10.1007/BF00058978]
[105]
Tsai, H.K.A.; Madou, M. Microfabrication of bilayer polymer actuator valves for controlled drug delivery. J. Assoc. Lab. Autom., 2007, 12(5), 291-295.
[http://dx.doi.org/10.1016/j.jala.2007.06.010]
[106]
Ionov, L. Polymeric actuators. Langmuir, 2015, 31(18), 5015-5024.
[http://dx.doi.org/10.1021/la503407z] [PMID: 25386998]
[107]
Kim, J.; Yun, S.; Mahadeva, S.K.; Yun, K.; Yang, S.Y.; Maniruzzaman, M. Paper actuators made with cellulose and hybrid materials. Sensors (Basel), 2010, 10(3), 1473-1485.
[http://dx.doi.org/10.3390/s100301473] [PMID: 22294882]
[108]
Zolfagharian, A.; Kouzani, A.Z.; Khoo, S.Y.; Moghadam, A.A.A.; Gibson, I.; Kaynak, A. Evolution of 3D printed soft actuators. Sensor Actuator Phys., 2016, 250, 258-272.
[http://dx.doi.org/10.1016/j.sna.2016.09.028]
[109]
Chambers, L.D.; Winfield, J.; Ieropoulos, I.; Rossiter, J. Biodegradable and edible gelatine actuators for use as artificial muscles. EAPAD, 2014, 9056, 90560B.
[http://dx.doi.org/10.1117/12.2045104]
[110]
Ionov, L. Hydrogel-based actuators: Possibilities and limitations. Mater. Today, 2014, 17(10), 494-503.
[http://dx.doi.org/10.1016/j.mattod.2014.07.002]
[111]
Ni, M.; Tong, W.H.; Choudhury, D.; Rahim, N.A.A.; Iliescu, C.; Yu, H. Cell culture on MEMS platforms: A review. Int. J. Mol. Sci., 2009, 10(12), 5411-5441.
[http://dx.doi.org/10.3390/ijms10125411] [PMID: 20054478]
[112]
Elman, N.M.; Upadhyay, U.M. Medical applications of implantable drug delivery microdevices based on MEMS (Micro-Electro-Mechanical-Systems). Curr. Pharm. Biotechnol., 2010, 11(4), 398-403.
[http://dx.doi.org/10.2174/138920110791233262] [PMID: 20201795]
[113]
Ashraf, M.W.; Tayyaba, S.; Afzulpurkar, N. Microelectromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int. J. Mol. Sci., 2011, 12(6), 3648-3704.
[http://dx.doi.org/10.3390/ijms12063648] [PMID: 21747700]
[114]
Richards Grayson, A.C.; Scheidt Shawgo, R.; Li, Y.; Cima, M.J. Electronic MEMS for triggered delivery. Adv. Drug Deliv. Rev., 2004, 56(2), 173-184.
[http://dx.doi.org/10.1016/j.addr.2003.07.012] [PMID: 14741114]
[115]
Cooley, P.; Wallace, D.; Antohe, B. Applications of ink-jet printing technology to biomems and microfluidic systems.Proceedings, Microfluidics and BioMEMS, 2001. Sep 28 San Francisco, CA, USA
[http://dx.doi.org/10.1117/12.443057]
[116]
Jeon, M.; Cho, J.; Kyung Kim, Y.; Jung, D.; Yoon, E-S.; Shin, S.; Cho, I.J. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation. J. Micromech. Microeng., 2014, 24(2), 025010.
[http://dx.doi.org/10.1088/0960-1317/24/2/025010]
[117]
Nisar, A.; Afzulpurkar, N.; Mahaisavariya, B.; Tuantranont, A. MEMS-based micropumps in drug delivery and biomedical applications. Sens. Actuators B Chem., 2008, 130(2), 917-942.
[http://dx.doi.org/10.1016/j.snb.2007.10.064]
[118]
Meng, E.; Hoang, T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv. Drug Deliv. Rev., 2012, 64(14), 1628-1638.
[http://dx.doi.org/10.1016/j.addr.2012.08.006] [PMID: 22926321]
[119]
Yoo, H.J.; Lee, S.; Ahn, J.H.; Hong, S.J.; Lee, M.; Seo, J.M.; Kim, T.Y.; Kim, S.J. Dong-il, “Dan” Cho Laminated, cubic, biodegradable polymer structures for bacteria-based robotic drug delivery. Nanosyst. Eng. Med., 2012, 8548, 1-7.
[http://dx.doi.org/10.1117/12.2000219]
[120]
Yoo, H.J.; Lee, S.; Ahn, J.H.; Cho, D.D. Drug-loaded cubic micro-chamber made of a biodegradable polymer for bacteria-based drug delivery. 8th Annual IEEE International Conference on NANO/MICRO ENGINEERED and Molecular Systems, 2013 Apr 7-10 Suzhou, China, pp. 1141-1144.
[http://dx.doi.org/10.1109/NEMS.2013.6559923]
[121]
Magdanz, V.; Sanchez, S.; Schmidt, O.G. Development of a sperm-flagella driven micro-bio-robot. Adv. Mater., 2013, 25(45), 6581-6588.
[http://dx.doi.org/10.1002/adma.201302544] [PMID: 23996782]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy