Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Arylidenemalononitriles as Versatile Synthons in Heterocyclic Synthesis

Author(s): Pannala Padmaja, B.V. Subba Reddy, Vinod G. Ugale and Pedavenkatagari Narayana Reddy*

Volume 19, Issue 5, 2022

Published on: 21 April, 2022

Page: [591 - 615] Pages: 25

DOI: 10.2174/1385272826666220113100746

Price: $65

Abstract

Background: Arylidenemalononitriles are valuable synthons for the construction of a variety of novel complex heterocyclic motifs, fused heterocycle derivatives, and spirocyclic compounds. They are versatile chemical intermediates and have increasing applications in industry, agriculture, medicine, and biological science.

Objective: The aim of this review is to highlight the preparation methods and reactions of arylidenemalononitriles in the synthesis of various heterocyclic compounds.

Conclusion: In this review, we have presented the application of arylidenemalononitriles to construct a variety of heterocycles. Various catalysts for the preparation of arylidnemalononitriles have been described.

Keywords: Arylidenemalononitriles, Malononitrile, Knoevenagel condensation, Multi-component reactions, Heterocyclic compounds, spirocyclic compounds.

Graphical Abstract
[1]
Jones, G. The Knoevenagel condensation; Organic Reactions; Wiley: New York, 1967, 15, pp. 204-599.
[2]
Tietze, L.F.; Beifuss, U. Comprehensive Organic Synthesis; Trost, B.M.; Fleming, I.; Heathcock, C.H., Eds.; Pergamon Press: Oxford , 1991; 2, pp. 341-394.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00033-0]
[3]
Reeves, R.L. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: New York, 1966, pp. 580-593.
[4]
Freeman, F. Properties and reactions of ylidenemalononitriles. Chem. Rev., 1980, 80, 329-350.
[http://dx.doi.org/10.1021/cr60326a004]
[5]
Campaigne, E.; Schneller, S.W. Cyclization of ylidenemalonodinitriles. Synthesis, 1976, 705-716.
[http://dx.doi.org/10.1055/s-1976-24167]
[6]
Soto, J.L.; Seoane, C.; Zamorano, P.; Cuadrado, F.J. A convenient synthesis of N-amino-2-pyridones. Synthesis, 1981, 529-530.
[http://dx.doi.org/10.1055/s-1981-29512]
[7]
Kambe, S.; Saito, K. Synthetic studies using αβ-unsaturated nitriles: facile synthesis of pyridine derivatives. Synthesis, 1981, 531-533.
[http://dx.doi.org/10.1055/s-1981-29513]
[8]
Martìn, N.; Pascual, C.; Seoane, C.; Soto, J.L. The use of some activated nitriles in heterocyclic syntheses. Heterocycles, 1987, 26, 2811-2816.
[http://dx.doi.org/10.3987/R-1987-11-2811]
[9]
Elnagdi, M.H.; Abdel-Motaleb, R.M.; Mustafa, M. Studies on heterocyclic enamines: New syntheses of 4H-pyranes, pyranopyrazoles and pyranopyrimidines. J. Heterocycl. Chem., 1987, 24, 1677-1681.
[http://dx.doi.org/10.1002/jhet.5570240635]
[10]
Abdel-Latif, F.F. Heterocycles synthesis through reactions of nucleophiles with acrylonitriles, Part 9. A direct one-pot synthesis of py-ranopyrazoles. Z. Naturforsch, 1990, 45b, 1675-1678.
[http://dx.doi.org/10.1515/znb-1990-1213]
[11]
Mukti, G.; Pulakjyoti, B.; Jagir, S.S.; Jogendra, N.B. Arylidenemalononitriles in heterocyclic syntheses: a novel synthesis of pyrido[2,3-d]pyrimidines. J. Chem. Soc. Chem. Commun., 1984, 1549-1550.
[12]
Quintela, J.M.; Peinador, C.; Moreira, M.J. A novel synthesis of pyrano[2,3-d]pyrimidine derivatives. Tetrahedron, 1995, 51, 5901-5912.
[http://dx.doi.org/10.1016/0040-4020(95)00258-A]
[13]
Shaker, R.M. Synthesis and reactions of some new 4H-pyrano[3,2-c]benzopyran-5-one derivatives and their potential biological activities. Pharmazie, 1996, 51(3), 148-151.
[http://dx.doi.org/10.1002/chin.199633150] [PMID: 8900865]
[14]
Abdel-Latif, F.F.; Shaker, R.M.; Abdel-Aziz, N.S. Synthesis of some heterocyclic compounds via the ternary condensation with 3-acetylpyridine. Heterocycl. Commun., 1997, 3, 245-252.
[http://dx.doi.org/10.1515/HC.1997.3.3.245]
[15]
Shulgin, A.T. 2,3,4,5,6-pentachloro-benzylidene malononitrile. U.S. Patent, 3250798, 1966.
[16]
Gal, E.M.; Greenberg, D.M. Growth retarding effect of substituted malononitriles on transplant tumors in mice. J. Am. Chem. Soc., 1952, 73, 502-503.
[http://dx.doi.org/10.1021/ja01145a546]
[17]
Gal, E.M.; Fung, F.H.; Greenberg, D.M. Studies on the biological action of malononitriles. I. The effect of substituted malononitriles on the growth of transplanted tumors in mice. Cancer Res., 1952, 12(8), 565-572.
[PMID: 14945046]
[18]
Jones, G.R.N. CS and its chemical relatives. Nature, 1972, 235(5336), 257-261.
[http://dx.doi.org/10.1038/235257a0] [PMID: 4553538]
[19]
Hassan, E.A.; Elmaghraby, A.M. The chemistry of malononitrile and its derivatives. J. Innov. Scie. Res., 2015, 16, 11-46.
[20]
Gazit, A.; Yaish, P.; Gilon, C.; Levitzki, A.; Tyrphostins, I. Tyrphostins I: synthesis and biological activity of protein tyrosine kinase in-hibitors. J. Med. Chem., 1989, 32(10), 2344-2352.
[http://dx.doi.org/10.1021/jm00130a020] [PMID: 2552117]
[21]
Hussoin, S.; FitzGerald, G.B.; Wick, M.M. Polyhydroxylated phenylacrylic acid derivatives as new anti-tumor agents. J. Pharm. Sci., 1991, 80(5), 416-418.
[http://dx.doi.org/10.1002/jps.2600800503] [PMID: 1908901]
[22]
Gazit, A.; Osherov, N.; Posner, I.; Yaish, P.; Poradosu, E.; Gilon, C.; Levitzki, A.; Tyrphostins, I.I. Tyrphostins. 2. Heterocyclic and al-pha-substituted benzylidenemalononitrile tyrphostins as potent inhibitors of EGF receptor and ErbB2/neu tyrosine kinases. J. Med. Chem., 1991, 34(6), 1896-1907.
[http://dx.doi.org/10.1021/jm00110a022] [PMID: 1676428]
[23]
Rose, S.P.; Smith, R. CS-a case for concern. New Sci., 1969, 43, 468-469.
[24]
Tigner, J.R.; Besser, J.F. Rodent repellency, a quantitative method for evaluating chemicals as rodent repellents on packaging materials. J. Agric. Food Chem., 1962, 10, 484-486.
[http://dx.doi.org/10.1021/jf60124a015]
[25]
Appaturi, J.N.; Ratti, R.; Phoon, B.L.; Batagarawa, S.M.; Din, I.U.; Selvaraj, M.; Ramalingam, R.J. A review of the recent progress on het-erogeneous catalysts for Knoevenagel condensation. Dalton Trans., 2021, 50(13), 4445-4469.
[http://dx.doi.org/10.1039/D1DT00456E] [PMID: 33720238]
[26]
Wang, G.; Cheng, G. Solvent free and aqueous Knoevenagel condensation of aromatic ketones with malononitrile. ARKIVOC, 2004, ix, 4-8.
[http://dx.doi.org/10.3998/ark.5550190.0005.902]
[27]
Gupta, R.; Gupta, M.; Paul, S.; Gupta, R. Silica supported ammonium acetate: an efficient and recyclable heterogeneous catalyst for Knoevenagel condensation between aldehydes or ketones and active methylene group in liquid phase. Bull. Korean Chem. Soc., 2009, 30, 2419-2421.
[http://dx.doi.org/10.5012/bkcs.2009.30.10.2419]
[28]
Sheibani, H.; Saljoogi, A.S. A high-speed and eco-friendly catalytic system for knoevenagel condensation of aldehydes with malononitrile and ethylcyanoacetate in aqueous media. Heteroletters, 2012, 2, 389-393.
[29]
Rajendran, A.; Karthikeyan, C.; Rajathi, K. An efficient synthesis of arylmethylidene derivatives promoted by pyridinium salyicylate ionic liquid. Int. J. Chemtech Res., 2011, 3, 858-863.
[30]
Pal, R. Visible light induced Knoevenagel condensation: A clean and efficient protocol using aqueous fruit extract of tamarindus indica as catalyst. Int. J. Adv. Chem., 2014, 2, 27-33.
[31]
Pasha, M.A.; Manjula, K.; Jayashankara, V.P. Sodium carbonate: A versatile catalyst for Knoevenagel condensation. Indian J. Chem., 2010, 49B, 1428-1431.
[32]
Tamami, B.; Fadavi, A. A Polymeric Heterogeneous catalyst based on polyacrylamide for Knoevenagel reaction in solvent free and aque-ous media. Iran. Polym. J., 2006, 15, 331-339.
[33]
Basude, M.; Sunkara, P.; Puppala, V.S. ZnO catalyst for knoevenagel condensation in aqueous medium at ambient temperature. J. Chem. Pharm. Res., 2013, 5, 46-50.
[34]
Gutch, P.K.; Kumar, P.; Suryanarayana, M.V.S.; Malhotra, R.C. Structure-biological activity relationship of analogues of 2-chlorobenzylidenemalononitrile-a riot-control agent. Def. Sci. J., 2005, 55, 447-457.
[http://dx.doi.org/10.14429/dsj.55.2006]
[35]
Gouda, M.A.; Abu-Hashem, A.A. An eco-friendly procedure for the efficient synthesis of arylidinemalononitriles and 4,4′-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols) in aqueous media. Green Chem. Lett. Rev., 2012, 5, 203-209.
[http://dx.doi.org/10.1080/17518253.2011.613858]
[36]
Rostami, A.; Atashkar, B.; Gholami, H. Novel magnetic nanoparticles Fe3O4-immobilized domino Knoevenagel condensation, Michael addition, and cyclization catalyst. Catal. Commun., 2013, 37, 69-74.
[http://dx.doi.org/10.1016/j.catcom.2013.03.022]
[37]
Kaliyan, P.; Matam, S.; Muthu, S.P. Water extract of onion catalyzed Knoevenagel condensation reaction: an efficient green procedure for synthesis of α-cyanoacrylonitriles and α-cyanoacrylates. Asian J. Green Chem, 2019, 3, 137-152.
[38]
Wang, S.; Ren, Z.; Cao, W.; Tong, W. The Knoevenagel condensationof aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of CTMAB in water. Synth. Commun., 2001, 31, 673-677.
[http://dx.doi.org/10.1081/SCC-100103255]
[39]
Ossowicz, P.; Rozwadowski, Z.; Gano, M.; Janus, E. Efficient method for Knoevenagel condensation in aqueous solution of amino acid ionic liquids (AAILs). Pol. J. Chem., 2016, 18, 90-95.
[http://dx.doi.org/10.1515/pjct-2016-0076]
[40]
Chaudhary, R.G.; Tanna, J.A.; Gandhare, N.V.; Rai, A.R.; Juneja, H.D. Synthesis of nickel nanoparticles: Microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv. Mater. Lett., 2015, 6, 990-998.
[http://dx.doi.org/10.5185/amlett.2015.5901]
[41]
Vaid, R.; Gupta, M. Silica-L-proline: An efficient and recyclable heterogeneous catalyst for the Knoevenagel condensation between alde-hydes and malononitrile in liquid phase. Monatsh. Chem., 2015, 146, 645-652.
[http://dx.doi.org/10.1007/s00706-014-1331-5]
[42]
Shirini, F.; Daneshvar, N. Introduction of taurine (2-aminoethanesulfonic acid) as a green bio-organic catalyst for the promotion of organ-ic reactions under green conditions. RSC Advances, 2016, 6, 110190-110205.
[http://dx.doi.org/10.1039/C6RA15432H]
[43]
Heravi, M.M.; Oskooie, H.A.; Latifi, Z.; Hamidi, H. One-pot synthesis of tetracyanocyclopropane derivatives using hexamethylenetetra-mine-bromine (HMTAB). Adv. J. Chem. A., 2018, 1, 7-11.
[44]
Karimi-Chayjani, R.; Daneshvar, N.; Shirini, F. New magnetic nanocatalyst containing a bis- ionic liquid framework for Knoevenagel con-densation reaction. Res. Chem. Intermed., 2019, 45, 2471-2488.
[http://dx.doi.org/10.1007/s11164-019-03747-x]
[45]
Bigi, F.; Conforti, M.L.; Maggi, R.; Piccinno, A.; Sartori, G. Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles. Green Chem., 2000, 2, 101-103.
[http://dx.doi.org/10.1039/b001246g]
[46]
Wang, Q.L.; Ma, Y.D.; Zuo, B.J. Knoevenagel condensation catalyzed by USY zeolite. Synth. Commun., 1997, 27, 4107-4110.
[http://dx.doi.org/10.1080/00397919708005458]
[47]
Heravi, M.M.; Tajbakhsh, M.; Mohajerani, B.; Ghassemzadeh, M. An efficient Knoevenagel condensation using HZSM-5 zeolite as a cata-lyst. Ind. J. Chem. Sect. B. Org. Chem., 1999, 38, 857-858.
[48]
Corma, A.; Martìn-Aranda, R.M. Application of solid base catalysts in the preparation of prepolymers by condensation of ketones and malononitrile. Appl. Catal. A Gen., 1993, 105, 271-279.
[http://dx.doi.org/10.1016/0926-860X(93)80252-L]
[49]
Reddy, T.I.; Varma, R.S. Rare-earth (RE) echanged NaY-zeolite promoted Knoevenagel condensation. Tetrahedron Lett., 1997, 38, 1721-1724.
[http://dx.doi.org/10.1016/S0040-4039(97)00180-9]
[50]
Ernst, S.; Bongers, T.; Casel, C.; Munsch, S. Cesium-modified mesoporous molecular sieves as basic catalysts for Knoevenagel condensa-tion. Stud. Surf. Sci. Catal., 1999, 125, 367-374.
[http://dx.doi.org/10.1016/S0167-2991(99)80235-3]
[51]
Chalais, S.; Laszlo, P.; Mathy, A. Catalysis of the condensation. Tetrahedron Lett., 1985, 26, 4453-4454.
[http://dx.doi.org/10.1016/S0040-4039(00)88928-5]
[52]
Kantam, M.L.; Choudary, B.M.; Reddy, C.V.; Rao, K.K.; Figueras, F. Aldol and Knoevenagel condensations catalysed by modified Mg–Al hydrotalcite: a solid base as catalyst useful in synthetic organic chemistry. Chem. Commun. (Camb.), 1998, 1033-1034.
[http://dx.doi.org/10.1039/a707874i]
[53]
Rao, Y.V.S.; Choudary, B.M. Knoevenagel condensation catalysed by new montmorillonitesilylpropylethylenediamine. Synth. Commun., 1991, 21, 1163-1166.
[http://dx.doi.org/10.1080/00397919108021035]
[54]
Rao, Y.V.S.; De Vos, D.E.; Jacobs, P.A. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene immobilized in MCM-41: A strongly basic porous catalyst. Angew. Chem. Int. Ed. Engl., 1997, 36, 2661-2663.
[http://dx.doi.org/10.1002/anie.199726611]
[55]
Pratap, U.R.; Jawale, D.V.; Waghmare, R.A.; Lingampalle, D.L.; Mane, R.A. Synthesis of 5- arylidene-2,4-thiazolidinediones by Knoevenagel condensation catalyzed by baker’s yeast. New J. Chem., 2011, 35, 49-51.
[http://dx.doi.org/10.1039/C0NJ00691B]
[56]
Rao, P.S.; Venkataratnam, R.V. Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron Lett., 1991, 32, 5821-5822.
[http://dx.doi.org/10.1016/S0040-4039(00)93564-0]
[57]
Prajapati, D.; Sandhu, J.S. Cadmium iodide as a new catalyst for Knoevenagel condensation. J. Chem. Soc., Perkin Trans. 1, 1993, 1, 739-740.
[http://dx.doi.org/10.1039/p19930000739]
[58]
Lehnert, W. Verbesserte variante der knoevenagel-kondensation mit TiCl4/THF/pyridin(I). alkyliden- und arylidenmalonester bei 0–25 °C. Tetrahedron Lett., 1970, 54, 4723-4724.
[http://dx.doi.org/10.1016/S0040-4039(00)89377-6]
[59]
Zhao, X.; Yang, K.; Zhang, Y.; Zhu, J.; Xu, L. Sevelamer as an efficient and reusable heterogeneous catalyst for the Knoevenagel reaction in water. Chin. Chem. Lett., 2014, 25, 1141-1144.
[http://dx.doi.org/10.1016/j.cclet.2014.03.002]
[60]
Rajasekhar, V.S.R.; Rahman, A.; Jonnalagadda, S.B. Selective catalytic Knoevenagel condensation by Ni-SiO2 supported heterogeneous catalysts: An environmentally benign approach. Catal. Commun., 2009, 10, 365-369.
[http://dx.doi.org/10.1016/j.catcom.2008.09.021]
[61]
Moison, H.; Texier-Boullet, F.; Foucaud, A. Knoevenagel, wittig and wittig-horner reactions in the presence of magnesium oxide or zinc oxide. Tetrahedron, 1987, 43, 537-542.
[http://dx.doi.org/10.1016/S0040-4020(01)89986-5]
[62]
Cabello, J.A.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M. Knoevenagel condensation in the heterogeneous phase using aluminum phosphate-aluminum oxide as a new catalyst. J. Org. Chem., 1984, 49, 5195-5197.
[http://dx.doi.org/10.1021/jo00200a036]
[63]
Mallouk, S.; Bougrin, K.; Laghzizil, A.; Benhida, R. Microwave-assisted and efficient solvent-free knoevenagel condensation. A sustaina-ble protocol using porous calcium hydroxyapatite as catalyst. Molecules, 2010, 15(2), 813-823.
[http://dx.doi.org/10.3390/molecules15020813] [PMID: 20335948]
[64]
Nagalakshmi, K.; Diwakar, B.S.; Govindh, B.; Reddy, P.G.; Venu, R.; Bhargavi, I.; Devi, T.J.P.; Murthy, Y.L.N.; Siddaiah, V. A simple and straightforward synthesis of cinnamic acids and ylidenemalononitriles via Knoevenagel condensation employing DABCO as catalysts. Asian J. Chem., 2017, 29, 1561-1564.
[http://dx.doi.org/10.14233/ajchem.2017.20575]
[65]
Sabitha, G.; Reddy, B.V.S.; Babu, R.S.; Yadav, J.S. LiCl catalyzed Knoevenagel condensation: Comparative study of conventional method vs Microwave irradiation. Chem. Lett., 1998, 27, 773-774.
[http://dx.doi.org/10.1246/cl.1998.773]
[66]
Peng, Y.; Song, G.; Qian, X. Urotropine: An efficient catalyst precursor for the Microwave- assisted Knoevenagel reaction. J. Chem. Res., 2001, 188-189.
[http://dx.doi.org/10.3184/030823401103169586]
[67]
Takakura, R.; Koyama, K.; Kuwata, M.; Yamada, T.; Sajiki, H.; Sawama, Y. Hydroquinone and benzoquinone-catalyzed aqueous Knoevenagel condensation. Org. Biomol. Chem., 2020, 18(34), 6594-6597.
[http://dx.doi.org/10.1039/D0OB01397H] [PMID: 32813006]
[68]
Jain, K.; Chaudhuri, S.; Pal, K.; Das, K. The Knoevenagel condensation using quinine as an organocatalyst under solvent-free conditions. New J. Chem., 2019, 43, 1299-1304.
[http://dx.doi.org/10.1039/C8NJ04219E]
[69]
Mogilaiah, K.; Babu, H.S.; Vidya, K.; Kumar, K.S. Microwave-enhanced Knoevenagel condensation catalysed by NH2SO3NH4. Indian J. Chem., 2010, 49, 390-393.
[70]
Mahmoud, M.R.; Madkour, H.M.F.; El-bordany, E.A.; Soliman, E.A. Activated nitriles with ammonium benzyldithiocarbamate, synthesis of thietane derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2008, 184, 156-163.
[http://dx.doi.org/10.1080/10426500802080980]
[71]
Amiri, O.; Rakib, E.M.; Abdelouahid, M.; Neves, M.G.M.S.; Cavaleiro, J.A.S. A facile and effective synthesis of 4-imino-3-(arylidene)-azetidine-2-thiones via phosphorus pentasulfide. J. Sulfur Chem., 2014, 9-15.
[72]
Dua, D.; Hu, Z.; Tang, W.; Wang, B.; Lu, T. A convenient synthesis of polysubstituted 2-amino- 4,5-dihydrofuran-3-nitriles from benzo-ins or benzaldehydes. Tetrahedron Lett., 2012, 53, 453-457.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.074]
[73]
Safaei, H.R.; Dehbozorgi, F. Isocyanide-based three component reaction for synthesis of highly cyano substituted furan derivatives. RSC Advances, 2016, 6, 26783-26790.
[http://dx.doi.org/10.1039/C5RA22293A]
[74]
El-Nagdi, M.H.; Khalifa, M.A.E.; Ibrahim, M.K.A.; El-Moghayar, M.R.H. The reaction of nitriles with mercaptoacetic acid. A new synthe-sis of thiazole derivatives. J. Heterocycl. Chem., 1981, 18, 877-879.
[http://dx.doi.org/10.1002/jhet.5570180505]
[75]
Aly, A.A.; Ishak, E.A.; Malah, T.E.; Brown, A.B. Synthesis of potentially antioxidant and antibacterial biologically active thiazolidines. J. Heterocycl. Chem., 2015, 52, 1758-1764.
[http://dx.doi.org/10.1002/jhet.2248]
[76]
Aly, A.A.; Ishak, E.A.; Brown, A.B. Reaction of arylidenehydrazono-4-aryl-2,3-dihydrothiazole- 5-carbonitriles with diethyl acetylenedi-carboxylate. Synthesis of (Z)-ethyl 2-[((Z)-2-(E)- arylidenehydrazono)-4-oxo-thiazolidine-5-ylidene]acetates. NMR investigation. J. Sulfur Chem., 2014, 35, 382-393.
[http://dx.doi.org/10.1080/17415993.2014.882337]
[77]
Gyoung, Y.S.; Shim, J.G.; Yamamoto, Y. Regiospecific synthesis of 2-allylated-5-substituted tetrazoles via palladium-catalyzed reaction of nitriles, trimethylsilyl azide, and allyl acetates. Tetrahedron Lett., 2000, 41, 4193-4196.
[http://dx.doi.org/10.1016/S0040-4039(00)00563-3]
[78]
El-Nagdy, M.H.; Abed, N.H.; El-Moghayar, M.R.H.; Fleita, D.N. The reaction of arylidenemalononitriles with thioglycolic acid. A novel procedure for the synthesis of thiophenes. Indian J. Chem., 1976, 14B, 422-424.
[79]
Kambe, S.; Saito, K.; Sakurai, A.; Midorikawa, H. A simple method for the preparation of 2- amino-4-aryl-3-cyanopyridines by the con-densation of malononitrile with aromatic aldehydes and alkyl ketones in the presence of ammonium acetate. Synthesis, 1980, 366-368.
[http://dx.doi.org/10.1055/s-1980-29021]
[80]
Elmoghayar, M.R.H.; El-Agamey, A.G.A.; Nasr, M.Y.A.S.; Sallam, M. Activated nitriles in heterocyclic synthesis. Part III. Synthesis of N-amino-2-pyridone, pyranopyrazole and thiazolopyridine derivatives. J. Heterocycl. Chem., 1984, 21, 1885-1887.
[http://dx.doi.org/10.1002/jhet.5570210660]
[81]
Abdelmoniem, A.M.; Salaheldin, T.A.; Abdelhamid, I.A.; Elwahya, A.H.M. New bis(dihydropyridine-3,5-dicarbonitrile) derivatives: Green synthesis and cytotoxic activity evaluation. J. Heterocycl. Chem., 2017, 54, 2670-2677.
[http://dx.doi.org/10.1002/jhet.2867]
[82]
Zhang, J.; Yang, W.; Sun, J.; Yan, C. Convenient synthesis of functionalized 6-styryl-1,4,5,6- tetrahydropyridines through a domino [2+2+2] cycloaddition reaction. Eur. J. Org. Chem., 2015, 7571-7582.
[http://dx.doi.org/10.1002/ejoc.201501052]
[83]
Mehrabi, H.; Tavakolian, H. Synthesis of unsymmetrical 1,4-dihydropyridines from dialkyl acetylenedicarboxylates, amines and aryli-denemalononitriles promoted by potassium carbonate. J. Chem. Res., 2016, 40, 750-752.
[http://dx.doi.org/10.3184/174751916X14792310135102]
[84]
Bogdanowicz-Szwed, K.; Krasodomska, M. Synthesis of aryl- and pyridinyl-substituted 2-amino- 6-thioxopyridine-3-carbonitrile deriva-tives by tandem Michael addition and cyclization reactions. Monatsh. Chem., 2006, 137, 347-355.
[http://dx.doi.org/10.1007/s00706-005-0428-2]
[85]
Naghiyev, F.N.; Maharramov, A.M.; Akhmedov, I.M.; Asadov, K.A.; Khalilov, A.N.; Gurbanov, A.V.; Mammadova, G.Z.; Asgarova, A.R.; Guseynov, E.Z.; Mamedov, I.G. One-pot synthesis of substituted imino- and imidazopyridines under catalyst-free conditions. Izv. Him., 2018, 50, 568-574.
[86]
Lichitsky, B.V.; Dudinov, A.A.; Krayushkin, M.M. Reaction of 3-aminocyclohex-2-en-1- ones with arylidenemalononitriles: synthesis of N-substituted 1,4,5,6,7,8-hexahydroquinolin-5- ones. ARKIVOC, 2001, ix, 73-79.
[87]
Li, C.; Zhang, F.; Shen, Z. An efficient domino strategy for synthesis of novel spirocycloalkane fused pyrazolo[3,4-b]pyridine deriva-tives. Tetrahedron, 2020, 76, 131727.
[http://dx.doi.org/10.1016/j.tet.2020.131727]
[88]
Mamedov, I.G.; Khrustalev, V.N.; Dorovatovskii, P.V.; Naghiev, F.N.; Maharramov, A.M. Efficient synthesis of new tricyclic pyrano[3,2-c]pyridine derivatives. Mendeleev Commun., 2019, 29, 232-233.
[http://dx.doi.org/10.1016/j.mencom.2019.03.040]
[89]
Hammouda, M.; Zeid, Z.M.A.; Metwally, M.A. New simple and one-pot synthetic routes to polyfunctionally substituted imazo-[1,2-a]pyridines, pyrido[1,2-a]pyrimidines, pyrido[1,2-a]-1,3- diazepines, and imidazol[1,2-a]pyrimidines. Chem. Heterocycl. Compd., 2005, 41, 1525-1528.
[http://dx.doi.org/10.1007/s10593-006-0031-4]
[90]
Tu, S.; Jiang, B.; Jiang, H.; Zhang, Y.; Jia, R.; Zhang, J.; Shao, Q.; Li, C.; Zhou, D.; Cao, L. A novel three-component reaction for the syn-thesis of new 4-azafluorenone derivatives. Tetrahedron, 2007, 63, 5406-5414.
[http://dx.doi.org/10.1016/j.tet.2007.04.053]
[91]
Ghorab, M.M.; Al-Said, M.S. Anticancer activity of novel indenopyridine derivatives. Arch. Pharm. Res., 2012, 35(6), 987-994.
[http://dx.doi.org/10.1007/s12272-012-0605-x] [PMID: 22870807]
[92]
Girgis, A.S.; Barsoum, F.F. Synthesis of [1,2,4]triazolo[1,5-a]pyridines of potential PGE2 inhibitory properties. Eur. J. Med. Chem., 2009, 44(5), 1972-1977.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.049] [PMID: 19027198]
[93]
Madkour, H.M.F.; Mahmoud, M.R.; Nassar, M.H.; Habashy, M.M. Synthesis of some fused thiazoles. Sulfur Lett, 1998, 21, 253-261.
[94]
Youssif, S.; El-Bahaie, S.; Nabih, E A facile one-pot synthesis of pyrido[2,3-d]pyrimidines and pyrido[2,3-d:6,5-d′]dipyrimidines. J. Chem. Res. (S), 1999, 112-113.
[95]
Derabli, C.; Boulcina, R.; Kirsch, G.; Debache, A. Rapid access to novel 2- alkylthiopyrimidine, derivatives and attempt of their tacrine analogs synthesis. Synth. Commun., 2019, 49, 395-403.
[http://dx.doi.org/10.1080/00397911.2018.1557687]
[96]
Amer, A.A.; Moustafa, A.H. New route for the synthesis of new cyanoimino- and cyanoaminopyrimidines. Mol. Divers., 2017, 21(4), 875-880.
[http://dx.doi.org/10.1007/s11030-017-9762-7] [PMID: 28695467]
[97]
El-Gazzar, A.B.A.; Gaafar, A.M.; Aly, A.S. Synthesis of some new thiazolo[3,2-a]pyrido[2,3- d]pyrimidinones and Isoxazo-lo[5′4′4,5]thiazolo [3,2-a]pyrido[2,3-d]pyrimidinone. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177, 45-58.
[http://dx.doi.org/10.1080/10426500210230]
[98]
Subhajit, M.; Alakananda, H. Copper-catalyzed oxidative annulation between 2- aminopyridine and arylidenemalononitrile leading to 4-oxo-pyrido[1,2-a]pyrimidine-3-carbonitrile. Tetrahedron Lett., 2015, 56, 5651-5655.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.065]
[99]
Ikhlass, M.A.; Sobhi, M.G.; Mahmoud, M.E.; Bazada, K.A.M. Synthesis and characterisation of some novel fused thiazolo[3,2-a]pyrimidinones and pyrimido[2,1-b][1,3]thiazinones. J. Chem. Res., 2015, 39, 719-723.
[http://dx.doi.org/10.3184/174751915X14474391581067]
[100]
Marco, J.L.; Martin, N.; Martinez-Grau, A.; Seoane, C.; Albert, A.; Cano, F.H. Development of methods for the synthesis of chiral, highly functionalized 2-amino-4-aryl-4H-pyrans. Tetrahedron, 1994, 50, 3509-3528.
[http://dx.doi.org/10.1016/S0040-4020(01)87029-0]
[101]
Sotgiu, G. Easy Electrochemical synthesis of 2-amino-4-aryl-3-cyano-5-ethoxycarbonyl- 6- methyl-4H-pyrans in the absence of support-ing electrolyte. Lett. Org. Chem., 2008, 5, 555-558.
[http://dx.doi.org/10.2174/157017808785982202]
[102]
Marco, J.L. Michael reactions of α-keto sulfoxides and α-keto sulfones. J. Org. Chem., 1997, 62, 6575-6581.
[http://dx.doi.org/10.1021/jo9705982]
[103]
Sheverdov, V.P.; Yu, A.; Andreev, O.V.; Ershov, O.E.; Nasakin, V.A.; Tafeenko, V.L. Gein, Synthesis and reactivity of methyl 3-acyl-6-amino-4-aryl-5-cyano-4H-pyran-2-carboxylates. Chem. Heterocycl. Compd., 2012, 48, 997-1005.
[http://dx.doi.org/10.1007/s10593-012-1091-2]
[104]
Zhang, A.; Zhang, M.; Chen, H.; Chen, J.; Chen, H. Convenient method for synthesis of substituted 2‐amino‐2‐chromenes. Synth. Commun., 2007, 37, 231-235.
[http://dx.doi.org/10.1080/00397910601033385]
[105]
Ren, Y.; Cai, C. Convenient and efficient method for synthesis of substituted 2- amino-2- chromenes using catalytic amount of iodine and K2CO3 in aqueous medium. Catal. Commun., 2008, 9, 1017-1020.
[http://dx.doi.org/10.1016/j.catcom.2007.10.002]
[106]
Magara, R.L.; Thorat, P.B.; Patil, B.R.; Pawar, R.P. Organocatalyzed synthesis of 2-amino-4H- chromenes: An enantioselective approach. Curr. Organocatal., 2018, 5, 74-81.
[http://dx.doi.org/10.2174/2213337205666180614120400]
[107]
Abdella, A.M.; Moatasim, Y.; Ali, M.A.; Elwahy, A.H.M.; Abdelhamid, I.A. Synthesis and anti- influenza virus activity of novel bis(4H-chromene-3-carbonitrile) derivatives. J. Heterocycl. Chem., 2017, 54, 1854-1862.
[http://dx.doi.org/10.1002/jhet.2776]
[108]
Otto, H.H. Darstellung einiger 4H-pyrano(2.3-c)pyrazolderivate. Arch. Pharm. (Weinheim), 1974, 307(6), 444-447.
[http://dx.doi.org/10.1002/ardp.19743070609] [PMID: 4841522]
[109]
Amer, F.A.; Hammouda, M.; El-Ahl, A.A.S.; Abdel-Wahab, B.F. 3-Pyrrolidinones: Michael addition and Schmidt rearrangement reactions. Synth. Commun., 2009, 39, 416-425.
[http://dx.doi.org/10.1080/00397910802378373]
[110]
Sowellim, S.Z.A.; El-Taweel, F.M.A.A.; Elagamey, A.G.A. Activated nitriles in organic synthesis: synthesis of pyranoquinolinone, 6H-2-benzopyrano[4,3-c]quinolinone and thieno[2,3-b]pyridine. Bull. Soc. Chim. Fr., 1996, 133, 229-234.
[http://dx.doi.org/10.1002/chin.199639173]
[111]
Khallh, Z.H.; Abdel-Hafez, A.A.; Geies, A.A.; Kamal, E.A.M. Nitriles in heterocyclic synthesis. Synthesis and reactions of pyrano[3,2-h]quinoline derivatives. Bull. Chem. Soc. Jpn., 1991, 64, 668-670.
[http://dx.doi.org/10.1246/bcsj.64.668]
[112]
Rashed, H.M.M. PhD Thesis. Ain-Shams Unversity,. 2002.
[113]
Arseneva, M.Y.; Arsenev, V.G. Synthesis of derivatives of the new condensed system 4H,7H- furo[3′4′6,7]cyclohepta-[1,2-b]pyran. Chem. Heterocycl. Compd., 2008, 44, 136-142.
[http://dx.doi.org/10.1007/s10593-008-0037-1]
[114]
Hammouda, M.; Zeid, Z.M.A.; Metwally, M.A. Synthesis of novel functionally substituted pyridazines and oxazines. Chem. Heterocycl. Compd., 2008, 44, 985-990.
[http://dx.doi.org/10.1007/s10593-008-0141-2]
[115]
Moghaddam, F.M.; Eslami, M.; Siahpoosh, A.; Hoda, G. Diastereoselective construction of a functionalized dihydro-pyridazine-based spirooxindole scaffold via C-3 umpolung of isatin N,N׳- cyclic azomethine imine. New J. Chem., 2019, 43, 10318-10323.
[http://dx.doi.org/10.1039/C8NJ06345A]
[116]
Mehrabi, H.; Esfandiarpour, Z. A facile and efficient one-pot synthesis of 6-amino-2-oxo-4-aryl-4H-1,3-dithiine-5-carbonitrile deriva-tives in water. J. Iran Chem. Soc., 2015, 12, 2051-2055.
[http://dx.doi.org/10.1007/s13738-015-0681-1]
[117]
Mehrabi, H.; Esfandiarpour, Z.; Davodian, T. The reaction of active methylene compounds with carbon disulfide in the presence of aryli-denemalononitriles: Synthesis of 6-amino-2-(4,4- dimethyl/dihydro-2,6-dioxocyclohexylidene)-4-aryl-4H-1,3-dithiine-5-carbonitrile de-rivatives. J. Sulfur Chem., 2018, 39, 164-172.
[http://dx.doi.org/10.1080/17415993.2017.1405959]
[118]
Mehrabi, H.; Hatami-pour, M. Synthesis of functionalized pyrido[1,2-f]phenanthridines from phenanthridine, activated acetylenes, and arylidenemalononitriles. Synth. Commun., 2011, 611-618.
[119]
Li, M.; Qiu, Z.; Wen, L.; Zhou, Z. Novel regio- and stereo-selectivity: Synthesis of dihydropyrrolo[1,2-f]phenanthridines via isocyanide-based multicomponent reaction. Tetrahedron, 2011, 67, 3638-3648.
[http://dx.doi.org/10.1016/j.tet.2011.03.085]
[120]
Gholap, A.R.; Toti, K.S.; Shirazi, F.; Kumari, R.; Bhat, M.K.; Deshpande, M.V.; Srinivasan, K.V. Synthesis and evaluation of antifungal properties of a series of the novel 2-amino-5-oxo-4-phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and its analogues. Bioorg. Med. Chem., 2007, 15(21), 6705-6715.
[http://dx.doi.org/10.1016/j.bmc.2007.08.009] [PMID: 17765545]
[121]
Adib, M.; Zainali, M.; Kim, I. An efficient three-component synthesis of benzimidazo[1,2- a]quinoline-6-carbonitriles. Synlett, 2016, 27, 1844-1847.
[http://dx.doi.org/10.1055/s-0035-1561939]
[122]
Shen, D.; Xu, Y.; He, D.; Han, J.; Chen, J.; Deng, H.; Shao, M.; Zhang, H.; Cao, W. An efficient one-pot three-component process for syn-thesis of perfluoroalkylated quinolizines. Chin. J. Chem., 2016, 34, 524-532.
[http://dx.doi.org/10.1002/cjoc.201500872]
[123]
Dandia, A.; Khan, S.; Soni, P.; Indora, A.; Mahawar, D.K.; Pandya, P.; Chauhan, C.S. Diversity-oriented sustainable synthesis of antimi-crobial spiropyrrolidine/thiapyrrolizidine oxindole derivatives: New ligands for a metallo-β-lactamase from Klebsiella pneumonia. Bioorg. Med. Chem. Lett., 2017, 27(13), 2873-2880.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.083] [PMID: 28487071]
[124]
Barkov, A.Y.; Zimnitskiy, N.S.; Kutyashev, I.B.; Korotaev, V.Y.; Sosnovskikh, V.Y. Unexpected regiochemistry in [3+2] cycloaddition reaction of azomethine ylides of indenoquinoxalinone series to arylidene malononitriles. Chem. Heterocycl. Compd., 2018, 54, 43-50.
[http://dx.doi.org/10.1007/s10593-018-2228-8]
[125]
Liu, D.; Sun, J.; Zhang, Y.; Yan, C.G. Diastereoselective synthesis of spirocyclic isoxazolo[5,4-c]pyrrolo[2,1-a]isoquinolines via cascade double [3 + 2]cycloadditions. Org. Biomol. Chem., 2019, 17(34), 8008-8013.
[http://dx.doi.org/10.1039/C9OB01474H] [PMID: 31414109]
[126]
Rahmati, A.; Ahmadi, S.; Ahmadi-Varzaneh, M. One-pot synthesis of 1,2,4,5-tetrahydro-2,4- ioxobenzo[b][1,4]diazepine and malo-namide derivatives using multi-component reactions. Tetrahedron, 2014, 70, 9512-9521.
[http://dx.doi.org/10.1016/j.tet.2014.10.060]
[127]
Teimouri, M.B.; Mokhtare, Z.; Khavasi, H.R. Uncatalyzed diastereoselective synthesis of alkyliminofurochromone-derived benzylmalo-nonitriles via a three-component cascade reaction: competition between Diels-Alder cycloaddition and Michael addition. Org. Biomol. Chem., 2021, 19(11), 2517-2525.
[http://dx.doi.org/10.1039/D0OB02540B] [PMID: 33665651]
[128]
Han, W.; Li, Y.; Raveendra Babu, K.; Li, J.; Tang, Y.; Wu, Y.; Xu, S. Catalyst-free [3+3] annulation/oxidation of cyclic amidines with activated olefins: When the substrate olefin is also an oxidant. J. Org. Chem., 2021, 86(11), 7832-7841.
[http://dx.doi.org/10.1021/acs.joc.1c00717] [PMID: 33999639]
[129]
Habibi, A.; Valizadeh, Y.; Mollazadeh, M.; Alizadeh, A. Green and high efficient synthesis of 2- aryl benzimidazoles: Reaction of aryli-dene malononitrile and 1,2-phenylenediamine derivatives in water or solvent-free conditions. Int. J. Org. Chem. (Irvine), 2015, 5, 256-263.
[http://dx.doi.org/10.4236/ijoc.2015.54025]
[130]
Yang, A.; Li, Z. Transition-metal-free aerobic oxidative cross- coupling of indoles with arylidenemalononitriles. Synlett, 2020, 31, 194-198.
[http://dx.doi.org/10.1055/s-0039-1691532]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy