Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

DFT Studies and Quantum Chemical Calculations of Benzoyl Thiourea Derivatives Linked to Morpholine and Piperidine for the Evaluation of Antifungal Activity

Author(s): Rameshwar K. Dongare, Shaukatali N. Inamdar and Radhakrishnan M. Tigote*

Volume 12, Issue 1, 2022

Published on: 15 March, 2022

Page: [29 - 36] Pages: 8

DOI: 10.2174/1877946812666220111141742

Price: $65

Abstract

Background: Benzoyl thiourea derivatives linked to morpholine and piperidine have been reported to possess good antifungal activity.

Objective: The aim of the study was to find the correlations between the quantum chemical calculations and the antifungal activity of the benzoyl thiourea derivatives linked to morpholine and piperidine.

Methods: Optimization of six compounds BTP 1-3 and BTM 4-6 was carried out with DFT using B3LYP method utilizing 6-31G(d,p) basis set. The structural parameters of the compounds as molecular geometry, bond lengths, bond angles, atomic charges and HOMOLUMO energy gap have been investigated and compared with the reported experimental results.

Results: A good correlation between the quantum chemical calculations and the antifungal activity of the benzoyl thiourea derivatives linked to morpholine and piperidine was found.

Conclusion: The DFT study of benzoyl thiourea derivatives linked to morpholine and piperidine conducted with respect to their Quantum chemical parameters for evaluation of their antifungal activity showed good correlations between the antifungal activity and the quantum chemical parameters.

Keywords: DFT, HOMO-LUMO, benzoyl thiourea derivatives, morpholine, piperidine, antifungal activity.

Graphical Abstract
[1]
Venkatachalam, T.; Sudbeck, E.; Uckun, F. Regiospecific synthesis, X-ray crystal structure and biological activities of 5-bromothiophenethyl thioureas. Tetrahedron Lett., 2001, 42(38), 6629-6632.
[http://dx.doi.org/10.1016/S0040-4039(01)01290-4]
[2]
Kim, B.Y.; Ahn, J.B.; Lee, H.W.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Hong, C.I.; Yoon, S.S. Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur. J. Med. Chem., 2004, 39(5), 433-447.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.001]
[3]
Kravchenko, D.V.; Kysil, V.M.; Tkachenko, S.E.; Maliar-chouk, S.; Okun, I.M.; Ivachtchenko, A.V. Pyrrolo [3,4-c] quinoline-1,3-diones as potent caspase-3 inhibitors. Synthe-sis and SAR of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-pyrrolo[3,4-c] quinoline-1,3-diones. Eur. J. Med. Chem., 2005, 40(12), 1377-1383.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.011]
[4]
Mohamed, M.S.; Kamel, M.M.; Kassem, E.M.M.; Abotaleb, N. Abd El-moez, S.I.; Ahmed, M.F., Novel 6,8-dibromo-4(3H) quinazolinone derivatives of anti-bacterial and anti-fungal activities. Eur. J. Med. Chem., 2010, 45(8), 3311-3319.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.014]
[5]
Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1323-1331.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.016]
[6]
Ventosa-Andrés, P.; Valdivielso, Á.M.; Pappos, I.; García-López, M.T.; Tsopanoglou, N.E.; Herranz, R. Design, syn-thesis and biological evaluation of new peptide-based ureas and thioureas as potential antagonists of the thrombin recep-tor PAR1. Eur. J. Med. Chem., 2012, 58, 98-111.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.015]
[7]
Yancheva, D.; Daskalova, L.; Cherneva, E.; Mikhova, B.; Djordjevic, A.; Smelcerovic, Z.; Smelcerovic, A. Synthesis, structure and antimicrobial activity of 6-(propan-2-yl)-3-methyl-morpholine-2,5-dione. J. Mol. Struct., 2012, 1016, 147-154.
[http://dx.doi.org/10.1016/j.molstruc.2012.02.057]
[8]
Krogul, A.; Cedrowski, J.; Wiktorska, K.; Oziminski, W.P. Skupińska, J.; Litwinienko, G. Biological activity of Pd(II) complexes with mono- and disubstituted pyridines-experimental and theoretical studies. Bioorg. Med Chemi. Lett., 2013, 23(9), 2765-2768.
[9]
Patel, N.B.; Purohit, A.C.; Rajani, D.P.; Moo-Puc, R.; Rive-ra, G. New 2-benzylsulfanyl-nicotinic acid based 1,3,4-oxadiazoles: Their synthesis and biological evaluation. Eur. J. Med. Chem., 2013, 62, 677-687.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.055]
[10]
Weiqun, Z.; Wen, Y.; Liqun, X.; Xianchen, C. N-Benzoyl-N′-dialkylthiourea derivatives and their Co(III) complexes: Structure, and antifungal. J. Inorg. Biochem., 2005, 99(6), 1314-1319.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.03.004]
[11]
Duan, L-P.; Xue, J.; Xu, L-L.; Zhang, H-B. Synthesis 1-Acyl-3-(2′-aminophenyl) thioureas as anti-intestinal nema-tode prodrugs. Molecules, 2010, 15(10), 6941-6947.
[http://dx.doi.org/10.3390/molecules15106941]
[12]
Liu, X-H.; Pan, L.; Ma, Y.; Weng, J-Q.; Tan, C-X.; Li, Y-H.; Shi, Y-X.; Li, B-J.; Li, Z-M.; Zhang, Y-G. Design, syn-thesis, biological activities, and 3d-qsar of new n,n′-diacylhydrazines containing 2-(2,4-dichlorophenoxy) pro-pane moiety. Chem. Biol. Drug Des., 2011, 78(4), 689-694.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01205.x]
[13]
Wu, J.; Kang, S.; Song, B.; Hu, D.; He, M.; Jin, L.; Yang, S. Synthesis and antibacterial activity against ralstonia sola-nacearum for novel hydrazone derivatives containing a pyri-dine moiety. Chem. Cent. J., 2012, 6(1), 28.
[http://dx.doi.org/10.1186/1752-153X-6-28]
[14]
Kaldrikyan, M.A.; Melik-Oganjanyan, R.G.; Aresnyan, F.H. Synthesis and antitumor activity of 5-methylbenzofuryl-substituted 1,2,4-triazoles and triazoline-5-thiones. Pharm. Chem. J., 2013, 47(4), 191-194.
[http://dx.doi.org/10.1007/s11094-013-0924-3]
[15]
Plech, T.; Wujec, M.; Kosikowska, U.; Malm, A. Synthesis and antibacterial activity of 4,5-disubstituted-1,2,4-triazole-3- thiones. Lett. Drug Des. Discov., 2013, 10, 917-922.
[http://dx.doi.org/10.2174/15701808113109990082]
[16]
Smart, B.E. Fluorine substituent effects (on bioactivity). J. Fluor. Chem., 2001, 109(1), 3-11.
[http://dx.doi.org/10.1016/S0022-1139(01)00375-X]
[17]
Ismail, F.M.D. Important fluorinated drugs in experimental and clinical use. J. Fluor. Chem., 2002, 118(1), 27-33.
[http://dx.doi.org/10.1016/S0022-1139(02)00201-4]
[18]
Bonacorso, H.G.; Wentz, A.P.; Lourega, R.V.; Cechinel, C.A.; Moraes, T.S.; Coelho, H.S.; Zanatta, N.; Martins, M.A.P.; Höerner, M.; Alves, S.H. Trifluoromethyl-containing pyrazolinyl (p-tolyl) sulfones: The synthesis and structure of promising antimicrobial agents. J. Fluor. Chem., 2006, 127(8), 1066-1072.
[http://dx.doi.org/10.1016/j.jfluchem.2006.05.005]
[19]
Yonetoku, Y.; Kubota, H.; Okamoto, Y.; Ishikawa, J.; Takeuchi, M.; Ohta, M.; Tsukamoto, S-i. Novel potent and selective calcium-release-activated calcium (CRAC) channel inhibitors. Part 2: Synthesis and inhibitory activity of aryl-3-trifluoromethylpyrazoles. Bioorg. Med. Chem., 2006, 14(15), 5370-5383.
[http://dx.doi.org/10.1016/j.bmc.2006.03.039]
[20]
Filler, R.; Saha, R. Fluorine in medicinal chemistry: A centu-ry of progress and a 60-year retrospective of selected high-lights. Future Med. Chem., 2009, 1(5), 777-791.
[http://dx.doi.org/10.4155/fmc.09.65]
[21]
Jagodzinska, M.; Huguenot, F.; Candiani, G.; Zanda, M. Assessing the bioisosterism of the trifluoromethyl group with a protease probe. ChemMedChem, 2009, 4(1), 49-51.
[http://dx.doi.org/10.1002/cmdc.200800321]
[22]
Szymanski, P. Karpiński, A.; Mikiciuk-Olasik, E. Synthesis, biological activity and HPLC validation of 1,2,3,4-tetrahydroacridine derivatives as acetylcholinesterase inhibi-tors. Eur. J. Med. Chem., 2011, 46(8), 3250-3257.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.038]
[23]
Saeed, A.; Shaheen, U.; Hameed, A.; Naqvi, S.Z.H. Synthe-sis, characterization and antimicrobial activity of some new 1-(fluorobenzoyl)-3-(fluorophenyl)thioureas. J. Fluor. Chem., 2009, 130(11), 1028-1034.
[http://dx.doi.org/10.1016/j.jfluchem.2009.09.003]
[24]
Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.A.; Elaasser, M.M.; Nissan, Y.M. Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfon-amide moieties: Synthesis, biological evaluation and molecu-lar docking. Chem. Cent. J., 2017, 11(1), 32.
[http://dx.doi.org/10.1186/s13065-017-0258-4]
[25]
Yang, W.; Liu, H.; Li, M.; Wang, F.; Zhou, W.; Fan, J. Syn-thesis, structures and antibacterial activities of benzoylthiou-rea derivatives and their complexes with cobalt. J. Inorg. Biochem., 2012, 116, 97-105.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.08.001]
[26]
Li, C.; Yang, W.; Liu, H.; Li, M.; Zhou, W.; Xie, J. Crystal structures and antifungal activities of fluorine-containing thi-oureido complexes with nickel(II). Molecules, 2013, 18(12), 15737-15749.
[http://dx.doi.org/10.3390/molecules181215737]
[27]
Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; Windus, T.L.; Dupuis, M.; Montgom-ery, J.A. Jr General atomic and molecular electronic struc-ture system. J. Comput. Chem., 1993, 14(11), 1347-1363.
[http://dx.doi.org/10.1002/jcc.540141112]
[28]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[29]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785]
[30]
Vosko, S.; Wilk, H.L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density cal-culations: A critical analysis. Can. J. Phys., 1980, 58, 1200-1211.
[http://dx.doi.org/10.1139/p80-159]
[31]
Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular di-chroism spectra using density functional force fields j. Phys. Chem., 1994, 98, 11623-11627.
[http://dx.doi.org/10.1021/j100096a001]
[32]
Liu, X-H.; Chen, P-Q.; Wang, B-L.; Li, Y-H.; Wang, S-H.; Li, Z-M. Synthesis, bioactivity, theoretical and molecular docking study of 1-cyano-N-substituted-cyclopropane-carboxamide as ketol-acid reductoisomerase inhibitor. Bioorg. Med. Chem. Lett., 2007, 17(13), 3784-3788.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.003]
[33]
Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys., 1952, 20, 722.
[34]
Ertlr, P. Simple quantum chemical parameters as an alternative to the hammett sigma constants in QSAR studies. Quant. Struct.-Act. Relation., 1997, 16(5), 377-382.
[http://dx.doi.org/10.1002/qsar.19970160505]
[35]
Çakmak, E. Özbakır Işın, D. A theoretical evaluation on free radical scavenging activity of 3-styrylchromone derivatives: The DFT study. J. Mol. Model., 2020, 26(5), 98.
[http://dx.doi.org/10.1007/s00894-020-04368-7]
[36]
Janak, J.F. Proof that δE/δni = ε in density-functional theory. Phys. Rev. B, 1978, 18(12), 7165-7168.
[http://dx.doi.org/10.1103/PhysRevB.18.7165]
[37]
Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105(26), 7512-7516.
[http://dx.doi.org/10.1021/ja00364a005]
[38]
Pearson, R.G. Absolute electronegativity and hardness: ap-plication to inorganic chemistry. Inorg. Chem., 1988, 27(4), 734-740.
[http://dx.doi.org/10.1021/ic00277a030]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy