Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Research Article

Potential Implications of Vouacapan Compounds for Insecticidal Activity: An In Silico Study

Author(s): Lisset Ortiz-Zamora, Jaderson V. Ferreira, Nayana K.S. de Oliveira, Fábio A. de Molfetta, Lorane I.S. Hage-Melim*, Caio P. Fernandes and Anna E.M.F.M. Oliveira

Volume 16, Issue 2, 2022

Published on: 12 April, 2022

Page: [155 - 173] Pages: 19

DOI: 10.2174/1872208316666220106110902

Price: $65

Abstract

Background: From the fruits and seeds of the species of Pterodon, it is possible to obtain two main products: essential oil and oleoresin. In oleoresin, numerous vouacapan compounds have been demonstrated to have biological potential, including insecticidal activity.

Objective: In silico studies were performed to identify potential candidates for natural insecticides among the vouacapans present in the genus Pterodon.

Materials and Methods: Molecular docking and molecular dynamics studies were performed to analyze the interaction of vouacapan compounds with acetylcholinesterase of Drosophila melanogaster. Pharmacokinetic parameters regarding physicochemical properties, plasma protein binding, and activity in the central nervous system were evaluated. The toxicological properties of the selected molecules were predicted using malathion as the reference compound.

Results: 6α,7β-dimethoxivouacapan-17-ene (15) showed a high number of interactions and scores in molecular docking studies. These results suggested that this compound exhibits an inhibitory activity of the enzyme acetylcholinesterase. This compound showed the best results regarding physicochemical properties, besides presenting low cutaneous permeability values, suggesting null absorption. Molecular dynamics studies demonstrated few conformational changes in the structure of the complex formed by compound 4 and acetylcholinesterase enzyme throughout the simulation time.

Conclusion: It was determined that compound 4 (vouacapan 6α,7β,17β,19-tetraol) could be an excellent candidate for usage as a natural insecticide.

Keywords: Vouacapans, Pterodon Vogel, insecticides, anti-acetylcholinesterase, molecular docking, molecular dynamics, ADME/Tox.

Graphical Abstract
[1]
Lima HCd, Lima IB. Pterodon in Lista de Espécies da Flora do Brasil Available from: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB29842
[2]
Vieira CR, Marques MF, Soares PR, et al. Antiproliferative activity of Pterodon pubescens Benth. seed oil and its active principle on human melanoma cells. Phytomedicine 2008; 15(6-7): 528-32.
[http://dx.doi.org/10.1016/j.phymed.2007.08.003] [PMID: 17913485]
[3]
Carvalho JC, Sertié JA, Barbosa MV, et al. Anti-inflammatory activity of the crude extract from the fruits of Pterodon emarginatus Vog. J Ethnopharmacol 1999; 64(2): 127-33.
[http://dx.doi.org/10.1016/S0378-8741(98)00116-0] [PMID: 10197747]
[4]
Mors W, Pellegrino J. Ação profilática do óleo dos frutos de Sucupira-Branca, Pterodon pubescens benth, contra a infecção pelo Schistosoma mansoni. An Acad Bras 1966; (s38):
[5]
Menna-Barreto RF, Laranja GA, Silva MC, et al. Anti-Trypanosoma cruzi activity of Pterodon pubescens seed oil: geranylgeraniol as the major bioactive component. Parasitol Res 2008; 103(1): 111-7.
[http://dx.doi.org/10.1007/s00436-008-0937-0] [PMID: 18343952]
[6]
Pereira MF, Martino T, Dalmau SR, et al. Terpenic fraction of Pterodon pubescens inhibits nuclear factor kappa B and extracellular signal-regulated protein kinase 1/2 activation and deregulates gene expression in leukemia cells. BMC Complement Altern Med 2012; 12(1): 231.
[http://dx.doi.org/10.1186/1472-6882-12-231] [PMID: 23181557]
[7]
Oliveira AE, Duarte JL, Amado JR, et al. Development of a larvicidal nanoemulsion with pterodon emarginatus vogel oil. PLoS One 2016; 11(1): e0145835.
[http://dx.doi.org/10.1371/journal.pone.0145835] [PMID: 26742099]
[8]
Oliveira AEMFM, Bezerra DC, Duarte JL, et al. Essential oil from Pterodon emarginatus as a promising natural raw material for larvicidal nanoemulsions against a tropical disease vector. Sustain Chem Pharm 2017; 6: 1-9.
[http://dx.doi.org/10.1016/j.scp.2017.06.001]
[9]
The Plant List. VPotI Available from: http://www.theplantlist.org/tpl1.1/record/ild-33212
[10]
Mahajan JR, Monteiro MB. New diterpenoids from Pterodon emarginatus Vog. J Chem Soc, Perkin Trans 1 1973; 5: 520-5.
[http://dx.doi.org/10.1039/p19730000520] [PMID: 4735010]
[11]
Fascio M, Mors WB, Gilbert B, et al. Diterpenoid furans from Pterodon species. Phytochemistry 1976; 15(1): 201-3.
[http://dx.doi.org/10.1016/S0031-9422(00)89084-6]
[12]
Pimenta AT, Santiago GM, Arriaga Â, Menezes GH, Bezerra SB. Estudo fitoquímico e avaliação da atividade larvicida de Pterodon polygalaeflorus benth (Leguminosae) sobre Aedes aegypti. Rev Bras Farmacogn 2006; 16(4): 501-5.
[http://dx.doi.org/10.1590/S0102-695X2006000400011]
[13]
Demuner AJ, de Almeida Barbosa LC, Veloso DP, Alves DLF, Howarth OW. Structure and plant growth regulatory activity of new diterpenes from Pterodon polygalaeflorus. J Nat Prod 1996; 59(8): 770-2.
[http://dx.doi.org/10.1021/np960140f]
[14]
Arriaga A. Castro MABd, Silveira ER, Braz-Filho R. Further diterpenoids isolated from Pterodon polygalaeflorus. J Braz Chem Soc 2000; 11(2): 187-90.
[http://dx.doi.org/10.1590/S0103-50532000000200015]
[15]
Campos AM, Silveira ER, Braz-Filho R, Teixeira TC. Diterpenoids from Pterodon polygalaeflorus. Phytochemistry 1994; 36(2): 403-6.
[http://dx.doi.org/10.1016/S0031-9422(00)97084-5]
[16]
Nucci C, Mazzardo-Martins L, Stramosk J, et al. Oleaginous extract from the fruits Pterodon pubescens Benth induces antinociception in animal models of acute and chronic pain. J Ethnopharmacol 2012; 143(1): 170-8.
[http://dx.doi.org/10.1016/j.jep.2012.06.020] [PMID: 22728247]
[17]
Spindola HM, Carvalho JEd, Ruiz ALT, et al. Furanoditerpenes from Pterodon pubescens benth with selective in vitro anticancer activity for prostate cell line. J Braz Chem Soc 2009; 20(3): 569-75.
[http://dx.doi.org/10.1590/S0103-50532009000300024]
[18]
Di Mascio P, Medeiros MHG, Sies H, et al. Quenching of singlet molecular oxygen by natural furan diterpenes. J Photochem Photobiol B 1997; 38(2): 169-73.
[http://dx.doi.org/10.1016/S1011-1344(96)07444-1]
[19]
Silva MCC, Gayer CRM, Lopes CS, et al. Acute and topic anti-edematogenic fractions isolated from the seeds of Pterodon pubescens. J Pharm Pharmacol 2004; 56(1): 135-41.
[http://dx.doi.org/10.1211/0022357022485] [PMID: 14980011]
[20]
De Omena MC, Bento ES, De Paula JE, Sant’Ana AE. Larvicidal diterpenes from Pterodon polygalaeflorus. Vector Borne Zoonotic Dis 2006; 6(2): 216-22.
[http://dx.doi.org/10.1089/vbz.2006.6.216] [PMID: 16796519]
[21]
Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 2010; 29(9): 913-20.
[http://dx.doi.org/10.1016/j.cropro.2010.05.008]
[22]
Conceição ND, de Souza LR, Ferreira JV, et al. Molecular modeling of substances isolated from the essential oil of the species Drimys angustifolia and Drimys brasiliensis. Curr Phys Chem 2020; 10: 1-14.
[http://dx.doi.org/10.2174/1877946810666200124142439]
[23]
Poli G, Granchi C, Rizzolio F, Tuccinardi T. Application of MM-PBSA methods in virtual screening. Molecules 2020; 25(8): 1971.
[http://dx.doi.org/10.3390/molecules25081971] [PMID: 32340232]
[24]
Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules 2015; 20(7): 13384-421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[25]
Ganesan A, Coote ML, Barakat K. Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov Today 2017; 22(2): 249-69.
[http://dx.doi.org/10.1016/j.drudis.2016.11.001] [PMID: 27890821]
[26]
Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 2018; 13(1): 23-37.
[http://dx.doi.org/10.1080/17460441.2018.1403419] [PMID: 29139324]
[27]
Harel M, Kryger G, Rosenberry TL, et al. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci 2000; 9(6): 1063-72.
[http://dx.doi.org/10.1110/ps.9.6.1063] [PMID: 10892800]
[28]
Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev 2013; 66(1): 334-95.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[29]
Jorgensen WL. The many roles of computation in drug discovery. Science 2004; 303(5665): 1813-8.
[http://dx.doi.org/10.1126/science.1096361] [PMID: 15031495]
[30]
Ridings JE, Barratt MD, Cary R, et al. Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology 1996; 106(1-3): 267-79.
[http://dx.doi.org/10.1016/0300-483X(95)03190-Q] [PMID: 8571398]
[31]
Mohan CG, Gandhi T, Garg D, Shinde R. Computer-assisted methods in chemical toxicity prediction. Mini Rev Med Chem 2007; 7(5): 499-507.
[http://dx.doi.org/10.2174/138955707780619554] [PMID: 17504185]
[32]
Cariello NF, Wilson JD, Britt BH, Wedd DJ, Burlinson B, Gombar V. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Mutagenesis 2002; 17(4): 321-9.
[http://dx.doi.org/10.1093/mutage/17.4.321] [PMID: 12110629]
[33]
Langton K, Patlewicz GY, Long A, Marchant CA, Basketter DA. Structure-activity relationships for skin sensitization: recent improvements to Derek for Windows. Contact Dermat 2006; 55(6): 342-7.
[http://dx.doi.org/10.1111/j.1600-0536.2006.00969.x] [PMID: 17101009]
[34]
Frisch MJ, Nielsen AB. Gaussian 03 Programmer’s Reference Pittsburgh, PA: Gaussian. 2003.
[35]
Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 2004; 32(Web Server issue): W665-7.
[http://dx.doi.org/10.1093/nar/gkh381]
[36]
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem 2004; 25(9): 1157-74.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[37]
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006; 65(3): 712-25.
[http://dx.doi.org/10.1002/prot.21123] [PMID: 16981200]
[38]
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79(2): 926-35.
[http://dx.doi.org/10.1063/1.445869]
[39]
Götz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with amber on GPUs. 1. generalized born. J Chem Theory Comput 2012; 8(5): 1542-55.
[http://dx.doi.org/10.1021/ct200909j] [PMID: 22582031]
[40]
Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle mesh ewald. J Chem Theory Comput 2013; 9(9): 3878-88.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[41]
Cornell WD, Cieplak P, Bayly CI, et al. A Second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1996; 118(9): 2309-9.
[http://dx.doi.org/10.1021/ja955032e]
[42]
Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J Comput Phys 1977; 23(3): 327-41.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[43]
Verlet L. Computer “experiments” on classical fluids. ii. Equilibrium correlation functions. Phys Rev 1968; 165(1): 201-14.
[http://dx.doi.org/10.1103/PhysRev.165.201]
[44]
Case DA, Walker RC, Cheatham TE III, et al. Amber 2018 reference manual covers Amber18 and AmberTools18San FranciscoUniversity of California. 2018.
[45]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera- a visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[46]
Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000; 33(12): 889-97.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[47]
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015; 10(5): 449-61.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[48]
Niu Y, Shi D, Li L, Guo J, Liu H, Yao X. Revealing inhibition difference between PFI-2 enantiomers against SETD7 by molecular dynamics simulations, binding free energy calculations and unbinding pathway analysis. Sci Rep 2017; 7(1): 46547.
[http://dx.doi.org/10.1038/srep46547] [PMID: 28417976]
[49]
Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev 2006; 26(5): 531-68.
[http://dx.doi.org/10.1002/med.20067] [PMID: 16758486]
[50]
Sun H, Li Y, Shen M, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 2014; 16(40): 22035-45.
[http://dx.doi.org/10.1039/C4CP03179B] [PMID: 25205360]
[51]
Onufriev A, Bashford D, Case DA. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004; 55(2): 383-94.
[http://dx.doi.org/10.1002/prot.20033] [PMID: 15048829]
[52]
Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 1994; 98(7): 1978-88.
[http://dx.doi.org/10.1021/j100058a043]
[53]
Gupta S, Mohan CG. Dual binding site and selective acetylcholinesterase inhibitors derived from integrated pharmacophore models and sequential virtual screening. BioMed Res Int 2014; 2014: 291214.
[http://dx.doi.org/10.1155/2014/291214] [PMID: 25050335]
[54]
Cole JC, Murray CW, Nissink JWM, Taylor RD, Taylor R. Comparing protein-ligand docking programs is difficult. Proteins 2005; 60(3): 325-32.
[http://dx.doi.org/10.1002/prot.20497] [PMID: 15937897]
[55]
Abdel-Daim MM, Abushouk AI, Bungău SG, et al. Protective effects of thymoquinone and diallyl sulphide against malathion-induced toxicity in rats. Environ Sci Pollut Res Int 2020; 27(10): 10228-35.
[http://dx.doi.org/10.1007/s11356-019-07580-y] [PMID: 31933077]
[56]
Composição química e atividades biológicas do óleo essencial de Peumus boldus (Monimiaceae). Revista Virtual de Química 2020; 12(2): 20200035.
[http://dx.doi.org/10.21577/1984-6835.20200035]
[57]
Wadapurkar RM, Shilpa M, Katti AKS, Sulochana M. In silico drug design for Staphylococcus aureus and development of host-pathogen interaction network. Informatics in Medicine Unlocked 2018; 10: 58-70.
[http://dx.doi.org/10.1016/j.imu.2017.11.002]
[58]
Todeschini R, Consonni V. Molecular descriptors for chemoinformatics 41 John Wiley & Sons. 2009.
[http://dx.doi.org/10.1002/9783527628766]
[59]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[60]
Picanço LC, Castro LL, Pinheiro AA, et al. Study of molecular docking, physicochemical and pharmacokinetic properties of GSK-3β inhibitors. J Pharm Res Int 2015; 7(5): 152-75.
[61]
Tice CM. Selecting the right compounds for screening: does Lipinski’s Rule of 5 for pharmaceuticals apply to agrochemicals? Pest Manag Sci 2001; 57(1): 3-16.
[http://dx.doi.org/10.1002/1526-4998(200101)57:1<3::AID-PS269>3.0.CO;2-6] [PMID: 11455629]
[62]
Teló GM, Marchesan E, Zanella R, Peixoto SC, Prestes OD. Oliveira MLd. Fungicide and insecticide residues in rice grains. Acta Sci Agron 2017; 39(1): 9-15.
[http://dx.doi.org/10.4025/actasciagron.v39i1.30594]
[63]
Yuan J, Yu S, Zhang T, et al. QSPR models for predicting generator-column-derived octanol/water and octanol/air partition coefficients of polychlorinated biphenyls. Ecotoxicol Environ Saf 2016; 128: 171-80.
[http://dx.doi.org/10.1016/j.ecoenv.2016.02.022] [PMID: 26943944]
[64]
Remko M, Remková A, Broer R. A comparative study of molecular structure, pKa, lipophilicity, solubility, absorption and polar surface area of some antiplatelet drugs. Int J Mol Sci 2016; 17(3): 388.
[http://dx.doi.org/10.3390/ijms17030388] [PMID: 27007371]
[65]
Njoroge SM, Munyao TM, Osano O. Modeling relationship between organic carbon partition coefficient and pesticides solubility of pesticides used along the shore of Lake NaivashaKenya. 2016.
[66]
Korkina L. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics. Expert Opin Drug Metab Toxicol 2016; 12(4): 377-88.
[http://dx.doi.org/10.1517/17425255.2016.1149569] [PMID: 26854731]
[67]
Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul Toxicol Pharmacol 2015; 72(2): 310-22.
[http://dx.doi.org/10.1016/j.yrtph.2015.05.005] [PMID: 25979643]
[68]
Patil P, Skariyachan S, Mutt E, Kaushik S. Computational analysis of the domain architecture and substrate-gating mechanism of prolyl oligopeptidases from Shewanella woodyi and identification of probable lead molecules. Interdiscip Sci 2016; 8(3): 284-93.
[http://dx.doi.org/10.1007/s12539-015-0282-9] [PMID: 26298583]
[69]
Cook RL. Principal components of localization-delocalization matrices: New descriptors for modeling biological activities of organic compounds. Part I: Mosquito insecticides and repellents. Struct Chem 2017; 28(5): 1525-35.
[http://dx.doi.org/10.1007/s11224-017-0998-8]
[70]
Cheung J, Mahmood A, Kalathur R, Liu L, Carlier PR. Structure of the G119S mutant acetylcholinesterase of the malaria vector Anopheles gambiae reveals basis of insecticide resistance 2018; 26(1): P130-6.
[http://dx.doi.org/10.1016/j.str.2017.11.021]
[71]
Tripathi K. Essentials of Medical PharmacologyJP Medical Ltd. 2013.
[72]
Smith DA, Allerton C, Kalgutkar AS, Waterbeemd H, Walker DK. Pharmacokinetics and metabolism in drug design. 2012; 51257.
[http://dx.doi.org/10.1002/9783527645763]
[73]
Shin HK, Kang Y-M, No KT. Predicting ADME properties of chemicals Handbook of Computational Chemistry.Handbook of Computational ChemistryCham: Springer. 2017; pp. 2265-301.
[http://dx.doi.org/10.1007/978-3-319-27282-5_59]
[74]
Skalsky HL, Guthrie FE. Binding of insecticides to human serum proteins. Toxicol Appl Pharmacol 1978; 43(2): 229-35.
[http://dx.doi.org/10.1016/0041-008X(78)90002-9] [PMID: 635912]
[75]
Ingle BL, Veber BC, Nichols JW, Tornero-Velez R. Informing the human plasma protein binding of environmental chemicals by machine learning in the pharmaceutical space: Applicability domain and limits of predictability. J Chem Inf Model 2016; 56(11): 2243-52.
[http://dx.doi.org/10.1021/acs.jcim.6b00291] [PMID: 27684444]
[76]
Covaci A, Laub R, Di Giambattista M, Branckaert T, Hougardy V, Schepens P. Polychlorinated biphenyls and organochlorine pesticides are eliminated from therapeutic Factor VIII and immunoglobulin concentrates and reduced in albumin by plasma fractionation. Vox Sang 2002; 83(1): 23-8.
[http://dx.doi.org/10.1046/j.1423-0410.2002.00168.x] [PMID: 12100385]
[77]
Gomes VC, Escobar MAC, Marques MRC, Silva D. Modeling the interaction of the carbamate fungicide maneb, with bovine albumin. AIP Conf Proc 2016; 1790(1): 100012.
[http://dx.doi.org/10.1063/1.4968704]
[78]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Int 2014; 2014: 869269.
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[79]
Kalász H, Nurulain SM, Veress G, et al. Mini review on blood-brain barrier penetration of pyridinium aldoximes. J Appl Toxicol 2015; 35(2): 116-23.
[http://dx.doi.org/10.1002/jat.3048] [PMID: 25291712]
[80]
Amaraneni M, Sharma A, Pang J, et al. Plasma protein binding limits the blood brain barrier permeation of the pyrethroid insecticide, deltamethrin. Toxicol Lett 2016; 250-251: 21-8.
[http://dx.doi.org/10.1016/j.toxlet.2016.03.006] [PMID: 27016408]
[81]
Iyer R, Iken B, Leon A. Developments in alternative treatments for organophosphate poisoning. Toxicol Lett 2015; 233(2): 200-6.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.007] [PMID: 25595305]
[82]
Barratt MD, Langowski JJ. Validation and subsequent development of the DEREK skin sensitization rulebase by analysis of the BgVV list of contact allergens. J Chem Inf Comput Sci 1999; 39(2): 294-8.
[http://dx.doi.org/10.1021/ci980204n] [PMID: 10192944]
[83]
Estrada E, Patlewicz G, Gutierrez Y. From knowledge generation to knowledge archive. A general strategy using TOPS-MODE with DEREK to formulate new alerts for skin sensitization. J Chem Inf Comput Sci 2004; 44(2): 688-98.
[http://dx.doi.org/10.1021/ci0342425] [PMID: 15032551]
[84]
Peto R. Epidemiology, multistage models, and short-term mutagenicity tests. Int J Epidemiol 2016; 45(3): 621-37.
[http://dx.doi.org/10.1093/ije/dyv199] [PMID: 27582437]
[85]
Riju A, Sithara K, Nair SS, Eapen SJ. Prediction of toxicity and pharmacological potential of selected spice compounds. Proceedings of the International Symposium on Biocomputing.
[http://dx.doi.org/10.1145/1722024.1722060]
[86]
Kasimoglu C, Uysal H. Mutagenic biomonitoring of pirethroid insecticides in human lymphocyte cultures: use of micronuclei as biomarkers and recovery by Rosa canina extracts of mutagenic effects. Pharm Biol 2015; 53(5): 625-9.
[http://dx.doi.org/10.3109/13880209.2014.935865] [PMID: 25330814]
[87]
Orsolin PC, Silva-Oliveira RG, Nepomuceno JC. Assessment of the mutagenic, recombinagenic and carcinogenic potential of orlistat in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2012; 50(8): 2598-604.
[http://dx.doi.org/10.1016/j.fct.2012.05.008] [PMID: 22621838]
[88]
de Morais CR, Carvalho SM, Carvalho Naves MP, et al. Mutagenic, recombinogenic and carcinogenic potential of thiamethoxam insecticide and formulated product in somatic cells of Drosophila melanogaster. Chemosphere 2017; 187: 163-72.
[http://dx.doi.org/10.1016/j.chemosphere.2017.08.108] [PMID: 28846972]
[89]
Guyton KZ, Loomis D, Grosse Y, et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol 2015; 16(5): 490-1.
[http://dx.doi.org/10.1016/S1470-2045(15)70134-8] [PMID: 25801782]
[90]
Loomis D, Guyton K, Grosse Y, et al. Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid. Lancet Oncol 2015; 16(8): 891-2.
[http://dx.doi.org/10.1016/S1470-2045(15)00081-9] [PMID: 26111929]
[91]
Omran OM, Omer OH. The effects of alpha-lipoic acid on breast of female albino rats exposed to malathion: Histopathological and immunohistochemical study. Pathol Res Pract 2015; 211(6): 462-9.
[http://dx.doi.org/10.1016/j.prp.2015.02.006] [PMID: 25847504]
[92]
Tchounwou PB, Patlolla AK, Yedjou CG, Moore PD. Environmental exposure and health effects associated with malathion toxicity. Toxicity and Hazard of Agrochemicals 2015; 51: 2145-9.
[http://dx.doi.org/10.5772/60911]
[93]
de Conti A, Tryndyak V, Doerge DR, Beland FA, Pogribny IP. Irreversible down-regulation of miR-375 in the livers of Fischer 344 rats after chronic furan exposure. Food Chem Toxicol 2016; 98(Pt A)
[http://dx.doi.org/10.1016/j.fct.2016.06.027]
[94]
Hamadeh HK, Jayadev S, Gaillard ET, et al. Integration of clinical and gene expression endpoints to explore furan-mediated hepatotoxicity. Mutat Res 2004; 549(1-2): 169-83.
[http://dx.doi.org/10.1016/j.mrfmmm.2003.12.021] [PMID: 15120969]
[95]
Knutsen HK, Alexander J, Barregård L, et al. Risks for public health related to the presence of furan and methylfurans in food. EFSA J 2017; 15(10): e05005.
[http://dx.doi.org/10.2903/j.efsa.2017.5005] [PMID: 32625300]
[96]
Modo E, Uboh F, Agiang M, Ewere E. Exposure to uppercott induces hepatotoxicity in male albino wistar rats 2017; 5(1)
[http://dx.doi.org/10.14419/ijsw.v5i1.7442]
[97]
El-Beih NM, Ramadan G, Khorshed MA, Ahmed RS. Biochemical alterations in insecticides-treated male albino rats: potential modulatory effects of a standardized aged garlic extract 2017.
[98]
Chang J, Li W, Xu P, et al. The tissue distribution, metabolism and hepatotoxicity of benzoylurea pesticides in male Eremias argus after a single oral administration. Chemosphere 2017; 183: 1-8.
[http://dx.doi.org/10.1016/j.chemosphere.2017.05.009] [PMID: 28511076]
[99]
Roberts DW, Aptula A, Api AM. Structure-potency relationships for epoxides in allergic contact dermatitis. Chem Res Toxicol 2017; 30(2): 524-31.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00241] [PMID: 28121139]
[100]
Ashby J, Hilton J, Dearman RJ, Callander RD, Kimber I. Mechanistic relationship among mutagenicity, skin sensitization, and skin carcinogenicity. Environ Health Perspect 1993; 101(1): 62-7.
[http://dx.doi.org/10.1289/ehp.9310162] [PMID: 8513766]
[101]
Soares Rodrigues GC, Dos Santos Maia M, Muratov EN, Scotti L, Scotti MT. Quantitative structure-activity relationship modeling and docking of monoterpenes with insecticidal activity against Reticulitermes chinensis snyder and drosophila melanogaster. J Agric Food Chem 2020; 68(16): 4687-98.
[http://dx.doi.org/10.1021/acs.jafc.0c00272] [PMID: 32251592]
[102]
Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 2011; 51(1): 69-82.
[http://dx.doi.org/10.1021/ci100275a] [PMID: 21117705]
[103]
Raza S, Ranaghan KE, van der Kamp MW, Woods CJ, Mulholland AJ, Azam SS. Visualizing protein-ligand binding with chemical energy-wise decomposition (CHEWD): application to ligand binding in the kallikrein-8 S1 Site. J Comput Aided Mol Des 2019; 33(5): 461-75.
[http://dx.doi.org/10.1007/s10822-019-00200-4] [PMID: 30989572]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy