Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Electrochemical DNA Biosensor Based on Platinum-gold Bimetal Decorated Graphene Modified Electrode for the Detection of Vibrio parahaemolyticus Specific tlh Gene Sequence

Author(s): Lijun Yan, Fan Shi, Jingyao Zhang, Yanyan Niu, Lifang Huang, Yuhao Huang and Wei Sun*

Volume 18, Issue 7, 2022

Published on: 24 January, 2022

Page: [781 - 789] Pages: 9

DOI: 10.2174/1573411017666211217164846

Price: $65

Abstract

Background: By using bimetal nanocomposite modified electrode, the electrochemical DNA biosensor showed the advantages of high sensitivity, low cost, rapid response and convenient operation, which was applied for disease diagnosis, food safety, and biological monitoring.

Objective: A nanocomposite consisting of platinum (Pt)-gold (Au) bimetal and two-dimensional graphene (GR) was synthesized by hydrothermal method, which was modified on the surface of carbon ionic liquid electrode and further used for the immobilization of probe ssDNA related to Vibrio parahaemolyticus tlh gene to construct an electrochemical DNA sensor.

Method: Potassium ferricyanide was selected as electrochemical indicator, cyclic voltammetry was used to study the electrochemical behaviours of different modified electrodes and differential pulse voltammetry was employed to test the analytical performance of this biosensor for the detection of target gene sequence.

Results: This electrochemical DNA biosensor could detect the Vibrio parahaemolyticus tlh gene sequence as the linear concentration in the range from 1.0×10-13 mol L-1 to 1.0×10-6 mol L-1 with the detection limit as 2.91×10-14 mol L-1 (3σ).

Conclusion: This proposed electrochemical DNA biosensor could be used to identify the special gene sequence with good selectivity, low detection limit and wide detection range.

Keywords: Pt-Au bimetal, graphene, electrochemistry, DNA biosensor, Vibrio parahaemolyticus tlh gene sequence, electrode.

Graphical Abstract
[1]
Mondal, P.; Anweshan, A.; Purkait, M.K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere, 2020, 259, 127509.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127509] [PMID: 32645598]
[2]
Wani, A.A.; Khan, A.M.; Manea, Y.K.; Shahadat, M.; Ahamad, S.Z.; Ali, S.W. Graphene-supported organic-inorganic layered double hy-droxides and their environmental applications: A review. J. Clean. Prod., 2020, 273, 122980.
[http://dx.doi.org/10.1016/j.jclepro.2020.122980]
[3]
Kishen, S.; Mehta, A.; Gupta, R. Biosynthesis and applications of metal nanomaterials. In: Green Nanomaterials. Advanced structured Materials, Springer: Singapore, 2020, 126, 139-157.
[4]
Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.H.; Sindoro, M.; Zhang, H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017, 117(9), 6225-6331.
[http://dx.doi.org/10.1021/acs.chemrev.6b00558] [PMID: 28306244]
[5]
Kong, X.; Liu, Q.; Zhang, C.; Peng, Z.; Chen, Q. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev., 2017, 46(8), 2127-2157.
[http://dx.doi.org/10.1039/C6CS00937A] [PMID: 28327714]
[6]
Chen, H.; Weng, W.J.; Xie, H.; Liu, J.; Luo, G.L.; Huan, S.; Sun, W.; Li, G.J. Au-Pt@Biomass porous carbon composite modified electrode for sensitive. Microchem. J., 2020, 154, 104602.
[http://dx.doi.org/10.1016/j.microc.2020.104602]
[7]
Li, S.P.; Zhou, J.Y.; Noroozifar, M.; Kerman, K. Gold-platinum core-shell nanoparticles with thiolated polyaniline and multi-walled car-bon nanotubes for the simultaneous voltammetric determination of six drug molecules. Chemosensors (Basel), 2021, 9, 24.
[http://dx.doi.org/10.3390/chemosensors9020024]
[8]
Selamneni, V.; Raghavan, H.; Hazra, A.; Sahatiya, P. MoS2/paper decorated with metal nanoparticles (Au,Pt, and Pd) based plasmonic-enhanced broadband (Visible-NIR) flexible photodetectors. Adv. Mater. Interfaces, 2020, 8, 2001988.
[http://dx.doi.org/10.1002/admi.202001988]
[9]
Suvarnaphaet, P.; Pechprasarn, S. Graphene-based materials for biosensors: A review. Sensors (Basel), 2017, 17(10), 2161.
[http://dx.doi.org/10.3390/s17102161] [PMID: 28934118]
[10]
Geim, A.K. Graphene: Status and prospects. Science, 2009, 324(5934), 1530-1534.
[http://dx.doi.org/10.1126/science.1158877] [PMID: 19541989]
[11]
Krejcova, L.; Michalek, P.; Rodrigo, M.M.; Heger, Z.; Krizkova, S.; Vaculovicova, M.; Hynek, D.; Adam, V.; Kizek, R. Nanoscale virus biosensors: State of the art. Nanobiosens. Dis. Diag., 2015, 4, 47-66.
[12]
Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Multimodal imaging guided photothermal therapy using func-tionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater., 2012, 24(14), 1868-1872.
[http://dx.doi.org/10.1002/adma.201104964] [PMID: 22378564]
[13]
Zhu, Q.Q.; Wang, Z.H.; Zeng, H.; Yang, T.; Wang, X.X. Effects of graphene on various properties and applications of silicone rubber and silicone resin, compos. Part. A-Appl. S, 2021, 142(2021), 106240.
[14]
Cheng, P.; Moehring, N.K.; Idrobo, J.C.; Ivanov, I.N.; Kidambi, P.R. Scalable synthesis of nanoporous atomically thin graphene mem-branes for dialysis and molecular separations via facile isopropanol-assisted hot lamination. Nanoscale, 2021, 13(5), 2825-2837.
[http://dx.doi.org/10.1039/D0NR07384A] [PMID: 33508042]
[15]
Teng, J.; Ye, Y.W.; Yao, L.; Yan, C.; Cheng, K.; Xue, F.; Pan, D.D.; Li, B.G.; Chen, W. Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus. Mikrochim. Acta, 2017, 184, 3477-3485.
[http://dx.doi.org/10.1007/s00604-017-2383-0]
[16]
Arshad, R.; Barani, M.; Rahdar, A.; Sargazi, S.; Cucchiarini, M.; Pandey, S.; Kang, M. Multi-functionalized nanomaterials and nanoparti-cles for diagnosis and treatment of retinoblastoma. Biosensors (Basel), 2021, 11(4), 97.
[http://dx.doi.org/10.3390/bios11040097] [PMID: 33810621]
[17]
Barani, M.; Mukhtar, M.; Rahdar, A.; Sargazi, S.; Pandey, S.; Kang, M. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors (Basel), 2021, 11(2), 55.
[http://dx.doi.org/10.3390/bios11020055] [PMID: 33672770]
[18]
Bari, M.M.; Sarkar, A.K.; Hossain, S. 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), IEEE 8-10 Dec 2016, 2016, pp. 1-4.
[19]
Chand, R.; Neethirajan, S. Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of no-rovirus. Biosens. Bioelectron., 2017, 98, 47-53.
[http://dx.doi.org/10.1016/j.bios.2017.06.026] [PMID: 28649024]
[20]
Li, X.F.; Liu, L.G.; Xu, Z.; Wang, W.; Shi, J.; Liu, L.Y.; Jing, M.L.; Li, F.Y.; Zhang, X.X. Gamma irradiation and microemulsion assisted synthesis of monodisperse flower-like platinum-gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive detection of carcinoembryonic antigen, sensor. Actuat. Biol. Chem., 2019, 287, 267-277.
[21]
Zhu, F.; Zhao, G.; Dou, W. Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanopar-ticles and graphene functionalized with electrocatalytically active Au@Pt core/shell nanoparticles. Mikrochim. Acta, 2018, 185(10), 455.
[http://dx.doi.org/10.1007/s00604-018-2984-2] [PMID: 30215173]
[22]
Ren, D.X.; Sun, C.J.; Huang, Z.J.; Luo, Z.W.; Zhou, C.; Li, Y.X. A novel FRET biosensor based on four-way branch migration HCR for Vibrio parahaemolyticus detection, sensor. Actuat. Biol. Chem., 2019, 296, 126577.
[23]
Ling, N.; Shen, J.L.; Guo, J.J.; Zeng, D.X.; Ren, J.L.; Sun, L.X.; Jiang, Y.; Xue, F.; Dai, J.J.; Li, B.G. Rapid and accurate detection of viable Vibrio parahaemolyticus by sodium deoxycholate-propidium monoazide-qPCR in shrimp. Food Control, 2020, 109, 106883.
[http://dx.doi.org/10.1016/j.foodcont.2019.106883]
[24]
Newton, A.; Kendall, M.; Vugia, D.J.; Henao, O.L.; Mahon, B.E. Increasing rates of vibriosis in the United States, 1996-2010: Review of surveillance data from 2 systems. Clin. Infect. Dis., 2012, 54(Suppl. 5), S391-S395.
[http://dx.doi.org/10.1093/cid/cis243] [PMID: 22572659]
[25]
Martinez-Urtaza, J.; Bowers, J.C.; Trinanes, J.; DePaola, A. Climate anomalies and the increasing risk of Vibrio parahaemolyticus and Vib-rio vulnificus illnesses. Food Res. Int., 2010, 43, 1780-1790.
[http://dx.doi.org/10.1016/j.foodres.2010.04.001]
[26]
Austin, C.B.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Urtaza, J.M. Vibrio spp. Infections. Nat. Rev. Dis. Primers, 2018, 4, 1-19.
[http://dx.doi.org/10.1038/s41572-018-0005-8]
[27]
Wu, W.; Zhou, M.; He, H.; Liu, C.Z.; Li, P.F.; Wang, M.; Liu, Y.; Hao, X.D.; Fang, Z.Y. A sensitive aptasensor for the detection of Vibrio parahaemolyticus, sensor. Actuat. Biol. Chem., 2018, 272, 550-558.
[28]
Sabir, F.; Zeeshan, M.; Laraib, U.; Barani, M.; Rahdar, A.; Cucchiarini, M.; Pandey, S. DNA based and stimuli-responsive smart nanocar-rier for diagnosis and treatment of cancer: Applications and challenges. Cancers (Basel), 2021, 13(14), 3396.
[http://dx.doi.org/10.3390/cancers13143396] [PMID: 34298610]
[29]
Barani, M.; Hosseinikhah, S.M.; Rahdar, A.; Farhoudi, L.; Arshad, R.; Cucchiarini, M.; Pandey, S. Nanotechnology in bladder cancer: Diagnosis and treatment. Cancers (Basel), 2021, 13(9), 2214.
[http://dx.doi.org/10.3390/cancers13092214] [PMID: 34063088]
[30]
Blair, E.O.; Corrigan, D.K. A review of microfabricated electrochemical biosensors for DNA detection. Biosens. Bioelectron., 2019, 134, 57-67.
[http://dx.doi.org/10.1016/j.bios.2019.03.055] [PMID: 30954927]
[31]
Bonanni, A.; Pumera, M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano, 2011, 5(3), 2356-2361.
[http://dx.doi.org/10.1021/nn200091p] [PMID: 21355609]
[32]
Zhou, Z.Y.; Tian, N.; Li, J.T.; Broadwell, I.; Sun, S.G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev., 2011, 40(7), 4167-4185.
[http://dx.doi.org/10.1039/c0cs00176g] [PMID: 21552612]
[33]
Xie, H.; Luo, G.; Niu, Y.; Weng, W.; Zhao, Y.; Ling, Z.; Ruan, C.; Li, G.; Sun, W. Synthesis and utilization of Co3O4 doped carbon nano-fiber for fabrication of hemoglobin-based electrochemical sensor. Mater. Sci. Eng. C, 2020, 107, 110209.
[http://dx.doi.org/10.1016/j.msec.2019.110209] [PMID: 31761232]
[34]
Niu, X.L.; Wen, Z.R.; Li, X.B.; Shu, W.; Li, X.Y.; Huang, Y.Q.; Li, Q.T.; Li, G.J.; Sun, W. Fabrication of graphene and gold nanoparticle modified acupuncture needle electrode and its application in rutin analysis, sensor. Actuat. Biol. Chem., 2018, 255, 471-477.
[35]
Narang, J.; Mishra, A.; Pilloton, R. VV, A.; Wadhwa, S.; Pundir, C.S.; Khanuja, M. Development of MoSe2 nano-urchins as a sensing platform for a selective bio-capturing of Escherichia coli shiga toxin DNA. Biosensors (Basel), 2018, 8, 77.
[http://dx.doi.org/10.3390/bios8030077]
[36]
Mandli, J.; Mohammadi, H.; Amine, A. Electrochemical DNA sandwich biosensor based on enzyme amplified microRNA-21 detection and gold nanoparticles. Bioelectrochemistry, 2017, 116, 17-23.
[http://dx.doi.org/10.1016/j.bioelechem.2017.03.002] [PMID: 28342314]
[37]
Niu, X.L.; Zhang, W.L.; Huang, Y.; Wang, L.K.; Li, Z.F.; Sun, W. An electrochemical sensing platform amplified with a Au@Ag nanopar-ticle-decorated three-dimensional N-doped graphene aerogel for ultrasensitive determination of baicalein. New J. Chem., 2020, 44, 15975.
[http://dx.doi.org/10.1039/D0NJ03827J]
[38]
Sun, W.; Wang, X.L.; Wang, W.C.; Lu, Y.X.; Xi, J.W.; Zheng, W.; Wu, F.; Ao, H.L.; Li, G.J. Electrochemical DNA sensor for staphylococ-cus aureus nuc gene sequence with zirconia and graphene modified electrode. J. Solid State Electrochem., 2015, 19, 2431-2438.
[http://dx.doi.org/10.1007/s10008-015-2893-9]
[39]
Feng, Y.; Ma, X.; Han, L.; Peng, Z.; Yang, J. A universal approach to the synthesis of nanodendrites of noble metals. Nanoscale, 2014, 6(11), 6173-6179.
[http://dx.doi.org/10.1039/C4NR00421C] [PMID: 24793407]
[40]
Li, G.J.; Cheng, Z.X.; Xiang, Q.; Yan, L.M.; Wang, X.H.; Xu, J.Q. Bimetal Pd au decorated SnO2 nanosheets based gas sensor with temper-ature-dependent dual selectivity for detecting formaldehyde and acetone, sensor. Actuat. Biol. Chem., 2019, 283, 590-601.
[41]
Niu, X.L.; Zheng, W.; Li, X.Y.; Zhao, W.S.; Wen, Z.R.; Li, Q.T.; Xie, H.; Sun, W. Electrochemical DNA sensor based on chitosan-graphene and electrodeposited gold nanoparticle modified electrode for the detection of Staphylococcus aureus nuc gene sequence. Curr. Anal. Chem., 2018, 14, 159-165.
[http://dx.doi.org/10.2174/1573411013666170607123122]
[42]
Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4(7), 4324-4330.
[http://dx.doi.org/10.1021/nn101187z] [PMID: 20590149]
[43]
Radhakrishnan, S.; Sumathi, C.; Dharuman, V.; Wilson, J.J. Polypyrrole nanotubes-polyaniline composite for DNA detection using meth-ylene blue as intercalator, anal. Methods-UK, 2013, 5, 1010-1015.
[44]
Wang, L.M.; Lin, L.Q.; Xu, X.W.; Lei, S.Y.; Liu, A.L.; Chen, Y.Z.; Lin, X.H. Electrochemical biosensor for detection of PML/RAR α fu-sion gene based on eriochrome cyanine R film modified glassy carbon electrode. Electrochim. Acta, 2012, 69, 56-59.
[http://dx.doi.org/10.1016/j.electacta.2012.02.065]
[45]
Ensafi, A.A.; Farfani, N.K.; Amini, M.; Rezaei, B. Developing a sensitive DNA biosensor for the detection of flutamide using electrochem-ical method. J. Iran. Chem. Soc., 2017, 14, 1325-1334.
[http://dx.doi.org/10.1007/s13738-017-1083-3]
[46]
Peng, H.P.; Hu, Y.; Liu, P.; Deng, Y.N.; Chen, W.; Liu, A.L.; Chen, Y.Z.; Lin, X.H. Label-free electrochemical DNA biosensor for rapid detection of mutidrug resistance gene based on au nanoparticles/toluidine blue–graphene oxide nanocomposites, sensor. Actuat. Biol. Chem., 2015, 207, 269-276.
[47]
Niu, S.Y.; Sun, J.; Nan, C.C.; Lin, J.H. Sensitive DNA biosensor improved by 1,10-phenanthroline cobalt complex as indicator based on the electrode modified by gold nanoparticles and graphene, sensor. Actuat. Biol. Chem., 2013, 176, 58-63.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy