Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Network Analysis of Dengue NS1 Interacting Core Human Proteins Driving Dengue Pathogenesis

Author(s): Elakkiya Elumalai and Suresh Kumar Muthuvel*

Volume 15, Issue 4, 2021

Page: [287 - 300] Pages: 14

DOI: 10.2174/2212796816666211216115753

Price: $65

Abstract

Aim: We aimed to identify critical human proteins involved in cathepsin L regulation

Background: It has been shown that Dengue Virus (DENV) NS1 activates cathepsin L (CTSL). The CTSL activates heparanase, which cleaves heparan sulfate proteoglycans and causes dengue pathogenesis. NS1 directly interacts with PTBP1 and Gab proteins. Gab protein activates the Ras signaling pathway. Still, no known direct interaction partners are linking GAB1 to cathepsin L.

Objective: Our objective includes three main points.1-Network analysis of NS1 interacting human proteins 2- Identification of protein-drug and protein-disease interactions 3- Identification of core proteins involved in cathepsin L regulation.

Method: We collected NS1 interacting Human proteins from DenHunt, Int-Act Molecular Interaction Database, Virus Mentha, Virus Pathogen Database and Analysis Resource (ViPR), and Virus MINT. We employed Pesca, cytohubba, and centiscape as the significant plug-ins in Cytoscape for network analysis. To study protein-diseases and protein-drugs interaction, we used NetworkAnalyst.

Result: Based on the prior knowledge on the interaction of NS1 with GAB1 and PTBP1 human proteins, we found several core proteins that drive dengue pathogenesis. The proteins EED, NXF1, and MOV10, are the mediators between PTBP1 and CTSL. Similarly, DNM2, GRB2, PXN, PTPRC, and NTRK1 mediate GAB1 and PTBP1. The common first neighbors of MOV10, NXF1, and EED were identified, and the common primary pathways in all three subnetworks were mRNA processing and protein translation. The common interaction partners were considered for drug and disease network analysis. These proteins were; PARP1, NFKB2, HDAC2, SLC25A4, ATP5A1, EPN1, CTSL, UBR4, CLK3, and ARPC4. PARP1 was the highly connected node in the protein-drug network. The highest degree protein, LMNA, was associated with many diseases. The NXF1 is connected with LMNA. Here, we reported one essential protein, namely, NXF1 protein, which links PTBP1 with CTSL. The NXF1 is also connected with TPM3, which is connected to CTSL.

Conclusion: We listed functionally important proteins which are involved in cathepsin L activation. Based on network properties, we proposed, NXF1 and TPM3 are the important high centrality proteins in dengue infection.

Keywords: Dengue Virus, NS1, Network, Pathway, degree, centrality, drugs

Graphical Abstract
[1]
Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature 2013; 496(7446): 504-7.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[2]
World Health Organization. Dengue Hemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. 2nd ed. World Health Organization 1997.
[3]
Muller DA, Young PR. The flavivirus NS1 protein: Molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res 2013; 98(2): 192-208.
[http://dx.doi.org/10.1016/j.antiviral.2013.03.008] [PMID: 23523765]
[4]
Uno N, Ross TM. Dengue virus and the host innate immune response. Emerg Microbes Infect 2018; 7(1): 167.
[http://dx.doi.org/10.1038/s41426-018-0168-0] [PMID: 30301880]
[5]
Youn S, Li T, McCune BT, et al. Evidence for a genetic and physical interaction between nonstructural proteins NS1 and NS4B that modulates replication of West Nile virus. J Virol 2012; 86(13): 7360-71.
[http://dx.doi.org/10.1128/JVI.00157-12] [PMID: 22553322]
[6]
Puerta-Guardo H, Glasner DR, Harris E. Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog 2016; 12(7): e1005738.
[http://dx.doi.org/10.1371/journal.ppat.1005738] [PMID: 27416066]
[7]
Tang TH, Alonso S, Ng LF, et al. Increased serum hyaluronic acid and heparan sulfate in dengue fever: association with plasma leakage and disease severity. Sci Rep 2017; 7: 46191.
[http://dx.doi.org/10.1038/srep46191] [PMID: 28393899]
[8]
Hermjakob H, Montecchi-Palazzi L, Lewington C, et al. IntAct: an open source molecular interaction database. Nucleic Acids Res 2004; 32(Database issue): D452-5.
[http://dx.doi.org/10.1093/nar/gkh052] [PMID: 14681455]
[9]
Calderone A, Licata L, Cesareni G. VirusMentha: a new resource for virus-host protein interactions. Nucleic Acids Res 2015; 43(Database issue): D588-92.
[http://dx.doi.org/10.1093/nar/gku830] [PMID: 25217587]
[10]
Pickett BE, Sadat EL, Zhang Y, et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res 2012; 40(Database issue): D593-8.
[http://dx.doi.org/10.1093/nar/gkr859] [PMID: 22006842]
[11]
Chatr-aryamontri A, Ceol A, Peluso D, et al. VirusMINT: a viral protein interaction database. Nucleic Acids Res 2009; 37(Database issue): D669-73.
[http://dx.doi.org/10.1093/nar/gkn739] [PMID: 18974184]
[12]
Karyala P, Metri R, Bathula C, et al. DenHunt - a comprehensive database of the intricate network of dengue-human interactions. PLoS Negl Trop Dis 2016; 10(9): e0004965.
[http://dx.doi.org/10.1371/journal.pntd.0004965] [PMID: 27618709]
[13]
Cook HV, Doncheva NT, Szklarczyk D, von Mering C, Jensen LJ. Viruses.STRING: a virus-host protein-protein interaction database. Viruses 2018; 10(10): 519.
[http://dx.doi.org/10.3390/v10100519] [PMID: 30249048]
[14]
Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 2017; 45(D1): D362-8.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[15]
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape stringapp: network analysis and visualization of proteomics data. J Proteome Res 2019; 18(2): 623-32.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[16]
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999; 27(1): 29-34.
[http://dx.doi.org/10.1093/nar/27.1.29] [PMID: 9847135]
[17]
Scardoni G, Tosadori G, Pratap S, Spoto F, Laudanna C. Finding the shortest path with PesCa: a tool for network reconstruction. F1000 Res 2015; 4: 484.
[http://dx.doi.org/10.12688/f1000research.6769.1] [PMID: 27781081]
[18]
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8(Suppl 4)
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[19]
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 2009; 37(Web Server issue): W305-11.
[http://dx.doi.org/10.1093/nar/gkp427]
[20]
Haw RA, Croft D, Yung CK, et al. The reactome biomart. Database (Oxford) 2011; 2011: bar031.
[http://dx.doi.org/10.1093/database/bar031] [PMID: 22012987]
[21]
Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 2019; 47(W1): W234-41.
[http://dx.doi.org/10.1093/nar/gkz240] [PMID: 30931480]
[22]
Scardoni G, Tosadori G, Faizan M, Spoto F, Fabbri F, Laudanna C. Biological network analysis with CentiScaPe: centralities and experimental dataset integration. F1000 Res 2014; 3: 139.
[http://dx.doi.org/10.12688/f1000research.4477.1] [PMID: 26594322]
[23]
Doolittle JM, Gomez SM. Mapping protein interactions between Dengue virus and its human and insect hosts. PLoS Negl Trop Dis 2011; 5(2): e954.
[http://dx.doi.org/10.1371/journal.pntd.0000954] [PMID: 21358811]
[24]
Collette J, Ulku AS, Der CJ, Jones A, Erickson AH. Enhanced cathepsin L expression is mediated by different Ras effector pathways in fibroblasts and epithelial cells. Int J Cancer 2004; 112(2): 190-9.
[http://dx.doi.org/10.1002/ijc.20398] [PMID: 15352030]
[25]
Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T. Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol 2000; 20(10): 3695-704.
[http://dx.doi.org/10.1128/MCB.20.10.3695-3704.2000] [PMID: 10779359]
[26]
Karakasiliotis I, Vashist S, Bailey D, et al. Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. PLoS One 2010; 5(3): e9562.
[http://dx.doi.org/10.1371/journal.pone.0009562] [PMID: 20224775]
[27]
Singh M, Jadhav HR, Bhatt T. Dynamin functions and ligands: classical mechanisms behind. Mol Pharmacol 2017; 91(2): 123-34.
[http://dx.doi.org/10.1124/mol.116.105064] [PMID: 27879341]
[28]
Yang J, Zou L, Hu Z, et al. Identification and characterization of a 43 kDa actin protein involved in the DENV-2 binding and infection of ECV304 cells. Microbes Infect 2013; 15(4): 310-8.
[http://dx.doi.org/10.1016/j.micinf.2013.01.004] [PMID: 23376163]
[29]
Ang F, Wong APY, Ng MML, Chu JJH. Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of the dengue virus. Virol J 2010; 7(24)
[http://dx.doi.org/10.1186/1743-422X-7-24]
[30]
Tari AM, Lopez-Berestein G. GRB2: a pivotal protein in signal transduction. Semin Oncol 2001; 28(5 Suppl. 16): 142-7.
[http://dx.doi.org/10.1016/S0093-7754(01)90291-X] [PMID: 11706405]
[31]
Thiel N, Zischke J, Elbasani E, Kay-Fedorov P, Messerle M. Viral interference with functions of the cellular receptor tyrosine phosphatase CD45. Viruses 2015; 7(3): 1540-57.
[http://dx.doi.org/10.3390/v7031540] [PMID: 25807057]
[32]
Alberti L, Carniti C, Miranda C, Roccato E, Pierotti MA. RET and NTRK1 proto-oncogenes in human diseases. J Cell Physiol 2003; 195(2): 168-86.
[http://dx.doi.org/10.1002/jcp.10252] [PMID: 12652644]
[33]
Fragnoud R, Flamand M, Reynier F, et al. Differential proteomic analysis of virus-enriched fractions obtained from plasma pools of patients with dengue fever or severe dengue. BMC Infect Dis 2015; 15: 518.
[http://dx.doi.org/10.1186/s12879-015-1271-7] [PMID: 26572220]
[34]
Read EK, Digard P. Individual influenza A virus mRNAs show differential dependence on cellular NXF1/TAP for their nuclear export. J Gen Virol 2010; 91(Pt 5): 1290-301.
[http://dx.doi.org/10.1099/vir.0.018564-0] [PMID: 20071484]
[35]
Johnson LA, Li L, Sandri-Goldin RM. The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol 2009; 83(13): 6335-46.
[http://dx.doi.org/10.1128/JVI.00375-09] [PMID: 19369354]
[36]
Johnson LA, Sandri-Goldin RM. Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and ICP27 interaction with TAP/NXF1. J Virol 2009; 83(3): 1184-92.
[http://dx.doi.org/10.1128/JVI.02010-08] [PMID: 19019956]
[37]
Koffa MD, Clements JB, Izaurralde E, et al. Herpes simplex virus ICP27 protein provides viral mRNAs with access to the cellular mRNA export pathway. EMBO J 2001; 20(20): 5769-78.
[http://dx.doi.org/10.1093/emboj/20.20.5769] [PMID: 11598019]
[38]
Zhang K, Xie Y, Muñoz-Moreno R, et al. Structural basis for influenza virus NS1 protein block of mRNA nuclear export. Nat Microbiol 2019; 4(10): 1671-9.
[http://dx.doi.org/10.1038/s41564-019-0482-x] [PMID: 31263181]
[39]
Cuevas RA, Ghosh A, Wallerath C, Hornung V, Coyne CB, Sarkar SN. MOV10 provides antiviral activity against RNA viruses by enhancing RIG-I-MAVS-independent IFN induction. J Immunol 2016; 196(9): 3877-86.
[http://dx.doi.org/10.4049/jimmunol.1501359] [PMID: 27016603]
[40]
Wan SW, Lin CF, Lu YT, Lei HY, Anderson R, Lin YS. Endothelial cell surface expression of protein disulfide isomerase activates β1 and β3 integrins and facilitates dengue virus infection. J Cell Biochem 2012; 113(5): 1681-91.
[http://dx.doi.org/10.1002/jcb.24037] [PMID: 22422622]
[41]
Rakotobe D, Tardy JC, André P, Hong SS, Darlix JL, Boulanger P. Human polycomb group EED protein negatively affects HIV-1 assembly and release. Retrovirology 2007; 4: 37.
[http://dx.doi.org/10.1186/1742-4690-4-37] [PMID: 17547741]
[42]
Troupin A, Londono-Renteria B, Conway MJ, et al. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochim Biophys Acta 2016; 1860(9): 1898-909.
[http://dx.doi.org/10.1016/j.bbagen.2016.05.033] [PMID: 27241849]
[43]
Boudreault S, Roy P, Lemay G, Bisaillon M. Viral modulation of cellular RNA alternative splicing: A new key player in virus-host interactions? Wiley Interdiscip Rev RNA 2019; 10(5): e1543.
[http://dx.doi.org/10.1002/wrna.1543] [PMID: 31034770]
[44]
Zheng YZ, Xue MZ, Shen HJ, et al. PHF5A epigenetically inhibits apoptosis to promote breast cancer progression. Cancer Res 2018; 78(12): 3190-206.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3514] [PMID: 29700004]
[45]
Organ EL, Sheng J, Ruley HE, Rubin DH. Discovery of mammalian genes that participate in virus infection. BMC Cell Biol 2004; 5(1): 41.
[http://dx.doi.org/10.1186/1471-2121-5-41] [PMID: 15522117]
[46]
Park S, Han SH, Kim HG, et al. PRPF4 is a novel therapeutic target for the treatment of breast cancer by influencing growth, migration, invasion, and apoptosis of breast cancer cells via p38 MAPK signaling pathway. Mol Cell Probes 2019; 47: 101440.
[http://dx.doi.org/10.1016/j.mcp.2019.101440] [PMID: 31445970]
[47]
Chan CYY, Low JZH, Gan ES, et al. Antibody-dependent dengue virus entry modulates cell intrinsic responses for enhanced infection. MSphere 2019; 4(5): e00528-19.
[http://dx.doi.org/10.1128/mSphere.00528-19] [PMID: 31533998]
[48]
Reid DW, Campos RK, Child JR, et al. Dengue virus selectively annexes endoplasmic reticulum-associated translation machinery as a strategy for co-opting host cell protein synthesis. J Virol 2018; 92(7): e01766-17.
[http://dx.doi.org/10.1128/JVI.01766-17] [PMID: 29321322]
[49]
Chien YW, Wang CC, Wang YP, Lee CY, Perng GC. Risk of leukemia after dengue virus infection: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 2020; 29(3): 558-64.
[http://dx.doi.org/10.1158/1055-9965.EPI-19-1214] [PMID: 32051189]
[50]
Dykes SS, Fasanya HO, Siemann DW. Cathepsin L secretion by host and neoplastic cells potentiates invasion. Oncotarget 2019; 10(53): 5560-8.
[http://dx.doi.org/10.18632/oncotarget.27182] [PMID: 31565189]
[51]
Pando-Robles V, Oses-Prieto JA, Rodríguez-Gandarilla M, Meneses-Romero E, Burlingame AL, Batista CV. Quantitative proteomic analysis of Huh-7 cells infected with dengue virus by label-free LC-MS. J Proteomics 2014; 111: 16-29.
[http://dx.doi.org/10.1016/j.jprot.2014.06.029] [PMID: 25009145]
[52]
Chatel-Chaix L, Cortese M, Romero-Brey I, et al. Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses. Cell Host Microbe 2016; 20(3): 342-56.
[http://dx.doi.org/10.1016/j.chom.2016.07.008] [PMID: 27545046]
[53]
Chang Z, Wang Y, Zhou X, Long JE. STAT3 roles in viral infection: antiviral or proviral? Future Virol 2018; 13(8): 557-74.
[http://dx.doi.org/10.2217/fvl-2018-0033] [PMID: 32201498]
[54]
Paronetto MP, Achsel T, Massiello A, Chalfant CE, Sette C. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol 2007; 176(7): 929-39.
[http://dx.doi.org/10.1083/jcb.200701005] [PMID: 17371836]
[55]
Verma R, Holla VV, Kumar V, et al. A study of acute muscle dysfunction with particular reference to dengue myopathy. Ann Indian Acad Neurol 2017; 20(1): 13-22.
[http://dx.doi.org/10.4103/0972-2327.199914] [PMID: 28298837]
[56]
Xu H, Liu H, Chen T, et al. The R168G heterozygous mutation of tropomyosin 3 (TPM3) was identified in three family members and has manifestations ranging from asymptotic to serve scoliosis and respiratory complications. Genes Dis 2020; 8(5): 715-20.
[http://dx.doi.org/10.1016/j.gendis.2020.01.010] [PMID: 34291143]
[57]
Wang Y, Stear JH, Swain A, et al. Drug targeting the actin cytoskeleton potentiates the cytotoxicity of low dose vincristine by abrogating actin-mediated repair of spindle defects. Mol Cancer Res 2020; 18(7): 1074-87.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-1122] [PMID: 32269073]
[58]
Lehtokari VL, Pelin K, Donner K, et al. Identification of a founder mutation in TPM3 in nemaline myopathy patients of Turkish origin. Eur J Hum Genet 2008; 16(9): 1055-61.
[http://dx.doi.org/10.1038/ejhg.2008.60] [PMID: 18382475]
[59]
Tsoi H, Lau CK, Lau KF, Chan HY. Perturbation of U2AF65/NXF1-mediated RNA nuclear export enhances RNA toxicity in polyQ diseases. Hum Mol Genet 2011; 20(19): 3787-97.
[http://dx.doi.org/10.1093/hmg/ddr297] [PMID: 21725067]
[60]
Zheng W, Wu H, Liu C, et al. Identification of COVID-19 and dengue host factor interaction networks based on integrative bioinformatics analyses. Front Immunol 2021; 12: 707287.
[http://dx.doi.org/10.3389/fimmu.2021.707287] [PMID: 34394108]
[61]
Hafirassou ML, Meertens L, Umaña-Diaz C, et al. A global interactome map of the dengue virus NS1 identifies virus restriction and dependency host factors. Cell Rep 2017; 21(13): 3900-13.
[http://dx.doi.org/10.1016/j.celrep.2017.11.094] [PMID: 29281836]
[62]
Nikolayeva I. Network and machine learning approaches to dengue omics data. Ph.D Thesis, Systems Biology Lab and Functional Genetics of Infectious Diseases Unit, Pasteur Institute: Paris, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy