Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Mini-Review Article

Nutraceuticals in the Management of Cardiovascular Risk Factors: Where is the Evidence?

Author(s): Cody Russell, Suresh Keshavamurthy * and Sibu Saha

Volume 21, Issue 3, 2021

Published on: 28 December, 2021

Page: [150 - 161] Pages: 12

DOI: 10.2174/1871529X21666211201104124

Price: $65

Abstract

Cardiovascular disease continues to rise at an alarming rate, and research focuses on possible therapies to reduce the risk and slow down its progression. Several epidemiological studies have indicated that dietary modifications, such as increased consumption of fruits and vegetables play an important role in reducing cardiovascular disease risk factors. Food sources rich in antioxidants, anti-inflammatory, hypolipidemic, and hypoglycemic properties are thought to ameliorate the progression of cardiovascular disease and serve as a potential treatment mode. Many in vivo and in vitro studies using turmeric, cinnamon, mango, blueberries, red wine, chocolate, and extra virgin olive oil have demonstrated significant improvements in cholesterol profiles, toxic reactive oxygen species, inflammation, obesity, and hypertension. In this review, we summarize recent evidence on the cardioprotective effect of different food groups, outline their potential mechanisms involved in slowing down the progression of cardiovascular disease, and highlight the beneficial effects associated with increased consumption.

Keywords: Nutraceuticals, oxidative stress, antioxidants, cardiovascular disease (CVD), dyslipidemia, atherosclerosis, coronary artery disease (CAD).

Graphical Abstract
[1]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons- Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V. GBD-NHLBI- JACC global burden of cardiovascular diseases writing group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[2]
Heidenreich, P.A.; Trogdon, J.G.; Khavjou, O.A.; Butler, J.; Dracup, K.; Ezekowitz, M.D.; Finkelstein, E.A.; Hong, Y.; Johnston, S.C.; Khera, A.; Lloyd-Jones, D.M.; Nelson, S.A.; Nichol, G.; Orenstein, D.; Wilson, P.W.; Woo, Y.J. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation, 2011, 123(8), 933-944.
[http://dx.doi.org/10.1161/CIR.0b013e31820a55f5] [PMID: 21262990]
[3]
Pandya, A.; Gaziano, T.A.; Weinstein, M.C.; Cutler, D. More americans living longer with cardiovascular disease will increase costs while lowering quality of life. Health Aff. (Millwood), 2013, 32(10), 1706-1714.
[http://dx.doi.org/10.1377/hlthaff.2013.0449] [PMID: 24101059]
[4]
World Health Organization 2021. Available from: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1
[5]
Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 5276130.
[http://dx.doi.org/10.1155/2016/5276130] [PMID: 27803762]
[6]
Kim, K.; Vance, T.M.; Chen, M.H.; Chun, O.K. Dietary total antioxidant capacity is inversely associated with all-cause and cardiovascular disease death of US adults. Eur. J. Nutr., 2018, 57(7), 2469-2476.
[http://dx.doi.org/10.1007/s00394-017-1519-7] [PMID: 28791462]
[7]
Gey, K.F. The antioxidant hypothesis of cardiovascular disease: epidemiology and mechanisms. Biochem. Soc. Trans., 1990, 18(6), 1041-1045.
[http://dx.doi.org/10.1042/bst0181041] [PMID: 2088799]
[8]
Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Can Karaca, A.; Sharifi-Rad, M.; Kahveci Karıncaoglu, D.; Gülseren, G.; Şenol, E.; Demircan, E.; Taheri, Y.; Suleria, H.A.R.; Özçelik, B.; Nur Kasapoğlu, K.; Gültekin-Özgüven, M.; Daşkaya-Dikmen, C.; Cho, W.C.; Martins, N.; Calina, D. Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds. Int. J. Environ. Res. Public Health, 2020, 17(7), E2326.
[http://dx.doi.org/10.3390/ijerph17072326] [PMID: 32235611]
[9]
Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol., 2018, 100, 1-19.
[http://dx.doi.org/10.1016/j.vph.2017.05.005] [PMID: 28579545]
[10]
Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; Daiber, A. Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid. Med. Cell. Longev., 2019, 2019, 7092151.
[http://dx.doi.org/10.1155/2019/7092151] [PMID: 31341533]
[11]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[12]
Ross, R. Atherosclerosis is an inflammatory disease. Am. Heart J., 1999, 138(5 Pt 2), S419-S420.
[http://dx.doi.org/10.1016/S0002-8703(99)70266-8] [PMID: 10539839]
[13]
Leopold, J.A. Antioxidants and coronary artery disease: from pathophysiology to preventive therapy. Coron. Artery Dis., 2015, 26(2), 176-183.
[http://dx.doi.org/10.1097/MCA.0000000000000187] [PMID: 25369999]
[14]
Kalea, A.Z.; Drosatos, K.; Buxton, J.L. Nutriepigenetics and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care, 2018, 21(4), 252-259.
[http://dx.doi.org/10.1097/MCO.0000000000000477] [PMID: 29847446]
[15]
Santhakumar, A.B.; Battino, M.; Alvarez-Suarez, J.M. Dietary polyphenols: Structures, bioavailability and protective effects against atherosclerosis. Food Chem. Toxicol., 2018, 113, 49-65.
[http://dx.doi.org/10.1016/j.fct.2018.01.022] [PMID: 29360556]
[16]
Cheng, Y.C.; Sheen, J.M.; Hu, W.L.; Hung, Y.C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid. Med. Cell. Longev., 2017, 2017, 8526438.
[http://dx.doi.org/10.1155/2017/8526438] [PMID: 29317985]
[17]
Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and health. Molecules, 2016, 21(3), 264.
[http://dx.doi.org/10.3390/molecules21030264] [PMID: 26927041]
[18]
Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr. J., 2017, 16(1), 68.
[http://dx.doi.org/10.1186/s12937-017-0293-y] [PMID: 29020971]
[19]
Kim, Y.; Clifton, P. Curcumin, cardiometabolic health and dementia. Int. J. Environ. Res. Public Health, 2018, 15(10), E2093.
[http://dx.doi.org/10.3390/ijerph15102093] [PMID: 30250013]
[20]
Li, C.; Li, J.; Jiang, F.; Tzvetkov, N.T.; Horbanczuk, J.O.; Li, Y.; Atanasov, A.G.; Wang, D. Vasculoprotective effects of ginger (Zingiber officinale Roscoe) and underlying molecular mechanisms. Food Funct., 2021, 12(5), 1897-1913.
[http://dx.doi.org/10.1039/D0FO02210A] [PMID: 33592084]
[21]
Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe). Foods, 2019, 8(6), E185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[22]
Tsui, P.F.; Lin, C.S.; Ho, L.J.; Lai, J.H. Spices and atherosclerosis. Nutrients, 2018, 10(11), E1724.
[http://dx.doi.org/10.3390/nu10111724] [PMID: 30423840]
[23]
Nicoll, R.; Henein, M.Y. Ginger (Zingiber officinale Roscoe): a hot remedy for cardiovascular disease? Int. J. Cardiol., 2009, 131(3), 408-409.
[http://dx.doi.org/10.1016/j.ijcard.2007.07.107] [PMID: 18037515]
[24]
Nyadjeu, P.; Nguelefack-Mbuyo, E.P.; Atsamo, A.D.; Nguelefack, T.B.; Dongmo, A.B.; Kamanyi, A. Acute and chronic antihypertensive effects of Cinnamomum zeylanicum stem bark methanol extract in L-NAME-induced hypertensive rats. BMC Complement. Altern. Med., 2013, 13, 27.
[http://dx.doi.org/10.1186/1472-6882-13-27] [PMID: 23368533]
[25]
Pulungan, A.; Pane, Y.S. The benefit of cinnamon ( Cinnamomum burmannii) in lowering total cholesterol levels after consumption of high-fat containing foods in white mice ( Mus musculus) models. F1000 Res., 2020, 9, 168.
[PMID: 32566138]
[26]
Kang, H.; Park, S.H.; Yun, J.M.; Nam, T.G.; Kim, Y.E.; Kim, D.O.; Kim, Y.J. Effect of cinnamon water extract on monocyte-to- macrophage differentiation and scavenger receptor activity. BMC Complement. Altern. Med., 2014, 14, 90.
[http://dx.doi.org/10.1186/1472-6882-14-90] [PMID: 24602512]
[27]
Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Cífková, R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; Whelton, P.K. Hypertension. Nat. Rev. Dis. Primers, 2018, 4, 18014.
[http://dx.doi.org/10.1038/nrdp.2018.14] [PMID: 29565029]
[28]
Lee, J.S.; Jeon, S.M.; Park, E.M.; Huh, T.L.; Kwon, O.S.; Lee, M.K.; Choi, M.S. Cinnamate supplementation enhances hepatic lipid metabolism and antioxidant defense systems in high cholesterol-fed rats. J. Med. Food, 2003, 6(3), 183-191.
[http://dx.doi.org/10.1089/10966200360716599] [PMID: 14585184]
[29]
Imran, M.; Arshad, M.S.; Butt, M.S.; Kwon, J.H.; Arshad, M.U.; Sultan, M.T. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis., 2017, 16(1), 84.
[http://dx.doi.org/10.1186/s12944-017-0449-y] [PMID: 28464819]
[30]
Yang, H.; Bai, W.; Gao, L.; Jiang, J.; Tang, Y.; Niu, Y.; Lin, H.; Li, L. Mangiferin alleviates hypertension induced by hyperuricemia via increasing nitric oxide releases. J. Pharmacol. Sci., 2018, 137(2), 154-161.
[http://dx.doi.org/10.1016/j.jphs.2018.05.008] [PMID: 29934052]
[31]
Jiang, F.; Zhang, D.L.; Jia, M.; Hao, W.H.; Li, Y.J. Mangiferin inhibits high-fat diet induced vascular injury via regulation of PTEN/AKT/eNOS pathway. J. Pharmacol. Sci., 2018, 137(3), 265-273.
[http://dx.doi.org/10.1016/j.jphs.2018.07.004] [PMID: 30097377]
[32]
Suchal, K.; Malik, S.; Gamad, N.; Malhotra, R.K.; Goyal, S.N.; Ojha, S.; Kumari, S.; Bhatia, J.; Arya, D.S. Mangiferin protect myocardial insults through modulation of MAPK/TGF-β pathways. Eur. J. Pharmacol., 2016, 776, 34-43.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.055] [PMID: 26921754]
[33]
Czompa, A.; Gyongyosi, A.; Szoke, K.; Bak, I.; Csepanyi, E.; Haines, D.D.; Tosaki, A.; Lekli, I. Effects of momordica charantia (bitter melon) on ischemic diabetic myocardium. Molecules, 2017, 22(3), E488.
[http://dx.doi.org/10.3390/molecules22030488] [PMID: 28335529]
[34]
Alam, M.A.; Uddin, R.; Subhan, N.; Rahman, M.M.; Jain, P.; Reza, H.M. Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J. Lipids, 2015, 2015, 496169.
[http://dx.doi.org/10.1155/2015/496169] [PMID: 25650336]
[35]
Zeng, Y.; Guan, M.; Li, C.; Xu, L.; Zheng, Z.; Li, J.; Xue, Y. Bitter melon (Momordica charantia) attenuates atherosclerosis in apo-E knock-out mice possibly through reducing triglyceride and anti-inflammation. Lipids Health Dis., 2018, 17(1), 251.
[http://dx.doi.org/10.1186/s12944-018-0896-0] [PMID: 30400958]
[36]
Kinoshita, H.; Ogata, Y. Effect of bitter melon extracts on lipid levels in japanese subjects: a randomized controlled study. Evid. Based Complement. Alternat. Med., 2018, 2018, 4915784.
[http://dx.doi.org/10.1155/2018/4915784] [PMID: 30532795]
[37]
Raish, M.; Ahmad, A.; Ansari, M.A.; Alkharfy, K.M.; Aljenoobi, F.I.; Jan, B.L.; Al-Mohizea, A.M.; Khan, A.; Ali, N. Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. Int. J. Biol. Macromol., 2018, 111, 193-199.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.008] [PMID: 29307809]
[38]
Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent research on the health benefits of blueberries and their anthocyanins. Adv. Nutr., 2020, 11(2), 224-236.
[PMID: 31329250]
[39]
Stote, KS; Wilson, MM; Hallenbeck, D; Thomas, K; Rourke, JM; Sweeney, MI Effect of blueberry consumption on cardiometabolic health parameters in men with type 2 diabetes: an 8-week, double-blind, randomized, placebo-controlled trial. Curr Dev Nutr., 2020, 4(4), nzaa030.
[40]
Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr., 2010, 140(9), 1582-1587.
[http://dx.doi.org/10.3945/jn.110.124701] [PMID: 20660279]
[41]
Curtis, P.J.; van der Velpen, V.; Berends, L.; Jennings, A.; Feelisch, M.; Umpleby, A.M.; Evans, M.; Fernandez, B.O.; Meiss, M.S.; Minnion, M.; Potter, J.; Minihane, A.M.; Kay, C.D.; Rimm, E.B.; Cassidy, A. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr., 2019, 109(6), 1535-1545.
[http://dx.doi.org/10.1093/ajcn/nqy380] [PMID: 31136659]
[42]
Wu, X.; Wang, T.T.Y.; Prior, R.L.; Pehrsson, P.R. Prevention of atherosclerosis by berries: the case of blueberries. J. Agric. Food Chem., 2018, 66(35), 9172-9188.
[http://dx.doi.org/10.1021/acs.jafc.8b03201] [PMID: 30092632]
[43]
Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation, 2009, 120(16), 1640-1645.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644] [PMID: 19805654]
[44]
Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech., 2009, 2(5-6), 231-237.
[http://dx.doi.org/10.1242/dmm.001180] [PMID: 19407331]
[45]
Najjar, R.S.; Schwartz, A.M.; Wong, B.J.; Mehta, P.K.; Feresin, R.G. Berries and their polyphenols as a potential therapy for coronary microvascular dysfunction: a mini-review. Int. J. Mol. Sci., 2021, 22(7), 3373.
[http://dx.doi.org/10.3390/ijms22073373] [PMID: 33806050]
[46]
Rodriguez-Mateos, A.; Heiss, C.; Borges, G.; Crozier, A. Berry (poly)phenols and cardiovascular health. J. Agric. Food Chem., 2014, 62(18), 3842-3851.
[http://dx.doi.org/10.1021/jf403757g] [PMID: 24059851]
[47]
Corti, R.; Flammer, A.J.; Hollenberg, N.K.; Lüscher, T.F. Cocoa and cardiovascular health. Circulation, 2009, 119(10), 1433-1441.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.827022] [PMID: 19289648]
[48]
Katz, D.L.; Doughty, K.; Ali, A. Cocoa and chocolate in human health and disease. Antioxid. Redox Signal., 2011, 15(10), 2779-2811.
[http://dx.doi.org/10.1089/ars.2010.3697] [PMID: 21470061]
[49]
Garcia, J.P.; Santana, A.; Baruqui, D.L.; Suraci, N. The Cardiovascular effects of chocolate. Rev. Cardiovasc. Med., 2018, 19(4), 123-127.
[PMID: 31064163]
[50]
Rostami, A.; Khalili, M.; Haghighat, N.; Eghtesadi, S.; Shidfar, F.; Heidari, I.; Ebrahimpour-Koujan, S.; Eghtesadi, M. High-cocoa polyphenol-rich chocolate improves blood pressure in patients with diabetes and hypertension. ARYA Atheroscler., 2015, 11(1), 21-29.
[PMID: 26089927]
[51]
Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red wine consumption and cardiovascular health. Molecules, 2019, 24(19), E3626.
[http://dx.doi.org/10.3390/molecules24193626] [PMID: 31597344]
[52]
Cho, I.J.; Ahn, J.Y.; Kim, S.; Choi, M.S.; Ha, T.Y. Resveratrol attenuates the expression of HMG-CoA reductase mRNA in hamsters. Biochem. Biophys. Res. Commun., 2008, 367(1), 190-194.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.140] [PMID: 18166149]
[53]
Prasad, K. Resveratrol, wine, and atherosclerosis. Int. J. Angiol., 2012, 21(1), 7-18.
[http://dx.doi.org/10.1007/s00547-004-1060-4] [PMID: 23450206]
[54]
Zordoky, B.N.; Robertson, I.M.; Dyck, J.R. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim. Biophys. Acta, 2015, 1852(6), 1155-1177.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.016] [PMID: 25451966]
[55]
Kanamori, H.; Takemura, G.; Goto, K.; Tsujimoto, A.; Ogino, A.; Takeyama, T.; Kawaguchi, T.; Watanabe, T.; Morishita, K.; Kawasaki, M.; Mikami, A.; Fujiwara, T.; Fujiwara, H.; Seishima, M.; Minatoguchi, S. Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway. Am. J. Pathol., 2013, 182(3), 701-713.
[http://dx.doi.org/10.1016/j.ajpath.2012.11.009] [PMID: 23274061]
[56]
Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutrients, 2018, 10(9), E1211.
[http://dx.doi.org/10.3390/nu10091211] [PMID: 30200502]
[57]
Ramdath, D.D.; Padhi, E.M.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients, 2017, 9(4), E324.
[http://dx.doi.org/10.3390/nu9040324] [PMID: 28338639]
[58]
Tang, G.Y.; Meng, X.; Li, Y.; Zhao, C.N.; Liu, Q.; Li, H.B. Effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients, 2017, 9(8), E857.
[http://dx.doi.org/10.3390/nu9080857] [PMID: 28796173]
[59]
Bakhtiary, A.; Yassin, Z.; Hanachi, P.; Rahmat, A.; Ahmad, Z.; Jalali, F. Effects of soy on metabolic biomarkers of cardiovascular disease in elderly women with metabolic syndrome. Arch. Iran Med., 2012, 15(8), 462-468.
[PMID: 22827780]
[60]
Variya, B.C.; Bakrania, A.K.; Patel, S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res., 2016, 111, 180-200.
[http://dx.doi.org/10.1016/j.phrs.2016.06.013] [PMID: 27320046]
[61]
Krishnaveni, M.; Mirunalini, S. Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. J. Basic Clin. Physiol. Pharmacol., 2010, 21(1), 93-105.
[PMID: 20506691]
[62]
Khanna, S.; Das, A.; Spieldenner, J.; Rink, C.; Roy, S. Supplementation of a standardized extract from Phyllanthus emblica improves cardiovascular risk factors and platelet aggregation in overweight/class-1 obese adults. J. Med. Food, 2015, 18(4), 415-420.
[http://dx.doi.org/10.1089/jmf.2014.0178] [PMID: 25756303]
[63]
Thirunavukkarasu, M.; Selvaraju, V.; Tapias, L.; Sanchez, J.A.; Palesty, J.A.; Maulik, N. Protective effects of Phyllanthus emblica against myocardial ischemia-reperfusion injury: the role of PI3-kinase/glycogen synthase kinase 3β/β-catenin pathway. J. Physiol. Biochem., 2015, 71(4), 623-633.
[http://dx.doi.org/10.1007/s13105-015-0426-8] [PMID: 26342597]
[64]
Hashem-Dabaghian, F.; Ziaee, M.; Ghaffari, S.; Nabati, F.; Kianbakht, S. A systematic review on the cardiovascular pharmacology of Emblica officinalis Gaertn. J. Cardiovasc. Thorac. Res., 2018, 10(3), 118-128.
[http://dx.doi.org/10.15171/jcvtr.2018.20] [PMID: 30386531]
[65]
Antony, B.; Benny, M.; Kaimal, T.N. A Pilot clinical study to evaluate the effect of Emblica officinalis extract (Amlamax™) on markers of systemic inflammation and dyslipidemia. Indian J. Clin. Biochem., 2008, 23(4), 378-381.
[http://dx.doi.org/10.1007/s12291-008-0083-6] [PMID: 23105791]
[66]
Patil, B.S.; Kanthe, P.S.; Reddy, C.R.; Das, K.K. Emblica officinalis (Amla) ameliorates high-fat diet induced alteration of cardiovascular pathophysiology. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 52-63.
[http://dx.doi.org/10.2174/1871525717666190409120018] [PMID: 30963985]
[67]
Wang, H.M.; Fu, L.; Cheng, C.C.; Gao, R.; Lin, M.Y.; Su, H.L. Inhibition of lps-induced oxidative damages and potential anti-inflammatory effects of Phyllanthus emblica extract via down-regulating nf-κb, cox-2, and inos in raw 264.7 cells. Antioxidants, 2019, 8(8), 270.
[http://dx.doi.org/10.3390/antiox8080270]
[68]
Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Parker, T.L.; Connelly, P.W.; Qian, W.; Haight, J.S.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; Spiller, G.A. Dose response of almonds on coronary heart disease risk factors: blood lipids, oxidized low-density lipoproteins, lipoprotein(a), homocysteine, and pulmonary nitric oxide: a randomized, controlled, crossover trial. Circulation, 2002, 106(11), 1327-1332.
[http://dx.doi.org/10.1161/01.CIR.0000028421.91733.20] [PMID: 12221048]
[69]
Lorenzon Dos Santos, J.; Quadros, A.S.; Weschenfelder, C.; Garofallo, S.B.; Marcadenti, A. Oxidative stress biomarkers, nut-related antioxidants, and cardiovascular disease. Nutrients, 2020, 12(3), E682.
[http://dx.doi.org/10.3390/nu12030682] [PMID: 32138220]
[70]
Kalita, S.; Khandelwal, S.; Madan, J.; Pandya, H.; Sesikeran, B.; Krishnaswamy, K. Almonds and cardiovascular health: a review. Nutrients, 2018, 10(4), E468.
[http://dx.doi.org/10.3390/nu10040468] [PMID: 29641440]
[71]
Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; Lamuela-Raventos, R.M.; Serra-Majem, L.; Pintó, X.; Basora, J.; Muñoz, M.A.; Sorlí, J.V.; Martínez, J.A.; Fitó, M.; Gea, A.; Hernán, M.A.; Martínez-González, M.A. PREDIMED Study investigators. primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med., 2018, 378(25), e34.
[http://dx.doi.org/10.1056/NEJMoa1800389] [PMID: 29897866]
[72]
McKay, D.L.; Eliasziw, M.; Chen, C.Y.O.; Blumberg, J.B. A pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: a randomized controlled trial. Nutrients, 2018, 10(3), E339.
[http://dx.doi.org/10.3390/nu10030339] [PMID: 29534487]
[73]
Rehm, C.D.; Drewnowski, A. Replacing American snacks with tree nuts increases consumption of key nutrients among US children and adults: results of an NHANES modeling study. Nutr. J., 2017, 16(1), 17.
[http://dx.doi.org/10.1186/s12937-017-0238-5] [PMID: 28270158]
[74]
Rajaram, S.; Burke, K.; Connell, B.; Myint, T.; Sabaté, J. A monounsaturated fatty acid-rich pecan-enriched diet favorably alters the serum lipid profile of healthy men and women. J. Nutr., 2001, 131(9), 2275-2279.
[http://dx.doi.org/10.1093/jn/131.9.2275] [PMID: 11533266]
[75]
De Santis, S.; Cariello, M.; Piccinin, E.; Sabbà, C.; Moschetta, A. Extra virgin olive oil: lesson from nutrigenomics. Nutrients, 2019, 11(9), E2085.
[http://dx.doi.org/10.3390/nu11092085] [PMID: 31487787]
[76]
Franconi, F.; Campesi, I.; Romani, A. Is extra virgin olive oil an ally for women’s and men’s cardiovascular health? Cardiovasc. Ther., 2020, 2020, 6719301.
[http://dx.doi.org/10.1155/2020/6719301] [PMID: 32454893]
[77]
Sarapis, K.; Thomas, C.J.; Hoskin, J.; George, E.S.; Marx, W.; Mayr, H.L.; Kennedy, G.; Pipingas, A.; Willcox, J.C.; Prendergast, L.A.; Itsiopoulos, C.; Moschonis, G. The effect of high polyphenol extra virgin olive oil on blood pressure and arterial stiffness in healthy australian adults: a randomized, controlled, cross-over study. Nutrients, 2020, 12(8), E2272.
[http://dx.doi.org/10.3390/nu12082272] [PMID: 32751219]
[78]
Salas-Salvadó, J.; Becerra-Tomás, N.; García-Gavilán, J.F.; Bulló, M.; Barrubés, L. Mediterranean diet and cardiovascular disease prevention: what do we know? Prog. Cardiovasc. Dis., 2018, 61(1), 62-67.
[http://dx.doi.org/10.1016/j.pcad.2018.04.006] [PMID: 29678447]
[79]
Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The mediterranean diet, its components, and cardiovascular disease. Am. J. Med., 2015, 128(3), 229-238.
[http://dx.doi.org/10.1016/j.amjmed.2014.10.014] [PMID: 25447615]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy