Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Pleuromutilin and its Derivatives: Promising Novel Anti-Infective Agents

Author(s): Wattana Leowattana *, Pathomthep Leowattana and Tawithep Leowattana

Volume 20, Issue 2, 2022

Published on: 01 February, 2022

Article ID: e301121198414 Pages: 10

DOI: 10.2174/2211352519666211130111723

Price: $65

Abstract

Due to the emergence and spread of the drug resistance to numerous antibiotics, global research attempts focus on new classes of antibiotics with different mechanisms of action from currently used drugs. Pleuromutilin was first identified as a natural antibiotic in 1951 from the New York Botanical Garden and Columbia University. The substance was isolated from Pleurotus mutilus and Pleurotus passeckerianus. Nevertheless, pleuromutilin was first launched in 1979 (tiamulin) for use in veterinarians. However, antibiotics with new targets or employing a different action mechanism are always attractive because they conquered recognized resistance by the bacteria and were not resisted against approved antibiotic classes. Pleuromutilin has a unique antibacterial activity that binds to the peptidyl transferase at the central area of the bacteria's 50S ribosome to inhibit protein synthesis. Pleuromutilin antibiotics have antimicrobial activity against Gram-positive pathogens. Besides, they cover some fastidious Gram-negative bacteria. As Gram-positive bacteria increased resistance against currently approved antibiotics, the pleuromutilin antibiotic was investigated to develop a systemically antibacterial drug to be used in humans. In 2006, lefamulin was developed and started to encounter studying for systemic infection in humans. Lefamulin is a semisynthetic pleuromutilin antibiotic, and the US FDA approved it for community-acquired bacterial pneumonia (CABP) treatment in August 2019. This review will focus on this antibiotic's critical issues, the relevant bacterial spectrum activity, preclinical and clinical information, and potentially therapeutic properties of pleuromutilin antibiotic.

Keywords: Pleuromutilin, antibiotics, anti-infective agents, Gram-positive organisms, tiamulin, valnemulin, retapamulin, lefamulin, community-acquired bacterial pneumonia, acute bacterial skin, skin structure infections.

Graphical Abstract
[1]
Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Antibiotic resistance: Moving from individual health norms to social norms in one health and global health. Front. Microbiol., 2020, 11, 1914.
[http://dx.doi.org/10.3389/fmicb.2020.01914] [PMID: 32983000]
[2]
Morehead, M.S.; Scarbrough, C. Emergence of global antibiotic resistance. Primary care. Clin. Office Practice, 2018, 45(3), 467-484.
[http://dx.doi.org/10.1016/j.pop.2018.05.006] [PMID: 30115335]
[3]
Karam, G.; Chastre, J.; Wilcox, M.H.; Vincent, J-L. Antibiotic strategies in the era of multidrug resistance. Crit. Care, 2016, 20(1), 136.
[http://dx.doi.org/10.1186/s13054-016-1320-7] [PMID: 27329228]
[4]
Arias, C.A.; Murray, B.E. Antibiotic-resistant bugs in the 21st century--a clinical super-challenge. N. Engl. J. Med., 2009, 360(5), 439-443.
[http://dx.doi.org/10.1056/NEJMp0804651] [PMID: 19179312]
[5]
Kavanagh, F.; Hervey, A.; Robbins, W.J. Antibiotic substances from Basidiomycetes: VIII. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc. Natl. Acad. Sci. USA, 1951, 37(9), 570-574.
[http://dx.doi.org/10.1073/pnas.37.9.570] [PMID: 16589015]
[6]
Kavanagh, F.; Hervey, A.; Robbins, W.J. Antibiotic substances from basidiomycetes: IX. Drosophila subtarata. (Batsch Ex Fr.) quel. Proc. Natl. Acad. Sci. USA, 1952, 38(7), 555-560.
[http://dx.doi.org/10.1073/pnas.38.7.555] [PMID: 16589145]
[7]
Anchel, M. Chemical studies with pleuromutilin. J. Biol. Chem., 1952, 199(1), 133-139.
[http://dx.doi.org/10.1016/S0021-9258(18)44820-X] [PMID: 12999825]
[8]
Birch, A.J.; Holzapfel, C.W.; Rickards, R.W. The structure and some aspects of the biosynthesis of pleuromutilin. Tetrahedron, 1966, 22(Suppl. 8), 359-387.
[http://dx.doi.org/10.1016/S0040-4020(01)90949-4]
[9]
Egger, H.; Reinshagen, H. New pleuromutilin derivatives with enhanced antimicrobial activity. I. Synthesis. J. Antibiot. (Tokyo), 1976, 29(9), 915-922.
[http://dx.doi.org/10.7164/antibiotics.29.915] [PMID: 993131]
[10]
Egger, H.; Reinshagen, H. New pleuromutilin derivatives with enhanced antimicrobial activity. II. Structure-activity correlations. J. Antibiot. (Tokyo), 1976, 29(9), 923-927.
[http://dx.doi.org/10.7164/antibiotics.29.923] [PMID: 993132]
[11]
Riedl, K. Studies on pleuromutilin and some of its derivatives. J. Antibiot. (Tokyo), 1976, 29(2), 132-139.
[http://dx.doi.org/10.7164/antibiotics.29.132] [PMID: 931799]
[12]
Knauseder, F.; Brandl, E. Pleuromutilins. Fermentation, structure and biosynthesis. J. Antibiot. (Tokyo), 1976, 29(2), 125-131.
[http://dx.doi.org/10.7164/antibiotics.29.125] [PMID: 945258]
[13]
Eyal, Z.; Matzov, D.; Krupkin, M.; Paukner, S.; Riedl, R.; Rozenberg, H.; Zimmerman, E.; Bashan, A.; Yonath, A. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci. Rep., 2016, 6(1), 39004.
[http://dx.doi.org/10.1038/srep39004] [PMID: 27958389]
[14]
Paukner, S.; Riedl, R. Pleuromutilins: Potent drugs for resistant bugs-mode of action and resistance. Cold Spring Harb. Perspect. Med., 2017, 7(1), a027110.
[http://dx.doi.org/10.1101/cshperspect.a027110] [PMID: 27742734]
[15]
Shang, R.; Wang, S.; Xu, X.; Yi, Y.; Guo, W.; Liang, J. Chemical synthesis and biological activities of novel pleuromutilin derivatives with substituted amino moiety. PLoS One, 2013, 8(12), e82595.
[http://dx.doi.org/10.1371/journal.pone.0082595] [PMID: 24376551]
[16]
Bills, G.F.; Gloer, J.B. Biologically active secondary metabolites from the fungi. Microbiol. Spectr., 2016, 4(6)
[http://dx.doi.org/10.1128/microbiolspec.FUNK-0009-2016] [PMID: 27809954]
[17]
Agmon, I.; Bashan, A.; Zarivach, R.; Yonath, A. Symmetry at the active site of the ribosome: Structural and functional implications. Biol. Chem., 2005, 386(9), 833-844.
[http://dx.doi.org/10.1515/BC.2005.098] [PMID: 16164408]
[18]
Pringle, M.; Poehlsgaard, J.; Vester, B.; Long, K.S. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol. Microbiol., 2004, 54(5), 1295-1306.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04373.x] [PMID: 15554969]
[19]
Högenauer, G. The mode of action of pleuromutilin derivatives. Location and properties of the pleuromutilin binding site on Escherichia coli ribosomes. Eur. J. Biochem., 1975, 52(1), 93-98.
[http://dx.doi.org/10.1111/j.1432-1033.1975.tb03976.x] [PMID: 1100373]
[20]
Schlünzen, F.; Pyetan, E.; Fucini, P.; Yonath, A.; Harms, J.M. Inhibition of peptide bond formation by pleuromutilins: The structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol. Microbiol., 2004, 54(5), 1287-1294.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04346.x] [PMID: 15554968]
[21]
Davidovich, C.; Bashan, A.; Auerbach-Nevo, T.; Yaggie, R.D.; Gontarek, R.R.; Yonath, A. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc. Natl. Acad. Sci. USA, 2007, 104(11), 4291-4296.
[http://dx.doi.org/10.1073/pnas.0700041104] [PMID: 17360517]
[22]
Eyal, Z.; Matzov, D.; Krupkin, M.; Wekselman, I.; Paukner, S.; Zimmerman, E.; Rozenberg, H.; Bashan, A.; Yonath, A. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc. Natl. Acad. Sci. USA, 2015, 112(43), E5805-E5814.
[http://dx.doi.org/10.1073/pnas.1517952112] [PMID: 26464510]
[23]
Goethe, O.; Heuer, A.; Ma, X.; Wang, Z.; Herzon, S.B. Antibacterial properties and clinical potential of pleuromutilins. Nat. Prod. Rep., 2019, 36(1), 220-247.
[http://dx.doi.org/10.1039/C8NP00042E] [PMID: 29979463]
[24]
Rittenhouse, S.; Biswas, S.; Broskey, J.; McCloskey, L.; Moore, T.; Vasey, S.; West, J.; Zalacain, M.; Zonis, R.; Payne, D. Selection of retapamulin, a novel pleuromutilin for topical use. AAC, 2006, 50(11), 3882-3885.
[http://dx.doi.org/10.1128/AAC.00178-06] [PMID: 17065625]
[25]
Sader, H.S.; Biedenbach, D.J.; Paukner, S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial activity of the investigational pleuromutilin compound BC-3781 tested against Gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother, 2012, 56(3), 1619-1623.
[http://dx.doi.org/10.1128/AAC.05789-11] [PMID: 22232289]
[26]
Paukner, S.; Sader, H.S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial activity of the pleuromutilin antibiotic BC-3781 against bacterial pathogens isolated in the SENTRY antimicrobial surveillance program in 2010. Antimicrob. Agents Chemother, 2013, 57(9), 4489-4495.
[http://dx.doi.org/10.1128/AAC.00358-13] [PMID: 23836172]
[27]
Weston, N.; Sharma, P.; Ricci, V.; Piddock, L.J.V. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res. Microbiol., 2018, 169(7-8), 425-431.
[http://dx.doi.org/10.1016/j.resmic.2017.10.005] [PMID: 29128373]
[28]
Schuster, S.; Vavra, M.; Kern, W.V. Efflux-mediated resistance to new oxazolidinones and pleuromutilin derivatives in Escherichia coli with class specificities in the resistance-nodulation-cell division-type drug transport pathways. Antimicrob. Agents Chemother., 2019, 63(9), e01041-19.
[http://dx.doi.org/10.1128/AAC.01041-19] [PMID: 31209014]
[29]
Murphy, S. K.; Zeng, M.; Herzon, S. B. A modular and enantioselective synthesis of the pleuromutilin antibiotics. Science, 2017, 356(6341), 956-959.
[http://dx.doi.org/10.1126/science.aan0003]
[30]
Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H.W.; Scheld, W.M.; Bartlett, J.G.; Edwards, J., Jr The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis., 2008, 46(2), 155-164.
[http://dx.doi.org/10.1086/524891] [PMID: 18171244]
[31]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[32]
Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. AAC, 2010, 54(3), 969-976.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[33]
Odou, M-F.; Muller, C.; Calvet, L.; Dubreuil, L. In vitro activity against anaerobes of retapamulin, a new topical antibiotic for treatment of skin infections. J. Antimicrob. Chemother., 2007, 59(4), 646-651.
[http://dx.doi.org/10.1093/jac/dkm019] [PMID: 17350985]
[34]
Oranje, A.P.; Chosidow, O.; Sacchidanand, S.; Todd, G.; Singh, K.; Scangarella, N.; Shawar, R.; Twynholm, M. Topical retapamulin ointment, 1%, versus sodium fusidate ointment, 2%, for impetigo: A randomized, observer-blinded, noninferiority study. Dermatology, 2007, 215(4), 331-340.
[http://dx.doi.org/10.1159/000107776] [PMID: 17911992]
[35]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[http://dx.doi.org/10.1038/nrd2201] [PMID: 17159923]
[36]
Gwynn, M.N.; Portnoy, A.; Rittenhouse, S.F.; Payne, D.J. Challenges of antibacterial discovery revisited. Ann. N. Y. Acad. Sci., 2010, 1213(1), 5-19.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05828.x] [PMID: 21058956]
[37]
Crum-Brown, A.; Fraser, T.R. On the connection between chemical constitution and physiological action. Trans. R. Soc. Edinb., 1868, 25, 151-203.
[38]
Gleeson, M.P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem., 2008, 51(4), 817-834.
[http://dx.doi.org/10.1021/jm701122q] [PMID: 18232648]
[39]
Hu, C.; Zou, Y. Mutilins derivatives: from veterinary to human-used antibiotics. Mini Rev. Med. Chem., 2009, 9(12), 1397-1406.
[http://dx.doi.org/10.2174/138955709789957387] [PMID: 19929813]
[40]
Novak, R.; Shlaes, D.M. The pleuromutilin antibiotics: A new class for human use. Curr. Opin. Investig. Drugs, 2010, 11(2), 182-191.
[PMID: 20112168]
[41]
Tang, Y.Z.; Liu, Y.H.; Chen, J.X. Pleuromutilin and its derivatives-the lead compounds for novel antibiotics. Mini Rev. Med. Chem., 2012, 12(1), 53-61.
[http://dx.doi.org/10.2174/138955712798868968] [PMID: 22070694]
[42]
Drews, J.; Georgopoulos, A.; Laber, G.; Schütze, E.; Unger, J. Antimicrobial activities of 81.723 hfu, a new pleuromutilin derivative. Antimicrob. Agents Chemother., 1975, 7(5), 507-516.
[http://dx.doi.org/10.1128/AAC.7.5.507] [PMID: 1170807]
[43]
Ziv, G. Availability and usage of new antibacterial drugs in Europe. J. Am. Vet. Med. Assoc., 1980, 176(10 Spec No), 1122-1128.
[PMID: 7216885]
[44]
Laber, G.; Schütze, E. Blood level studies in chickens, turkey poults and swine with tiamulin, a new antibiotic. J. Antibiot. (Tokyo), 1977, 30(12), 1119-1122.
[http://dx.doi.org/10.7164/antibiotics.30.1119] [PMID: 599086]
[45]
Burch, D.G. Tiamulin feed premix in the prevention and control of swine dysentery under farm conditions in the UK. Vet. Rec., 1982, 110(11), 244-246.
[http://dx.doi.org/10.1136/vr.110.11.244] [PMID: 7043884]
[46]
Taylor, D.J. Tiamulin in the treatment and prophylaxis of experimental swine dysentery. Vet. Rec., 1980, 106(25), 526-528.
[http://dx.doi.org/10.1136/vr.106.25.526] [PMID: 7434520]
[47]
Chen, M.; Shi, C.; Zhao, J.; Gao, Z.; Zhang, C. Application and microbial preparation of D-valine. World J. Microbiol. Biotechnol., 2016, 32(10), 171.
[http://dx.doi.org/10.1007/s11274-016-2119-z] [PMID: 27565781]
[48]
Yuan, L.G.; Luo, X.Y.; Zhu, L.X.; Wang, R.; Liu, Y.H. A physiologically based pharmacokinetic model for valnemulin in rats and extrapolation to pigs. J. Vet. Pharmacol. Ther., 2011, 34(3), 224-231.
[http://dx.doi.org/10.1111/j.1365-2885.2010.01230.x] [PMID: 20950354]
[49]
Jordan, F.T.W.; Forrester, C.A.; Ripley, P.H.; Burch, D.G.S. In vitro and in vivo comparisons of valnemulin, tiamulin, tylosin, enrofloxacin, and lincomycin/spectinomycin against Mycoplasma gallisepticum. Avian Dis., 1998, 42(4), 738-745.
[http://dx.doi.org/10.2307/1592709] [PMID: 9876842]
[50]
Parish, L.C.; Parish, J.L. Retapamulin: A new topical antibiotic for the treatment of uncomplicated skin infections. Drugs Today (Barc), 2008, 44(2), 91-102.
[http://dx.doi.org/10.1358/dot.2008.44.2.1153446] [PMID: 18389088]
[51]
Yang, L.P.H.; Keam, S.J. Retapamulin Drugs, 2008, 68(6), 855-873.
[http://dx.doi.org/10.2165/00003495-200868060-00008] [PMID: 18416589]
[52]
Moody, M.N.; Morrison, L.K.; Tyring, S.K. Retapamulin: What is the role of this topical antimicrobial in the treatment of bacterial infections in atopic dermatitis? Skin Therapy Lett., 2010, 15(1), 1-4.
[PMID: 20066388]
[53]
Lambert, T. Antibiotics that affect the ribosome. Rev. Sci. Tech., 2012, 31(1), 57-64.
[http://dx.doi.org/10.20506/rst.31.1.2095] [PMID: 22849268]
[54]
Zeng, M.; Murphy, S.K.; Herzon, S.B. Development of a modular synthetic route to (+)-Pleuromutilin, (+)-12-epi-Mutilins, and related structures. J. Am. Chem. Soc., 2017, 139(45), 16377-16388.
[http://dx.doi.org/10.1021/jacs.7b09869] [PMID: 29048164]
[55]
Veve, M.P.; Wagner, J.L. Lefamulin: Review of a promising novel pleuromutilin antibiotic Pharmacotherapy, 2018, 38(9), 935-946.
[http://dx.doi.org/10.1002/phar.2166] [PMID: 30019769]
[56]
Paukner, S.; Gruss, A.; Jensen, J.S. In vitro activity of Lefamulin against sexually transmitted bacterial pathogens. Antimicrob. Agents Chemother., 2018, 62(5), e02380-17.
[http://dx.doi.org/10.1128/AAC.02380-17] [PMID: 29530863]
[57]
Jacobsson, S.; Paukner, S.; Golparian, D.; Jensen, J.S.; Unemo, M. In vitro activity of the novel pleuromutilin lefamulin (bc-3781) and effect of efflux pump inactivation on multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother., 2017, 61(11), e01497-17.
[http://dx.doi.org/10.1128/AAC.01497-17] [PMID: 28893785]
[58]
Kozhokar, L. Retapamulin. Drugs, 2020, 686, , 855-873.
[http://dx.doi.org/10.1177/0018578719897071]
[59]
Bhavnani, S.M.; Zhang, L.; Hammel, J.P.; Rubino, C.M.; Bader, J.C.; Sader, H.S.; Gelone, S.P.; Wicha, W.W.; Ambrose, P.G. Pharmacokinetic/pharmacodynamic target attainment analyses to support intravenous and oral lefamulin dose selection for the treatment of patients with community-acquired bacterial pneumonia. J. Antimicrob. Chemother., 2019, 74(Suppl. 3), iii35-iii41.
[http://dx.doi.org/10.1093/jac/dkz089] [PMID: 30949705]
[60]
Wicha, W.W.; Prince, W.T.; Lell, C.; Heilmayer, W.; Gelone, S.P. Pharmacokinetics and tolerability of lefamulin following intravenous and oral dosing. J. Antimicrob. Chemother., 2019, 74(Suppl. 3), iii19-iii26.
[http://dx.doi.org/10.1093/jac/dkz087] [PMID: 30949704]
[61]
Rubino, C.M.; Xue, B.; Bhavnani, S.M.; Prince, W.T.; Ivezic-Schoenfeld, Z.; Wicha, W.W.; Ambrose, P.G. Population pharmacokinetic analyses for BC-3781 using phase 2 data from patients with acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2014, 59(1), 282-288.
[http://dx.doi.org/10.1128/AAC.02033-13] [PMID: 25348519]
[62]
Zeitlinger, M.; Schwameis, R.; Burian, A.; Burian, B.; Matzneller, P.; Müller, M.; Wicha, W.W.; Strickmann, D.B.; Prince, W. Simultaneous assessment of the pharmacokinetics of a pleuromutilin, lefamulin, in plasma, soft tissues and pulmonary epithelial lining fluid. J. Antimicrob. Chemother., 2016, 71(4), 1022-1026.
[http://dx.doi.org/10.1093/jac/dkv442] [PMID: 26747098]
[63]
Xenleta (lefamulin) package insert. Nabriva Therapeutics. 2019. Available from: https://www.xenleta.com/pdf/xenleta-prescribing-information.pdf
[64]
Altabax (retapamulin) package insert. GlaxoSmithKline. 2012, Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022055s002lbl.pdf
[65]
File, T.M., Jr; Goldberg, L.; Das, A.; Sweeney, C.; Saviski, J.; Gelone, S.P.; Seltzer, E.; Paukner, S.; Wicha, W.W.; Talbot, G.H.; Gasink, L.B. Efficacy and safety of intravenous-to-oral lefamulin, a pleuromutilin antibiotic, for the treatment of community-acquired bacterial pneumonia: The phase 2 Lefamulin evaluation against pneumonia (Leap 1) trial. Clin. Infect. Dis., 2019, 69(11), 1856-1867.
[http://dx.doi.org/10.1093/cid/ciz090] [PMID: 30722059]
[66]
Alexander, E.; Goldberg, L.; Das, A.F.; Moran, G.J.; Sandrock, C.; Gasink, L.B.; Spera, P.; Sweeney, C.; Paukner, S.; Wicha, W.W.; Gelone, S.P.; Schranz, J. Oral Lefamulin vs Moxifloxacin for early clinical response among adults with community-acquired bacterial pneumonia: The LEAP 2 randomized clinical trial. JAMA, 2019, 322(17), 1661-1671.
[http://dx.doi.org/10.1001/jama.2019.15468] [PMID: 31560372]
[67]
Tang, H-J.; Wang, J-H.; Lai, C-C. Lefamulin vs. moxifloxacin for community-acquired bacterial pneumonia. Medicine (Baltimore), 2020, 99(29), e21223.
[http://dx.doi.org/10.1097/MD.0000000000021223] [PMID: 32702892]
[68]
Prince, W.T.; Ivezic-Schoenfeld, Z.; Lell, C.; Tack, K.J.; Novak, R.; Obermayr, F.; Talbot, G.H. Phase II clinical study of BC-3781, a pleuromutilin antibiotic, in treatment of patients with acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2013, 57(5), 2087-2094.
[http://dx.doi.org/10.1128/AAC.02106-12] [PMID: 23422913]
[69]
Lefamulin (Xenleta) for community-acquired bacterial pneumonia. Med. Lett. Drugs Ther., 2019, 61(1581), 145-148.
[PMID: 31599865]
[70]
Yan, K.; Madden, L.; Choudhry, A.E.; Voigt, C.S.; Copeland, R.A.; Gontarek, R.R. Biochemical characterization of the interactions of the novel pleuromutilin derivative retapamulin with bacterial ribosomes. AAC, 2006, 50(11), 3875-3881.
[http://dx.doi.org/10.1128/AAC.00184-06] [PMID: 16940066]
[71]
Li, L.; Ma, T.; Liu, Q.; Huang, Y.; Hu, C.; Liao, G. Improvement of daptomycin production in Streptomyces roseosporus through the acquisition of pleuromutilin resistance. BioMed Res. Int., 2013, 2013, 479742.
[http://dx.doi.org/10.1155/2013/479742] [PMID: 24106707]
[72]
Card, R.M.; Stubberfield, E.; Rogers, J.; Nunez-Garcia, J.; Ellis, R.J.; AbuOun, M.; Strugnell, B.; Teale, C.; Williamson, S.; Anjum, M.F. Identification of a new antimicrobial resistance gene provides fresh insights into pleuromutilin resistance in Brachyspira hyodysenteriae, aetiological agent of swine dysentery. Front. Microbiol., 2018, 9, 1183.
[http://dx.doi.org/10.3389/fmicb.2018.01183] [PMID: 29971045]
[73]
Feßler, A.; Kadlec, K.; Wang, Y.; Zhang, W-J.; Wu, C.; Shen, J.; Schwarz, S. Small antimicrobial resistance plasmids in livestock-associated methicillin-resistant Staphylococcus aureus CC398. Front. Microbiol., 2018, 9, 2063.
[http://dx.doi.org/10.3389/fmicb.2018.02063] [PMID: 30283407]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy