Review Article

Cancer Treatment Evolution from Traditional Methods to Stem Cells and Gene Therapy

Author(s): Wenhua He, Qingxuan Li, Yan Lu, Dingyue Ju, Yu Gu, Kai Zhao and Chuanming Dong*

Volume 22, Issue 5, 2022

Published on: 03 January, 2022

Page: [368 - 385] Pages: 18

DOI: 10.2174/1566523221666211119110755

Price: $65

Abstract

Background: Cancer, a malignant tumor, is caused by the failure of the mechanism that controls cell growth and proliferation. Late clinical symptoms often manifest as lumps, pain, ulcers, and bleeding. Systemic symptoms include weight loss, fatigue, and loss of appetite. It is a major disease that threatens human life and health. How to treat cancer is a long-standing problem that needs to be overcome in the history of medicine.

Methods: Traditional tumor treatment methods are poorly targeted, and the side effects of treatment seriously damage the physical and mental health of patients. In recent years, with the advancement of medical science and technology, the research on gene combined with mesenchymal stem cells to treat tumors has been intensified. Mesenchymal stem cells carry genes to target cancer cells, which can achieve better therapeutic effects.

Discussion: In this study, we systematically review the cancer treatment evolution from traditional methods to novel approaches that include immunotherapy, nanotherapy, stem cell theapy, and gene therapy. We provide the latest review of the application status, clinical trials, and development prospects of mesenchymal stem cells and gene therapy for cancer, as well as their integration in cancer treatment. Mesenchymal stem cells are effective carriers carrying genes and provide new clinical ideas for tumor treatment.

Conclusion: This review focuses on the current status, application prospects, and challenges of mesenchymal stem cell combined gene therapy for cancer and provides new ideas for clinical research.

Keywords: Gene therapy, mesenchymal stem cells, cancer, clinical trials, gene carriers, viral vectors.

Graphical Abstract
[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1): 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Doubeni CA, Doubeni AR, Myers AE. Diagnosis and management of ovarian cancer. Am Fam Physician 2016; 93(11): 937-44.
[PMID: 27281838]
[3]
Zhang W, Ou X, Wu X. Proteomics profiling of plasma exosomes in epithelial ovarian cancer: A potential role in the coagulation cascade, diagnosis and prognosis. Int J Oncol 2019; 54(5): 1719-33.
[http://dx.doi.org/10.3892/ijo.2019.4742] [PMID: 30864689]
[4]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Liang G, Meng W, Huang X, et al. miR-196b-5p-mediated downregulation of TSPAN12 and GATA6 promotes tumor progression in non-small cell lung cancer. Proc Natl Acad Sci USA 2020; 117(8): 4347-57.
[http://dx.doi.org/10.1073/pnas.1917531117] [PMID: 32041891]
[6]
Wang X, Janowczyk A, Zhou Y, et al. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. Sci Rep 2017; 7(1): 13543.
[http://dx.doi.org/10.1038/s41598-017-13773-7] [PMID: 29051570]
[7]
Ochiai S, Nomoto Y, Yamashita Y, et al. The impact of emphysema on dosimetric parameters for stereotactic body radiotherapy of the lung. J Radiat Res (Tokyo) 2016; 57(5): 555-66.
[http://dx.doi.org/10.1093/jrr/rrw060] [PMID: 27380802]
[8]
Shen J, Abbas E. A robotic thoracic practice can provide both clinical and financial benefits for an academic institution. J Thorac Dis 2017; 9(6): E573-5.
[http://dx.doi.org/10.21037/jtd.2017.04.72] [PMID: 28740700]
[9]
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50(1): 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[10]
Fu W, Gao XP, Zhang S, Dai YP, Zou WJ, Yue LM. 17β-Estradiol inhibits PCSK9-mediated LDLR degradation through GPER/PLC activation in HepG2 cells. Front Endocrinol (Lausanne) 2020; 10: 930.
[http://dx.doi.org/10.3389/fendo.2019.00930] [PMID: 32082252]
[11]
Halsted WSI. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June, 1889, to January, 1894. Ann Surg 1894; 20(5): 497-555.
[http://dx.doi.org/10.1097/00000658-189407000-00075] [PMID: 17860107]
[12]
Goh Y, Balasundaram G, Moothanchery M, et al. Ultrasound guided optoacoustic tomography in assessment of tumor margins for lumpectomies. Transl Oncol 2020; 13(2): 254-61.
[http://dx.doi.org/10.1016/j.tranon.2019.11.005] [PMID: 31869750]
[13]
Nunez A, Jones V, Schulz-Costello K, Schmolze D. Accuracy of gross intraoperative margin assessment for breast cancer: experience since the SSO-ASTRO margin consensus guidelines. Sci Rep 2020; 10(1): 17344.
[http://dx.doi.org/10.1038/s41598-020-74373-6] [PMID: 33060797]
[14]
Houssami N, Turner RM, Morrow M. Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Res Treat 2017; 165(2): 273-83.
[http://dx.doi.org/10.1007/s10549-017-4324-3] [PMID: 28589366]
[15]
Colevas AD, Yom SS, Pfister DG, et al. NCCN Guidelines insights: Head and neck cancers, version 1.2018. J Natl Compr Canc Netw 2018; 16(5): 479-90.
[http://dx.doi.org/10.6004/jnccn.2018.0026] [PMID: 29752322]
[16]
Zhang LL, Li JX, Zhou GQ, et al. Influence of cervical node necrosis of different grades on the prognosis of nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy. J Cancer 2017; 8(6): 959-66.
[http://dx.doi.org/10.7150/jca.17998] [PMID: 28529607]
[17]
Yan H, Luo M, Wang L, et al. Clinical efficacy and prognostic factors of CT-guided 125I brachytherapy for the palliative treatment of retroperitoneal metastatic lymph nodes. Cancer Imaging 2020; 20(1): 25.
[http://dx.doi.org/10.1186/s40644-020-00299-x] [PMID: 32252826]
[18]
Kepka L. Treatment of brain metastases from lung cancer: Challenging the historical nihilism concerning prognosis. J Thorac Dis 2021; 13(5): 3226-9.
[http://dx.doi.org/10.21037/jtd-2019-rbmlc-12] [PMID: 34164214]
[19]
Zhang P, He Q, Lei Y, et al. m6A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression. Cell Death Dis 2018; 9(12): 1169.
[http://dx.doi.org/10.1038/s41419-018-1224-3] [PMID: 30518868]
[20]
Lesueur P, Calugaru V, Nauraye C, et al. Proton therapy for treatment of intracranial benign tumors in adults: A systematic review. Cancer Treat Rev 2019; 72: 56-64.
[http://dx.doi.org/10.1016/j.ctrv.2018.11.004] [PMID: 30530009]
[21]
Moreno AC, Frank SJ, Garden AS, et al. Intensity modulated proton therapy (IMPT) - The future of IMRT for head and neck cancer. Oral Oncol 2019; 88: 66-74.
[http://dx.doi.org/10.1016/j.oraloncology.2018.11.015] [PMID: 30616799]
[22]
Dunn LA, Riaz N, Fury MG, et al. A phase 1b study of cetuximab and BYL719 (alpelisib) concurrent with intensity modulated radiation therapy in stage III-IVB head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2020; 106(3): 564-70.
[http://dx.doi.org/10.1016/j.ijrobp.2019.09.050] [PMID: 31678634]
[23]
Chassagnon G, Martini K, Giraud P, Revel MP. Radiological assessment after stereotactic body radiation of lung tumours. Cancer Radiother 2020; 24(5): 379-87.
[http://dx.doi.org/10.1016/j.canrad.2020.04.009] [PMID: 32534799]
[24]
Zhou Z, Qin H, Weng L, Ni Y. Clinical efficacy of DC-CIK combined with sorafenib in the treatment of advanced hepatocellular carcinoma. J BUON 2019; 24(2): 615-21.
[PMID: 31128014]
[25]
Xia YJ, Cao DS, Zhao J, Zhu BZ, Xie J. Frequency and prognosis of metastasis to liver, lung, bone and brain from Merkel cell carcinoma. Future Oncol 2020; 16(16): 1101-13.
[http://dx.doi.org/10.2217/fon-2020-0064] [PMID: 32314598]
[26]
Pang S, Jia M, Gao J, Liu X, Guo W, Zhang H. Effects of dietary patterns combined with dietary phytochemicals on breast cancer metastasis. Life Sci 2021; 264: 118720.
[http://dx.doi.org/10.1016/j.lfs.2020.118720] [PMID: 33157089]
[27]
Sun R, Gu J, Chang X, et al. Metabonomics study on orthotopic transplantion mice model of colon cancer treated with Astragalus membranaceus-curcuma wenyujin in different proportions via UPLC-Q-TOF/MS. J Pharm Biomed Anal 2021; 193: 113708.
[http://dx.doi.org/10.1016/j.jpba.2020.113708] [PMID: 33129117]
[28]
Liao MJ, Ye MN, Zhou RJ, Sheng JY, Chen HF. Yiqi formula enhances the antitumor effects of erlotinib for treatment of triple-negative breast cancer xenografts. Evid Based Complement Alternat Med 2014; 2014: 628712.
[http://dx.doi.org/10.1155/2014/628712] [PMID: 25389442]
[29]
McCubrey JA, Lertpiriyapong K, Steelman LS, et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2017; 9(6): 1477-536.
[http://dx.doi.org/10.18632/aging.101250] [PMID: 28611316]
[30]
Tan Y, Wei X, Zhang W, et al. Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1. Oncol Rep 2017; 37(3): 1833-41.
[http://dx.doi.org/10.3892/or.2017.5413] [PMID: 28184930]
[31]
Wang J, Kang M, Wen Q, et al. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT. Oncol Rep 2017; 37(4): 2425-32.
[http://dx.doi.org/10.3892/or.2017.5499] [PMID: 28350122]
[32]
Momtazi-Borojeni AA, Ghasemi F, Hesari A, Majeed M, Caraglia M, Sahebkar A. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma. Curr Pharm Des 2018; 24(19): 2121-8.
[http://dx.doi.org/10.2174/1381612824666180522105202] [PMID: 29788875]
[33]
Chen J, Zhang Y, Li X, et al. Efficacy of transcutaneous electrical acupoint stimulation combined with general anesthesia for sedation and postoperative analgesia in minimally invasive lung cancer surgery: A randomized, double-blind, placebo-controlled trial. Thorac Cancer 2020; 11(4): 928-34.
[http://dx.doi.org/10.1111/1759-7714.13343] [PMID: 32062864]
[34]
Zhu Y, Li X, Ma J, et al. Transcutaneous electrical acustimulation improves gastrointestinal disturbances induced by transcatheter arterial chemoembolization in patients with liver cancers. Neuromodulation 2020; 23(8): 1180-8.
[http://dx.doi.org/10.1111/ner.13158] [PMID: 32378261]
[35]
Zhao F, Wang Z, Ye C, Liu J. Effect of transcutaneous electrical acupoint stimulation on one-lung ventilation-induced lung injury in patients undergoing esophageal cancer operation. Evid Based Complement Alternat Med 2020; 2020: 9018701.
[http://dx.doi.org/10.1155/2020/9018701] [PMID: 32595749]
[36]
Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse models for cancer immunotherapy research. Cancer Discov 2018; 8(11): 1358-65.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0044] [PMID: 30309862]
[37]
Parish CR. Cancer immunotherapy: The past, the present and the future. Immunol Cell Biol 2003; 81(2): 106-13.
[http://dx.doi.org/10.1046/j.0818-9641.2003.01151.x] [PMID: 12631233]
[38]
Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol Cancer 2019; 18(1): 155.
[http://dx.doi.org/10.1186/s12943-019-1091-2] [PMID: 31690319]
[39]
Christopher MJ, Petti AA, Rettig MP, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med 2018; 379(24): 2330-41.
[http://dx.doi.org/10.1056/NEJMoa1808777] [PMID: 30380364]
[40]
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 2015; 161(2): 205-14.
[http://dx.doi.org/10.1016/j.cell.2015.03.030] [PMID: 25860605]
[41]
Ghahremanloo A, Soltani A, Modaresi SMS, Hashemy SI. Recent advances in the clinical development of immune checkpoint blockade therapy. Cell Oncol (Dordr) 2019; 42(5): 609-26.
[http://dx.doi.org/10.1007/s13402-019-00456-w] [PMID: 31201647]
[42]
Reardon DA, Wucherpfennig KW, Freeman G, et al. An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 2013; 12(6): 597-615.
[http://dx.doi.org/10.1586/erv.13.41] [PMID: 23750791]
[43]
Harel M, Ortenberg R, Varanasi SK, et al. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell 2019; 179(1): 236-250.e18.
[http://dx.doi.org/10.1016/j.cell.2019.08.012] [PMID: 31495571]
[44]
Thanindratarn P, Dean DC, Nelson SD, Hornicek FJ, Duan Z. Chimeric antigen receptor T (CAR-T) cell immunotherapy for sarcomas: From mechanisms to potential clinical applications. Cancer Treat Rev 2020; 82: 101934.
[http://dx.doi.org/10.1016/j.ctrv.2019.101934] [PMID: 31794912]
[45]
Donato EM, Fernández-Zarzoso M, De La Rubia J. Immunotherapy for the treatment of Hodgkin lymphoma. Expert Rev Hematol 2017; 10(5): 417-23.
[http://dx.doi.org/10.1080/17474086.2017.1313701] [PMID: 28359170]
[46]
Li Z, Song W, Rubinstein M, Liu D. Recent updates in cancer immunotherapy: A comprehensive review and perspective of the 2018 China cancer immunotherapy workshop in Beijing. J Hematol Oncol 2018; 11(1): 142.
[http://dx.doi.org/10.1186/s13045-018-0684-3] [PMID: 30577797]
[47]
Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol 2021; 32(1): 34-48.
[http://dx.doi.org/10.1016/j.annonc.2020.10.478] [PMID: 33098993]
[48]
Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol 2020; 5(43): eaax7969.
[http://dx.doi.org/10.1126/sciimmunol.aax7969] [PMID: 31953257]
[49]
Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr Drug Metab 2019; 20(6): 416-29.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[50]
Aiello P, Consalvi S, Poce G, et al. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol 2021; 69: 150-65.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.029] [PMID: 31454670]
[51]
Zhang Y, Chen W, Yang C, Fan Q, Wu W, Jiang X. Enhancing tumor penetration and targeting using size-minimized and zwitterionic nanomedicines. J Control Release 2016; 237: 115-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.011] [PMID: 27397491]
[52]
Kelly SH, Shores LS, Votaw NL, Collier JH. Biomaterial strategies for generating therapeutic immune responses. Adv Drug Deliv Rev 2017; 114: 3-18.
[http://dx.doi.org/10.1016/j.addr.2017.04.009] [PMID: 28455189]
[53]
Hu Y, Liu T, Li J, et al. Selenium nanoparticles as new strategy to potentiate γδ T cell anti-tumor cytotoxicity through upregulation of tubulin-α acetylation. Biomaterials 2019; 222: 119397.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119397] [PMID: 31442884]
[54]
Li Z, Di C, Li S, Yang X, Nie G. Smart nanotherapeutic targeting of tumor vasculature. Acc Chem Res 2019; 52(9): 2703-12.
[http://dx.doi.org/10.1021/acs.accounts.9b00283] [PMID: 31433171]
[55]
Islam MA, Xu Y, Tao W, et al. Author Correction: Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat Biomed Eng 2018; 2(12): 968.
[http://dx.doi.org/10.1038/s41551-018-0331-x] [PMID: 31015729]
[56]
Guryev EL, Volodina NO, Shilyagina NY, et al. Radioactive (90Y) upconversion nanoparticles conjugated with recombinant targeted toxin for synergistic nanotheranostics of cancer. Proc Natl Acad Sci USA 2018; 115(39): 9690-5.
[http://dx.doi.org/10.1073/pnas.1809258115] [PMID: 30194234]
[57]
Wen M, Ouyang J, Wei C, Li H, Chen W, Liu YN. Artificial enzyme catalyzed cascade reactions: Antitumor immunotherapy reinforced by NIR-II Light. Angew Chem Int Ed Engl 2019; 58(48): 17425-32.
[http://dx.doi.org/10.1002/anie.201909729] [PMID: 31552695]
[58]
Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett 2020; 20(3): 1578-89.
[http://dx.doi.org/10.1021/acs.nanolett.9b04246] [PMID: 31951421]
[59]
Liu J, Zhang Y, Zeng Q, et al. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. Sci Adv 2019; 5(9): eaaw6499.
[http://dx.doi.org/10.1126/sciadv.aaw6499] [PMID: 31579820]
[60]
Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold Nanoparticles in cancer treatment. Mol Pharm 2019; 16(1): 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810] [PMID: 30452861]
[61]
Zununi Vahed S, Salehi R, Davaran S, Sharifi S. Liposome-based drug co-delivery systems in cancer cells. Mater Sci Eng C 2017; 71: 1327-41.
[http://dx.doi.org/10.1016/j.msec.2016.11.073] [PMID: 27987688]
[62]
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artif Cells Nanomed Biotechnol 2019; 47(1): 1476-87.
[http://dx.doi.org/10.1080/21691401.2019.1601104] [PMID: 31070063]
[63]
Qi R, Zhu G, Wang Y, et al. Microfluidic device for the analysis of MDR cancerous cell-derived exosomes’ response to nanotherapy. Biomed Microdevices 2019; 21(2): 35.
[http://dx.doi.org/10.1007/s10544-019-0381-1] [PMID: 30906967]
[64]
Zhang CL, Huang T, Wu BL, He WX, Liu D. Stem cells in cancer therapy: Opportunities and challenges. Oncotarget 2017; 8(43): 75756-66.
[http://dx.doi.org/10.18632/oncotarget.20798] [PMID: 29088907]
[65]
Abreu SC, Antunes MA, Pelosi P, Morales MM, Rocco PR. Mechanisms of cellular therapy in respiratory diseases. Intensive Care Med 2011; 37(9): 1421-31.
[http://dx.doi.org/10.1007/s00134-011-2268-3] [PMID: 21656291]
[66]
Clevers HC. Organoids: Avatars for personalized medicine. Keio J Med 2019; 68(4): 95.
[http://dx.doi.org/10.2302/kjm.68-006-ABST] [PMID: 31875622]
[67]
Becker AJ, McCULLOCH EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963; 197: 452-4.
[http://dx.doi.org/10.1038/197452a0] [PMID: 13970094]
[68]
Langer HF, Stellos K, Steingen C, et al. Platelet derived bFGF mediates vascular integrative mechanisms of mesenchymal stem cells in vitro J Mol Cell Cardiol 2009; 47(2): 315-25.
[http://dx.doi.org/10.1016/j.yjmcc.2009.03.011] [PMID: 19328809]
[69]
Zhou B, Ge T, Zhou L, et al. Dimethyloxalyl glycine regulates the HIF-1 signaling pathway in mesenchymal stem cells. Stem Cell Rev Rep 2020; 16(4): 702-10.
[http://dx.doi.org/10.1007/s12015-019-09947-7] [PMID: 32372246]
[70]
Wang H, Wang X, Qu J, Yue Q, Hu Y, Zhang H. VEGF Enhances the migration of MSCs in neural differentiation by regulating focal adhesion turnover. J Cell Physiol 2015; 230(11): 2728-42.
[http://dx.doi.org/10.1002/jcp.24997] [PMID: 25820249]
[71]
Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 2015; 82-83: 1-11.
[http://dx.doi.org/10.1016/j.addr.2014.10.007] [PMID: 25451858]
[72]
Thorne B, Takeya R, Vitelli F, Swanson X. Gene Therapy. Adv Biochem Eng Biotechnol 2018; 165: 351-99.
[http://dx.doi.org/10.1007/10_2016_53] [PMID: 28289769]
[73]
Friedmann T, Roblin R. Gene therapy for human genetic disease? Science 1972; 175(4025): 949-55.
[http://dx.doi.org/10.1126/science.175.4025.949] [PMID: 5061866]
[74]
Jones DTW, Banito A, Grünewald TGP, et al. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat Rev Cancer 2019; 19(8): 420-38.
[http://dx.doi.org/10.1038/s41568-019-0169-x] [PMID: 31300807]
[75]
Al-Zaidy SA, Mendell JR. From Clinical trials to clinical practice: Practical considerations for gene replacement therapy in SMA Type 1. Pediatr Neurol 2019; 100: 3-11.
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.06.007] [PMID: 31371124]
[76]
Rossignoli F, Grisendi G, Spano C, et al. Inducible caspase9-mediated suicide gene for MSC-based cancer gene therapy. Cancer Gene Ther 2019; 26(1-2): 11-6.
[http://dx.doi.org/10.1038/s41417-018-0034-1] [PMID: 29955091]
[77]
Greco R, Oliveira G, Stanghellini MT, et al. Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol 2015; 6: 95.
[http://dx.doi.org/10.3389/fphar.2015.00095] [PMID: 25999859]
[78]
Iwasawa C, Tamura R, Sugiura Y, et al. Increased cytotoxicity of herpes simplex virus thymidine kinase expression in human induced pluripotent stem cells. Int J Mol Sci 2019; 20(4): 810.
[http://dx.doi.org/10.3390/ijms20040810] [PMID: 30769780]
[79]
Singh A, Trivedi P, Jain NK. Advances in siRNA delivery in cancer therapy. Artif Cells Nanomed Biotechnol 2018; 46(2): 274-83.
[http://dx.doi.org/10.1080/21691401.2017.1307210] [PMID: 28423924]
[80]
Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: An overview. Cell Physiol Biochem 2018; 51(6): 2647-93.
[http://dx.doi.org/10.1159/000495956] [PMID: 30562755]
[81]
Wodarz D, Newell AC, Komarova NL. Passenger mutations can accelerate tumour suppressor gene inactivation in cancer evolution. J R Soc Interface 2018; 15(143): 20170967.
[http://dx.doi.org/10.1098/rsif.2017.0967] [PMID: 29875280]
[82]
Moon SH, Huang CH, Houlihan SL, et al. p53 Represses the mevalonate pathway to mediate tumor suppression. Cell 2019; 176(3): 564-580.e19.
[http://dx.doi.org/10.1016/j.cell.2018.11.011] [PMID: 30580964]
[83]
Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: Database reassessment and prospects for the next decade. Hum Mutat 2014; 35(6): 672-88.
[http://dx.doi.org/10.1002/humu.22552] [PMID: 24665023]
[84]
Cicchelero L, Denies S, Vanderperren K, et al. Immunological, anti-angiogenic and clinical effects of intratumoral interleukin 12 electrogene therapy combined with metronomic cyclophosphamide in dogs with spontaneous cancer: A pilot study. Cancer Lett 2017; 400: 205-18.
[http://dx.doi.org/10.1016/j.canlet.2016.09.015] [PMID: 27693635]
[85]
Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 2011; 12(5): 316-28.
[http://dx.doi.org/10.1038/nrg2971] [PMID: 21468099]
[86]
Simmonds P, Aiewsakun P. Virus classification - where do you draw the line? Arch Virol 2018; 163(8): 2037-46.
[http://dx.doi.org/10.1007/s00705-018-3938-z] [PMID: 30039318]
[87]
Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV. Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Res 2018; 244: 181-93.
[http://dx.doi.org/10.1016/j.virusres.2017.11.025] [PMID: 29175107]
[88]
Wang F, Qin Z, Lu H, et al. Clinical translation of gene medicine. J Gene Med 2019; 21(7): e3108.
[http://dx.doi.org/10.1002/jgm.3108] [PMID: 31246328]
[89]
Cepko CL, Roberts BE, Mulligan RC. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 1984; 37(3): 1053-62.
[http://dx.doi.org/10.1016/0092-8674(84)90440-9] [PMID: 6331674]
[90]
Naldini L. Gene therapy returns to centre stage. Nature 2015; 526(7573): 351-60.
[http://dx.doi.org/10.1038/nature15818] [PMID: 26469046]
[91]
Varmus HE. Form and function of retroviral proviruses. Science 1982; 216(4548): 812-20.
[http://dx.doi.org/10.1126/science.6177038] [PMID: 6177038]
[92]
Vink CA, Counsell JR, Perocheau DP, et al. Eliminating HIV-1 packaging sequences from lentiviral vector proviruses enhances safety and expedites gene transfer for gene therapy. Mol Ther 2017; 25(8): 1790-804.
[http://dx.doi.org/10.1016/j.ymthe.2017.04.028] [PMID: 28550974]
[93]
Poletti V, Mavilio F. Interactions between retroviruses and the host cell genome. Mol Ther Methods Clin Dev 2017; 8: 31-41.
[http://dx.doi.org/10.1016/j.omtm.2017.10.001] [PMID: 29159201]
[94]
Somanathan S, Calcedo R, Wilson JM. Adenovirus-antibody complexes contributed to lethal systemic inflammation in a gene therapy trial. Mol Ther 2020; 28(3): 784-93.
[http://dx.doi.org/10.1016/j.ymthe.2020.01.006] [PMID: 32035027]
[95]
Penaud-Budloo M, François A, Clément N, Ayuso E. Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev 2018; 8: 166-80.
[http://dx.doi.org/10.1016/j.omtm.2018.01.002] [PMID: 29687035]
[96]
Maurya S, Mary B, Jayandharan GR. Rational engineering and preclinical evaluation of Neddylation and SUMOylation site modified adeno-associated virus vectors in murine models of hemophilia B and leber congenital amaurosis. Hum Gene Ther 2019; 30(12): 1461-76.
[http://dx.doi.org/10.1089/hum.2019.164] [PMID: 31642343]
[97]
Liang Z, Yang CS, Gu F, Zhang LS. A conditionally replicating adenovirus expressing IL-24 acts synergistically with temozolomide to enhance apoptosis in melanoma cells in vitro. Oncol Lett 2017; 13(6): 4185-9.
[http://dx.doi.org/10.3892/ol.2017.6007] [PMID: 28599419]
[98]
Sun W, Shi Q, Zhang H, et al. Advances in the techniques and methodologies of cancer gene therapy. Discov Med 2019; 27(146): 45-55.
[PMID: 30721651]
[99]
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018; 20(5): e3015.
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[100]
Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther 2020; 28(3): 709-22.
[http://dx.doi.org/10.1016/j.ymthe.2020.01.001] [PMID: 31968213]
[101]
Chatterjee S, Sullivan HA, MacLennan BJ, et al. Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci 2018; 21(4): 638-46.
[http://dx.doi.org/10.1038/s41593-018-0091-7] [PMID: 29507411]
[102]
Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, et al. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp 2018; 9(1): 1488497.
[http://dx.doi.org/10.1080/20022727.2018.1488497] [PMID: 30410712]
[103]
Patil S, Gao YG, Lin X, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci 2019; 20(21): 5491.
[http://dx.doi.org/10.3390/ijms20215491] [PMID: 31690044]
[104]
Tockary TA, Foo W, Dirisala A, et al. Single-stranded DNA-packaged polyplex micelle as adeno-associated-virus-inspired compact vector to systemically target stroma-rich pancreatic cancer. ACS Nano 2019; 13(11): 12732-42.
[http://dx.doi.org/10.1021/acsnano.9b04676] [PMID: 31647640]
[105]
Begum AA, Toth I, Hussein WM, Moyle PM. Advances in targeted gene delivery. Curr Drug Deliv 2019; 16(7): 588-608.
[http://dx.doi.org/10.2174/1567201816666190529072914] [PMID: 31142250]
[106]
Malaekeh-Nikouei B, Gholami L, Asghari F, et al. Viral vector mimicking and nucleus targeted nanoparticles based on dexamethasone polyethylenimine nanoliposomes: Preparation and evaluation of transfection efficiency. Colloids Surf B Biointerfaces 2018; 165: 252-61.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.043] [PMID: 29494955]
[107]
Park JS, Suryaprakash S, Lao YH, Leong KW. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 2015; 84: 3-16.
[http://dx.doi.org/10.1016/j.ymeth.2015.03.002] [PMID: 25770356]
[108]
Cao X, Wang J, Deng W, et al. Photoluminescent cationic carbon dots as efficient non-viral delivery of plasmid SOX9 and chondrogenesis of fibroblasts. Sci Rep 2018; 8(1): 7057.
[http://dx.doi.org/10.1038/s41598-018-25330-x] [PMID: 29728593]
[109]
Wu P, Chen H, Jin R, et al. Non-viral gene delivery systems for tissue repair and regeneration. J Transl Med 2018; 16(1): 29.
[http://dx.doi.org/10.1186/s12967-018-1402-1] [PMID: 29448962]
[110]
Muhammad K, Zhao J, Ullah I, Guo J, Ren XK, Feng Y. Ligand targeting and peptide functionalized polymers as non-viral carriers for gene therapy. Biomater Sci 2019; 8(1): 64-83.
[http://dx.doi.org/10.1039/C9BM01112A] [PMID: 31657368]
[111]
Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM. Nonviral gene delivery with cationic glycopolymers. Acc Chem Res 2019; 52(5): 1347-58.
[http://dx.doi.org/10.1021/acs.accounts.8b00665] [PMID: 30993967]
[112]
Walsh M, Tangney M, O’Neill MJ, et al. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: Implications for cancer gene therapy. Mol Pharm 2006; 3(6): 644-53.
[http://dx.doi.org/10.1021/mp0600034] [PMID: 17140252]
[113]
Oh DY, Kwek SS, Raju SS, et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 2020; 181(7): 1612-1625.e13.
[http://dx.doi.org/10.1016/j.cell.2020.05.017] [PMID: 32497499]
[114]
Holstein M, Mesa-Nuñez C, Miskey C, et al. Efficient non-viral gene delivery into human hematopoietic stem cells by minicircle sleeping beauty transposon vectors. Mol Ther 2018; 26(4): 1137-53.
[http://dx.doi.org/10.1016/j.ymthe.2018.01.012] [PMID: 29503198]
[115]
Leborgne C, Alimi-Guez D, El Shafey N, et al. The absorption enhancer sodium deoxycholate promotes high gene transfer in skeletal muscles. Int J Pharm 2017; 523(1): 291-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.020] [PMID: 28315384]
[116]
Zhou JJ, Huang Y, Zhang X, Cheng Y, Tang L, Ma X. Eyes absent gene (EYA1) is a pathogenic driver and a therapeutic target for melanoma. Oncotarget 2017; 8(62): 105081-92.
[http://dx.doi.org/10.18632/oncotarget.21352] [PMID: 29285235]
[117]
Nguyen TH, Mainot S, Lainas P, et al. Ex vivo liver-directed gene therapy for the treatment of metabolic diseases: Advances in hepatocyte transplantation and retroviral vectors. Curr Gene Ther 2009; 9(2): 136-49.
[http://dx.doi.org/10.2174/156652309787909481] [PMID: 19355871]
[118]
Ungari S, Montepeloso A, Morena F, et al. Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy. Mol Ther Methods Clin Dev 2015; 2: 15038.
[http://dx.doi.org/10.1038/mtm.2015.38] [PMID: 26509184]
[119]
Martín F, Tristán-Manzano M, Maldonado-Pérez N, Sánchez-Hernández S, Benabdellah K, Cobo M. Stable Genetic Modification of mesenchymal stromal cells using lentiviral vectors. Methods Mol Biol 2019; 1937: 267-80.
[http://dx.doi.org/10.1007/978-1-4939-9065-8_17] [PMID: 30706403]
[120]
Hamada K, Takagi S, Kuboshima H, et al. Cloning of carrier cells infected with oncolytic adenovirus driven by midkine promoter and biosafety studies. J Gene Med 2019; 21(2-3): e3064.
[http://dx.doi.org/10.1002/jgm.3064] [PMID: 30548997]
[121]
O’Malley BW Jr, Chen SH, Schwartz MR, Woo SL. Adenovirus-mediated gene therapy for human head and neck squamous cell cancer in a nude mouse model. Cancer Res 1995; 55(5): 1080-5.
[PMID: 7866992]
[122]
La Bella T, Imbeaud S, Peneau C, et al. Adeno-associated virus in the liver: Natural history and consequences in tumour development. Gut 2020; 69(4): 737-47.
[http://dx.doi.org/10.1136/gutjnl-2019-318281] [PMID: 31375600]
[123]
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22(1): 326-37.
[http://dx.doi.org/10.3748/wjg.v22.i1.326] [PMID: 26755879]
[124]
Dhungel B, Jayachandran A, Layton CJ, Steel JC. Seek and destroy: targeted adeno-associated viruses for gene delivery to hepatocellular carcinoma. Drug Deliv 2017; 24(1): 289-99.
[http://dx.doi.org/10.1080/10717544.2016.1247926] [PMID: 28165834]
[125]
Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem 2019; 164: 640-53.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[126]
Li X, Li J, Xu J, et al. Nanostructure of functional larotaxel liposomes decorated with guanine-rich quadruplex nucleotide-lipid derivative for treatment of resistant breast cancer. Small 2021; 17(13): e2007391.
[http://dx.doi.org/10.1002/smll.202007391] [PMID: 33522108]
[127]
Zhou S, Li J, Yu J, et al. Unique flower-like Cur-metal complexes loaded liposomes for primary and metastatic breast cancer therapy. Mater Sci Eng C 2021; 121: 111835.
[http://dx.doi.org/10.1016/j.msec.2020.111835] [PMID: 33579473]
[128]
Guo Y, Wang J, Zhang L, et al. Theranostical nanosystem-mediated identification of an oncogene and highly effective therapy in hepatocellular carcinoma. Hepatology 2016; 63(4): 1240-55.
[http://dx.doi.org/10.1002/hep.28409] [PMID: 26680504]
[129]
Li H, Fu C, Miao X, et al. Multifunctional magnetic co-delivery system coated with polymer mPEG-PLL-FA for nasopharyngeal cancer targeted therapy and MR imaging. J Biomater Appl 2017; 31(8): 1169-81.
[http://dx.doi.org/10.1177/0885328217692964] [PMID: 28185478]
[130]
Gao X, Jiang P, Zhang Q, et al. Peglated-H1/pHGFK1 nanoparticles enhance anti-tumor effects of sorafenib by inhibition of drug-induced autophagy and stemness in renal cell carcinoma. J Exp Clin Cancer Res 2019; 38(1): 362.
[http://dx.doi.org/10.1186/s13046-019-1348-z] [PMID: 31426831]
[131]
Li W, Li H, Li J, et al. Self-assembled supramolecular nano vesicles for safe and highly efficient gene delivery to solid tumors. Int J Nanomedicine 2012; 7: 4661-77.
[http://dx.doi.org/10.2147/IJN.S34675] [PMID: 22977303]
[132]
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells 2019; 8(8): 784.
[http://dx.doi.org/10.3390/cells8080784] [PMID: 31357692]
[133]
Klinker MW, Wei CH. Mesenchymal stem cells in the treatment of inflammatory and autoimmune diseases in experimental animal models. World J Stem Cells 2015; 7(3): 556-67.
[http://dx.doi.org/10.4252/wjsc.v7.i3.556] [PMID: 25914763]
[134]
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 2017; 74(13): 2345-60.
[http://dx.doi.org/10.1007/s00018-017-2473-5] [PMID: 28214990]
[135]
Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 2018; 14(8): 493-507.
[http://dx.doi.org/10.1038/s41581-018-0023-5] [PMID: 29895977]
[136]
Mirzaei H, Sahebkar A, Avan A, et al. Application of mesenchymal stem cells in melanoma: A potential therapeutic strategy for delivery of targeted agents. Curr Med Chem 2016; 23(5): 455-63.
[http://dx.doi.org/10.2174/0929867323666151217122033] [PMID: 26674785]
[137]
Maestroni GJ, Hertens E, Galli P. Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 1999; 55(4): 663-7.
[http://dx.doi.org/10.1007/s000180050322] [PMID: 10357234]
[138]
Seicean A, Petrusel L, Seicean R. New targeted therapies in pancreatic cancer. World J Gastroenterol 2015; 21(20): 6127-45.
[http://dx.doi.org/10.3748/wjg.v21.i20.6127] [PMID: 26034349]
[139]
Gomes ED, Vieira de Castro J, Costa BM, Salgado AJ. The impact of mesenchymal stem cells and their secretome as a treatment for gliomas. Biochimie 2018; 155: 59-66.
[http://dx.doi.org/10.1016/j.biochi.2018.07.008] [PMID: 30031037]
[140]
Krueger TE, Thorek DLJ, Meeker AK, Isaacs JT, Brennen WN. Tumor-infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer? Prostate 2019; 79(3): 320-30.
[http://dx.doi.org/10.1002/pros.23738] [PMID: 30488530]
[141]
Li P, Gong Z, Shultz LD, Ren G. Mesenchymal stem cells: From regeneration to cancer. Pharmacol Ther 2019; 200: 42-54.
[http://dx.doi.org/10.1016/j.pharmthera.2019.04.005] [PMID: 30998940]
[142]
Hanga MP, Murasiewicz H, Pacek AW, Nienow AW, Coopman K, Hewitt CJ. Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. J Chem Technol Biotechnol 2017; 92(7): 1577-89.
[http://dx.doi.org/10.1002/jctb.5279] [PMID: 28706339]
[143]
Cofano F, Boido M, Monticelli M, et al. Mesenchymal stem cells for spinal cord injury: Current options, limitations, and future of cell therapy. Int J Mol Sci 2019; 20(11): 2698.
[http://dx.doi.org/10.3390/ijms20112698] [PMID: 31159345]
[144]
Gomes JPA, Assoni AF, Pelatti M, Coatti G, Okamoto OK, Zatz M. Deepening a simple question: Can MSCs be used to treat cancer? Anticancer Res 2017; 37(9): 4747-58.
[http://dx.doi.org/10.21873/anticanres.11881] [PMID: 28870893]
[145]
Rhee KJ, Lee JI, Eom YW. Mesenchymal stem cell-mediated effects of tumor support or suppression. Int J Mol Sci 2015; 16(12): 30015-33.
[http://dx.doi.org/10.3390/ijms161226215] [PMID: 26694366]
[146]
Li YS, Wu HH, Jiang XC, et al. Active stealth and self-positioning biomimetic vehicles achieved effective antitumor therapy. J Control Release 2021; 335: 515-26.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.031] [PMID: 34058269]
[147]
Kang S, Bhang SH, Hwang S, et al. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano 2015; 9(10): 9678-90.
[http://dx.doi.org/10.1021/acsnano.5b02207] [PMID: 26348606]
[148]
Feng H, Zhao JK, Schiergens TS, et al. Bone marrow-derived mesenchymal stromal cells promote colorectal cancer cell death under low-dose irradiation. Br J Cancer 2018; 118(3): 353-65.
[http://dx.doi.org/10.1038/bjc.2017.415] [PMID: 29384527]
[149]
Danielyan L, Schwab M, Siegel G, et al. Cell motility and migration as determinants of stem cell efficacy. EBioMedicine 2020; 60: 102989.
[http://dx.doi.org/10.1016/j.ebiom.2020.102989] [PMID: 32920368]
[150]
Wu Y, Zeng J, Roscoe BP, et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med 2019; 25(5): 776-83.
[http://dx.doi.org/10.1038/s41591-019-0401-y] [PMID: 30911135]
[151]
Aikawa N. A novel screening test to predict the developmental toxicity of drugs using human induced pluripotent stem cells. J Toxicol Sci 2020; 45(4): 187-99.
[http://dx.doi.org/10.2131/jts.45.187] [PMID: 32238694]
[152]
Agudo J, Park ES, Rose SA, et al. Quiescent Tissue stem cells evade immune surveillance. Immunity 2018; 48(2): 271-285.e5.
[http://dx.doi.org/10.1016/j.immuni.2018.02.001] [PMID: 29466757]
[153]
Xu Q, Wang CH, Pack DW. Polymeric carriers for gene delivery: Chitosan and poly(amidoamine) dendrimers. Curr Pharm Des 2010; 16(21): 2350-68.
[http://dx.doi.org/10.2174/138161210791920469] [PMID: 20618156]
[154]
Zhao J, Yang L, Huang P, et al. Synthesis and characterization of low molecular weight polyethyleneimine-terminated Poly(β-amino ester) for highly efficient gene delivery of minicircle DNA. J Colloid Interface Sci 2016; 463: 93-8.
[http://dx.doi.org/10.1016/j.jcis.2015.10.025] [PMID: 26520815]
[155]
Pereboeva L, Curiel DT. Cellular vehicles for cancer gene therapy: Current status and future potential. BioDrugs 2004; 18(6): 361-85.
[http://dx.doi.org/10.2165/00063030-200418060-00003] [PMID: 15571421]
[156]
Liang Z, Luo Y, Lv Y. Mesenchymal stem cell-derived microvesicles mediate BMP2 gene delivery and enhance bone regeneration. J Mater Chem B 2020; 8(30): 6378-89.
[http://dx.doi.org/10.1039/D0TB00422G] [PMID: 32633309]
[157]
Wang X, Zhao T, Huang W, et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells 2009; 27(12): 3021-31.
[http://dx.doi.org/10.1002/stem.230] [PMID: 19816949]
[158]
Vaidya A, Singh S, Limaye L, Kale V. Chimeric feeders of mesenchymal stromal cells and stromal cells modified with constitutively active AKT expand hematopoietic stem cells. Regen Med 2019; 14(6): 535-53.
[http://dx.doi.org/10.2217/rme-2018-0157] [PMID: 31115264]
[159]
Al-Kharboosh R, ReFaey K, Lara-Velazquez M, Grewal SS, Imitola J, Quiñones-Hinojosa A. Inflammatory mediators in glioma microenvironment play a dual role in gliomagenesis and mesenchymal stem cell homing: Implication for cellular therapy. Mayo Clin Proc Innov Qual Outcomes 2020; 4(4): 443-59.
[http://dx.doi.org/10.1016/j.mayocpiqo.2020.04.006] [PMID: 32793872]
[160]
Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S. Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 2008; 26(9): 2332-8.
[http://dx.doi.org/10.1634/stemcells.2008-0084] [PMID: 18617688]
[161]
Jacoby E, Shahani SA, Shah NN. Updates on CAR T-cell therapy in B-cell malignancies. Immunol Rev 2019; 290(1): 39-59.
[http://dx.doi.org/10.1111/imr.12774] [PMID: 31355492]
[162]
Li Z, Fan D, Xiong D. Mesenchymal stem cells as delivery vectors for anti-tumor therapy. Stem Cell Investig 2015; 2: 6.
[http://dx.doi.org/10.3978/j.issn.2306-9759.2015.03.01] [PMID: 27358874]
[163]
Park JH, Ryu CH, Kim MJ, Jeun SS. Combination therapy for gliomas using temozolomide and interferon-beta secreting human bone marrow derived mesenchymal stem cells. J Korean Neurosurg Soc 2015; 57(5): 323-8.
[http://dx.doi.org/10.3340/jkns.2015.57.5.323] [PMID: 26113958]
[164]
Mao J, Cao M, Zhang F, et al. Peritumoral administration of IFNβ upregulated mesenchymal stem cells inhibits tumor growth in an orthotopic, immunocompetent rat glioma model. J Immunother Cancer 2020; 8(1): e000164.
[http://dx.doi.org/10.1136/jitc-2019-000164] [PMID: 32169868]
[165]
Eliopoulos N, Francois M, Boivin MN, Martineau D, Galipeau J. Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 2008; 68(12): 4810-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0160] [PMID: 18559528]
[166]
Attar R, Sajjad F, Qureshi MZ, et al. TRAIL based therapy: Overview of mesenchymal stem cell based delivery and miRNA controlled expression of TRAIL. Asian Pac J Cancer Prev 2014; 15(16): 6495-7.
[http://dx.doi.org/10.7314/APJCP.2014.15.16.6495] [PMID: 25169476]
[167]
Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 2013; 32(37): 4343-54.
[http://dx.doi.org/10.1038/onc.2012.458] [PMID: 23085755]
[168]
Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or future. Stem Cell Rev Rep 2020; 16(3): 427-33.
[http://dx.doi.org/10.1007/s12015-020-09973-w] [PMID: 32281052]
[169]
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif 2020; 53(1): e12712.
[http://dx.doi.org/10.1111/cpr.12712] [PMID: 31730279]
[170]
Zhou W, Zhou Y, Chen X, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials 2021; 268: 120546.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120546] [PMID: 33253966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy