Review Article

4-硫代呋喃酸烯糖:选择性合成4-硫代核苷β-异构体的多功能糖基供体及其生物活性

卷 29, 期 21, 2022

发表于: 20 January, 2022

页: [3684 - 3731] 页: 48

弟呕挨: 10.2174/0929867328666211115121434

价格: $65

摘要

利用3,5-O-(二叔丁基硅基)(DTBS)-4-硫代呋喃酸糖醛作为糖基供体,通过亲电糖苷化,首次高度非对映选择性地合成了4-硫代核苷的β-异构体。所得到的糖苷通过2-取代基的化学转化转化为核糖、2-脱氧和阿拉伯呋喃酰基核苷。糖醛氧化物的加性Pummer反应生成1,2-二-O-乙酰基-3,5-O-DTBS-4-硫代呋喃核糖。通过基于Vorbruggen糖苷化制备嘧啶和嘌呤-4-硫代核糖核苷的4-硫代类似物,证明了DTB保护的4-硫代呋喃核糖的效用。还进行了C-核苷抗生素噻唑呋喃的4-硫对应物的合成。通过1-三丁基烷基糖醛的交叉偶联获得的1-C-芳基或1-C-杂芳基糖醛的α-面选择性硼氢化反应提供了4-硫代-C-核糖核苷的相应β-异构体,包括核苷抗生素假尿苷和9-脱氮腺苷的4-硫代类似物。在锂化化学的基础上,合成了1-C-和2-C-碳取代的3,5-O-(1,1,3,3-四异丙基二硅氧烷-1,3-二基)(TIPDS)-4-硫代呋喃酸糖醛。这些糖醛使我们能够制备1_C-和2_β-C-碳取代的2_脱氧-4_硫核苷,包括抗肿瘤核苷抗生狭霉素C的硫对应物。此外,1_C-甲基-4_硫胸苷是一种有效的血管生成抑制剂。此外,1¬_C-甲基-4_-硫代胸苷对疱疹病毒胸苷激酶缺陷突变体的抑制活性比更昔洛韦更强。在4-取代的4-硫代胸腺嘧啶中,4-氰基和4-乙炔基衍生物抑制抗3TC(HIVM184V)的HIV变体复制的能力与HIV-1IIB一样强。就选择性指数(SI)而言,4_C-氰基-4_ -硫代胸苷的选择性指数(SI)是相应胸苷衍生物的3倍。此外,4'-C-乙炔基-2'-脱氧-4'-硫鸟嘌呤核苷酸的值是2'-脱氧鸟苷对应物(933)的20倍(>18200)。此外,4-叠氮-4-硫代胸苷是一种选择性和有效的抗EBV药物。在抗肿瘤活性方面,4-叠氮基和4-氟甲基-2-脱氧-4-硫胞苷抑制人B细胞(CCRF-SB)和T细胞白血病(Molt-4)细胞系的增殖,尽管母体化合物2-脱氧-4-硫胞苷在100μM以下没有表现出任何细胞毒性。这些有关生物活性的事实表明,用硫原子取代呋喃糖氧是开发低毒抗病毒和抗肿瘤核苷抗代谢药物的一种有希望的方法。4-硫核苷还作为寡核苷酸(ONs)治疗剂的单体,具有优异的生物学特性。因此,本综述为反义ON和siRNA提供了广泛的潜在单体。

关键词: 核苷、硫代糖、糖醛、糖苷化、抗肿瘤活性、抗病毒活性。

[1]
Huryn, D.M.; Okabe, M. AIDS-driven nucleoside chemistry. Chem. Rev., 1992, 92, 1745-1768.
[http://dx.doi.org/10.1021/cr00016a004]
[2]
Chu, C.K.; Baker, D.C. Nucleosides and Nucleotides as Antitumor and Antiviral Agents; Plenum Press: New York, 1993.
[3]
Franchetti, P.; Grifantini, M. Nucleoside and nonnucleoside IMP dehydrogenase inhibitors as antitumor and antiviral agents Curr. Med. Chem., 1999, 6(7), 599-614.
[PMID: 10390603]
[4]
Ichikawa, E.; Kato, K. Sugar-modified nucleosides in past 10 years, a review. Curr. Med. Chem., 2001, 8(4), 385-423.
[http://dx.doi.org/10.2174/0929867013373471] [PMID: 11172696]
[5]
Mimetics, N. Their Chemistry and Biological Properties; Simons, C., Ed.; Gordon and Breach Science Publishers: Amsterdam, 2001.
[6]
Ichikawa, E.; Kato, K. Synthesis of oxetanocin A and related unusual nucleosides with bis(hydroxymethyl)-branched sugars Synthesis, 2002, 1-28.
[7]
Chu, C.K. Recent Advances in Nucleosides: Chemistry and Chemotherapy; Elsevier B.V.: Amsterdam, 2002.
[8]
Chu, C.K. Antiviral Nucleosides: Chemical Synthesis and Chemotherapy; Elsevier B.V.: Amsterdam, 2003.
[9]
Vaghefi, M. Nucleoside Triphosphates and their Analogs: Chemistry, Biotechnology, and Biological Applications; Tayler & Francis: Boca Raton, London, New York, Singapore, 2005.
[10]
Lawton, P. Purine analogues as antiparasitic agents. Expert Opin The Patents, 2005, 15, 987-994.
[http://dx.doi.org/10.1517/13543776.15.8.987]
[11]
Richardson, S.K.; Howell, A.R.; Taboada, R. Synthesis and properties of psico-nucleosides. Org. Prep. Proced. Int., 2006, 38, 101-176.
[http://dx.doi.org/10.1080/00304940609355987]
[12]
Peters, G.J. Deoxynucleoside Analogs in Cancer Therapy; Humana Press: New Jersey, 2006.
[13]
De Clercq, E. The design of drugs for HIV and HCV. Nat. Rev. Drug Discov., 2007, 6(12), 1001-1018.
[http://dx.doi.org/10.1038/nrd2424] [PMID: 18049474]
[14]
Herdewijn, P., Ed.; Modified Nucleosides in Biochemistry, Biotechnology and Medicine; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, , 2008.
[15]
Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chemical synthesis of heterocyclic-sugar nucleoside analogues. Chem. Rev., 2010, 110(6), 3337-3370.
[http://dx.doi.org/10.1021/cr800464r] [PMID: 20232792]
[16]
De Clercq, E. Antiviral Drug Design; Wiley-VCH Verlag GmbH & Co. KGaA.: Weinheim , 2011.
[17]
Van Calenbergh, S.; Pochet, S.; Munier-Lehmann, H. Drug design and identification of potent leads against Mycobacterium tuberculosis thymidine monophosphate kinase. Curr. Top. Med. Chem., 2012, 12(7), 694-705.
[http://dx.doi.org/10.2174/156802612799984580] [PMID: 22283813]
[18]
Merino, P. Chemical Synthesis of Nucleoside Analogues; John Wiley & Sons: Hoboken, New Jersey, 2013.
[19]
De Clercq, E. Highlights in antiviral drug research: antivirals at the horizon. Med. Res. Rev., 2013, 33(6), 1215-1248.
[http://dx.doi.org/10.1002/med.21256] [PMID: 22553111]
[20]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[21]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[22]
Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem. Rev., 2016, 116(23), 14379-14455.
[http://dx.doi.org/10.1021/acs.chemrev.6b00209] [PMID: 27960273]
[23]
Yokoyama, M. Synthesis and biological activity of thionucleosides. Synthesis, 2000, 1637-1655.
[http://dx.doi.org/10.1055/s-2000-8194]
[24]
Gunaga, P.; Moon, H-R.; Choi, W-J.; Shin, D-H.; Park, J.G.; Jeong, L.S. Recent advances in 4′-thionucleosides as potential antiviral and antitumor agents. Curr. Med. Chem., 2004, 11(19), 2585-2637.
[http://dx.doi.org/10.2174/0929867043364478] [PMID: 15544465]
[25]
Mulamoottil, V.A.; Majik, M.S.; Chandra, G.; Jeong, L.S. Recent advances in synthesis and biological activity of 4′-thionucleosides.In: Chemical Synthesis of Nucleoside Analogues; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013, pp. 655-697.
[http://dx.doi.org/10.1002/9781118498088.ch14]
[26]
Rodrigues, L.; Tilve, S.G.; Majik, M.S. Synthetic access to thiolane-based therapeutics and biological activity studies. Eur. J. Med. Chem., 2021, 224, 113659-113690.
[http://dx.doi.org/10.1016/j.ejmech.2021.113659] [PMID: 34237621]
[27]
Jeong, L.S.; Choe, S.A.; Gunaga, P.; Kim, H.O.; Lee, H.W.; Lee, S.K.; Tosh, D.K.; Patel, A.; Palaniappan, K.K.; Gao, Z.G.; Jacobson, K.A.; Moon, H.R. Discovery of a new nucleoside template for human A3 adenosine receptor ligands: D-4′-thioadenosine derivatives without 4′-hydroxymethyl group as highly potent and selective antagonists. J. Med. Chem., 2007, 50(14), 3159-3162.
[http://dx.doi.org/10.1021/jm070259t] [PMID: 17555308]
[28]
Okano, Y.; Saito-Tarashima, N.; Kurosawa, M.; Iwabu, I.; Ota, M.; Watanabe, T.; Kato, F.; Hishiki, T.; Fujimuro, M.; Minakawa, N. Synthesis and biological evaluation of novel imidazole nucleosides as potential anti-dengue virus agents. Bioorg. Med. Chem., 2019, 27, 2181-2186.
[http://dx.doi.org/10.1016/j.bmc.2019.04.015] [PMID: 31003866]
[29]
Inoue, N.; Minakawa, N.; Matsuda, A. Synthesis and properties of 4′-ThioDNA: unexpected RNA-like behavior of 4′-ThioDNA. Nucleic Acids Res., 2006, 34(12), 3476-3483.
[http://dx.doi.org/10.1093/nar/gkl491] [PMID: 16855286]
[30]
Watts, J.K.; Damha, M.J. 2‘F-Arabinonucleic acids (2′F-ANA)-history, properties, ans new frontiers. Can. J. Chem., 2008, 86, 641-656.
[http://dx.doi.org/10.1139/v08-049]
[31]
Maeda, R.; Saito-Tarashima, N.; Wakamatsu, H.; Natori, Y.; Minakawa, N.; Yoshimura, Y. Synthesis and properties of 4′-ThioLNA/BNA. Org. Lett., 2021, 23, 4062-4066.
[http://dx.doi.org/10.1021/acs.orglett.1c01306] [PMID: 33938754]
[32]
Inoue, N.; Shionoya, A.; Minakawa, N.; Kawakami, A.; Ogawa, N.; Matsuda, A. Amplification of 4′-thioDNA in the presence of 4′-thio-dTTP and 4′-thio-dCTP, and 4′-thioDNA-directed transcription in vitro and in mammalian cells. J. Am. Chem. Soc., 2007, 129(50), 15424-15425.
[http://dx.doi.org/10.1021/ja075953c] [PMID: 18034484]
[33]
Vorbrüggen, H.; Kroliliewicz, K.; Bennua, B. Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber., 1981, 114, 1234-1255.
[http://dx.doi.org/10.1002/cber.19811140404]
[34]
Vorbrüggen, H.; Hofle, G. On the mechanism of nucleoside synthesis. ibid, 1981, 18, 784-787.
[35]
Bobek, M.; Bloch, A.; Parthasarathy, R.; Whistler, R.L. Synthesis and biological activity of 5-fluoro-4′-thiouridine and some related nucleosides. J. Med. Chem., 1975, 18(8), 784-787.
[http://dx.doi.org/10.1021/jm00242a004] [PMID: 808609]
[36]
Uenishi, J.; Takahashi, K.; Motoyama, M.; Akashi, H.; Sakai, T. Synthesis and antitumor activities of D- and L-2′-deoxy-4′-thiopyrimidine nucleosides. Nucleosides Nucleotides, 1994, 13, 1347-1361.
[http://dx.doi.org/10.1080/15257779408012157]
[37]
Inguaggiato, G.; Jasamai, M.; Smith, J.E.; Slater, M.; Simons, C. Novel triazole 2′-deoxy-4′-thionucleosides: Stereoselective synthesis and biological evaluation. Nucleosides Nucleotides, 1999, 18(3), 457-467.
[http://dx.doi.org/10.1080/15257779908043089] [PMID: 10358943]
[38]
Naka, T.; Nishizono, T. MInakawa, N.; Matsuda, A. Investigation of the stereoselective coupling of thymine with meso-thiolane-3.4-diol-1-oxide derivatives via the Pummerer reaction. Tetrahedron Lett., 1999, 40, 6297-6300.
[http://dx.doi.org/10.1016/S0040-4039(99)01287-3]
[39]
Naka, T.; Minakawa, N.; Abe, H.; Kaga, D.; Mastuda, A. The stereoselective synthesis of 4′-β-thioribonucleosides via the Pummerer reaction. J. Am. Chem. Soc., 2000, 122, 7233-7243.
[http://dx.doi.org/10.1021/ja000541o]
[40]
Collins, P.M.; Ferrier, R.J. Monosaccharides, Their Chemistry and Their Roles in Natural Products; John Wiley & Sons: Chichester, U. K., 1995, pp. 317-326.
[41]
Gomez, A.M.; Casillas, M.; Barrio, A.; Gawel, A.; Lopez, J.C. Synthesis of pyranopid and furanoid glycals from glycosyl sulfoxides by treatment with organolithium reagents. Eur. J. Org. Chem., 2008, 3933-3942.
[http://dx.doi.org/10.1002/ejoc.200800318]
[42]
Robles, R.; Rodriguez, C.; Izquierdo, I.; Plaza, M.T.; Mota, A. An efficient and highly stereoselective synthesis of nucleoside derivatives from furanoid 1,2-diols. Tetrahedron Asymmetry, 1997, 8, 2959-2965.
[http://dx.doi.org/10.1016/S0957-4166(97)00332-7]
[43]
Diaz, Y.; El-laghdach, A.; Castillon, S. Synthesis of 2′-deoxy-2′-phenylselenenyl-furanosyl nucleosides from glycals using electrophilic selenium reagents. conversion into 2′-deoxynucleosides. Tetrahedron, 1997, 53, 10921-10938.
[http://dx.doi.org/10.1016/S0040-4020(97)00697-2]
[44]
Diaz, Y.; El-laghdach, A.; Matheu, M.I.; Castillon, S. Stereoselective synthesis of 2′,3′-dideoxynucleosides by addition of selenium electrophiles to glycals. A formal synthesis of D4T from 2-dfeoxyribose. J. Org. Chem., 1997, 62, 1501-1505.
[http://dx.doi.org/10.1021/jo9616825]
[45]
Chao, Q.; Zhang, J.; Pickering, I.; Jahnke, T.S.; Nair, V. Concise and stereospecific synthesis of novel bicyclic dideoxynucleosides as potent antiviral agents. Tetrahedron, 1998, 54, 3113-3124.
[http://dx.doi.org/10.1016/S0040-4020(98)00061-1]
[46]
Tanaka, H.; Haraguchi, K.; Kumamoto, H.; Baba, M.; Cheng, Y-C. 4′-Ethynylstavudine (4′-Ed4T) has potent anti-HIV-1 activity with reduced toxicity and shows a unique activity profile against drug-resistant mutants. Antivir. Chem. Chemother., 2005, 16(4), 217-221.
[http://dx.doi.org/10.1177/095632020501600402] [PMID: 16130520]
[47]
Haraguch, K.; Takeda, S.; Kubota, Y.; Kumamoto, H.; Tanaka, H.; Hamasaki, T.; Baba, M.; Paintsil, E.; Cheng, Y-C. From the chemistry of epoxy-sugar nucleosides to the discovery of anti-HIV agent Festinavir. Curr. Pharm. Des., 2013, 19, 1880-1897.
[http://dx.doi.org/10.2174/1381612811319100011] [PMID: 23092278]
[48]
Haraguchi, K.; Takeda, S.; Kubota, Y.; Kumamoto, H.; Tanaka, H.; Hamasaki, T.; Baba, M.; Paintsil, E.; Cheng, Y-C.; Urata, Y. Next generation anti-HIV agent 4′-ethynylstavudine: from the bench to the clinic. Front. Clin. Drug Res., 2015, 1, 123-184.
[http://dx.doi.org/10.2174/9781608058969114010007]
[49]
Miller, J.A.; Pugh, A.W.; Ullah, G.M. Synthesis of 4-thiofuranoid 1,2-glycals and their application to stereoselective synthesis of 4′-thionucleosides. Tetrahedron Lett., 2000, 41, 3265-3268.
[http://dx.doi.org/10.1016/S0040-4039(00)00366-X]
[50]
Miller, J.A.; Pugh, A.W.; Ullah, G.M. 2,2′-Anhydro-4′-thionucleosides: precursors for 2′-azido- and 2′-chloro-4′-thionucleosides and for a novel thiolane to thietane rearrangement. Nucleosides Nucleotides Nucleic Acids, 2000, 19(9), 1475-1486.
[http://dx.doi.org/10.1080/15257770008033855] [PMID: 11092316]
[51]
Haraguchi, K.; Nishikawa, A.; Sasakura, E.; Tanaka, H.; Nakamura, K.T.; Miyasaka, T. Electrophilic addition to 4-thio furanoid glycal: a highly stereoselective entry to 2′-deoxy-4′-thio pyrimidine nucleosides. Tetrahedron Lett., 1998, 39, 3713-3716.
[http://dx.doi.org/10.1016/S0040-4039(98)00543-7]
[52]
Haraguchi, K.; Takahashi, H.; Shiina, N.; Horii, C.; Yoshimura, Y.; Nishikawa, A.; Sasakura, E.; Nakamura, K.T.; Tanaka, H. Stereoselective synthesis of the β-anomer of 4′-thionucleosides based on electrophilic glycosidation to 4-thiofuranoid glycals. J. Org. Chem., 2002, 67(17), 5919-5927.
[http://dx.doi.org/10.1021/jo020037x] [PMID: 12182623]
[53]
Branalt, J.; Kvarnstrom, I.; Niklasson, G.; Svensson, S.C. T.; Classon, B.; Samuelsson, B. Synthesis of 2,3-dideoxy3-C-(hydroxymethyl)-4-thionucleosides as potential inhibitor of HIV. ibid, 1994, 59, 1783-1788.
[54]
Branalt, J.; Kvarnstrom, I.; Niklasson, G.; Svensson, S.C. T.; Classon, B.; Samuelsson, B. A new synthesis of 4- thiofuranosides via regioselective opening of an episulfide with allylmagnesium bromide. ibid, 1994, 59, 4430-4432.
[55]
Walker, J.A.; Chen, J.J.; Wise, D.S.; Townsend, L.B. A facile, multigram synthesis of ribofuranoid glycals. J. Org. Chem., 1996, 61, 2219-2221.
[http://dx.doi.org/10.1021/jo951376b]
[56]
Dyson, M.R.; Coe, P.L.; Walker, R.T. An improved synthesis of benzyl 3,5-O-benzyl-2-deoxy-1,4-dithio-D-erythro-pentofuranoside, an intermediate in the synthesis of 4′-thionucleosides. Carbohydr. Res., 1991, 216, 237-248.
[http://dx.doi.org/10.1016/0008-6215(92)84165-O]
[57]
Yuasa, H.; Kamata, Y.; Hashimoto, H. Relative nucleophilicity of the two sulfur atoms in 1,5-dithioglucopyranoside. Angew. Chem. Int. Ed. Engl., 1997, 36, 868-869.
[http://dx.doi.org/10.1002/anie.199708681]
[58]
Haraguchi, K.; Itoh, Y.; Tanaka, H.; Yamaguchi, K.; Miyasaka, T. Anomeric manipulation of nucleosides: stereospecific entry to 1′-C-branched uracil nucleosides. Tetrahedron Lett., 1993, 34, 6913-6916.
[http://dx.doi.org/10.1016/S0040-4039(00)91829-X]
[59]
Itoh, Y.; Haraguchi, K.; Tanaka, H.; Gen, E.; Miyasaka, T. Divergent and stereo-controlled approach to the synthesis of uracil nucleosides branched at the anomeric position. J. Org. Chem., 1995, 60, 656-662.
[http://dx.doi.org/10.1021/jo00108a031]
[60]
Fox, J.J.; Miller, N.C. Further studies of anhydronucleosides. J. Org. Chem., 1963, 28, 936-941.
[http://dx.doi.org/10.1021/jo01039a014]
[61]
Haraguchi, K.; Matsui, H.; Takami, S.; Tanaka, H. Additive Pummerer reaction of 3,5-O-(di-t-butylsilylene)-4-thiofuranoid glycal. J. Org. Chem., 2009, 74, 2616-2619.
[http://dx.doi.org/10.1021/jo802615h] [PMID: 19243156]
[62]
Jeong, L.S.; Jin, D.Z.; Kim, H.O.; Shin, D.H.; Moon, H.R.; Gunaga, P.; Chun, M.W.; Kim, Y-C.; Melman, N.; Gao, Z.G.; Jacobson, K.A.N. N6-substituted D-4′-thioadenosine-5′-methyluronamides: potent and selective agonists at the human A3 adenosine receptor. J. Med. Chem., 2003, 46(18), 3775-3777.
[http://dx.doi.org/10.1021/jm034098e] [PMID: 12930138]
[63]
Craig, D.; Daniels, K.; MacKenzie, A.R. Additive Pummerer reactions of vinylic sulfoxides. Synthesis of γ-hydroxy-α,β-unsaturated esters, α-hydroxyketones, and 2-phenylsulfenyl aldehydes and primary alcolols. Tetrahedron, 1993, 49, 11263-11304.
[http://dx.doi.org/10.1016/S0040-4020(01)81812-3]
[64]
Yamagiwa, S.; Sato, H.; Hoshi, N.; Kosugi, H.; Uda, H. New rearrangement reactions of α-phenylsulphinylacrylate derivatives. J.C.S. Perkin, 1979, I, 570-583.
[http://dx.doi.org/10.1039/P19790000570]
[65]
Paquette, L.A.; Fabris, F.; Gallou, F.; Dong, S. C4′-spiroalkylated nucleosides having sulfur incorporated at the apex position. J. Org. Chem., 2003, 68(22), 8625-8634.
[http://dx.doi.org/10.1021/jo030196w] [PMID: 14575495]
[66]
Uenishi, J.; Sohma, A.; Yonemitsu, O. Reaction and stereochemistry of C-glycosidation in 2-deoxy-4-thioribofuranoside. Chem. Lett., 1996, 25(8), 595-596.
[http://dx.doi.org/10.1246/cl.1996.595]
[67]
Franchetti, P.; Marchetti, S.; Cappellacci, L.; Jayaram, H.N.; Yalowitz, J.A.; Goldstein, B.M.; Barascut, J-L.; Dukhan, D.; Imbach, J.L.; Grifantini, M. Synthesis, conformational analysis, and biological activity of C-thioribonucleosides related to tiazofurin. J. Med. Chem., 2000, 43(7), 1264-1270.
[http://dx.doi.org/10.1021/jm990257b] [PMID: 10753464]
[68]
Ulgar, V.; Lopez, O.; Maya, I.; Fernandez-Bolanos, J.G.; Bols, M. Synthesis of furan 4′-thio-C-nucleosides, their methylsulfonium and sulfoxide derivatives. Evaluation as glycosidase inhibitors. Tetrahedron, 2003, 59, 2801-2809.
[http://dx.doi.org/10.1016/S0040-4020(03)00339-9]
[69]
Watanabe, K.A. Chemistry of Nucleosides and Nucleotides; Townsend, L.B., Ed.; Plenum Press: New York, 1994, Vol. 3, .
[70]
Fuertes, M.; García-López, T.; García-Muñoz, G.; Stud, M. Synthesis of C-glycosyl thiazole. J. Org. Chem., 1976, 41, 4074-4077.
[http://dx.doi.org/10.1021/jo00888a005]
[71]
Srivastava, P.C.; Pickering, M.V.; Allen, L.B.; Streeter, D.G.; Campbell, M.T.; Witkowski, J.T.; Sidwell, R.W.; Robins, R.K. Synthesis and antiviral activity of certain thiazole C-nucleosides. J. Med. Chem., 1977, 20(2), 256-262.
[http://dx.doi.org/10.1021/jm00212a014] [PMID: 189032]
[72]
Cooney, D.A.; Jayaram, H.N.; Gebeyehu, G.; Betts, C.R.; Kelley, J.A.; Marquez, V.E.; Johns, D.G. The conversion of 2-β-D-ribofuranosylthiazole-4-carboxamide to an analogue of NAD with potent IMP dehydrogenase-inhibitory properties. Biochem. Pharmacol., 1982, 31(11), 2133-2136.
[http://dx.doi.org/10.1016/0006-2952(82)90436-1] [PMID: 6126195]
[73]
Kelly, T.R.; Lang, F. Synthesis of thiazole compounds via lithiation: an unexpected rearrangement. Tetrahedron Lett., 1995, 36, 9293-9296.
[http://dx.doi.org/10.1016/0040-4039(95)02005-A]
[74]
Brown, R.S.; Dowden, J.; Moreau, C.; Potter, B.V.L. A concise route to tiazofurin. Tetrahedron Lett., 2002, 43, 6561-6562.
[http://dx.doi.org/10.1016/S0040-4039(02)01470-3]
[75]
Haraguchi, K.; Horii, C.; Yoshimura, Y.; Ariga, F.; Tadokoro, A.; Tanaka, H. An access to the β-anomer of 4′-thio-C-ribonucleosides: hydroboration of 1-C-aryl- or 1-C-heteroaryl-4-thiofuranoid glycals and its regiochemical outcome. J. Org. Chem., 2011, 76(21), 8658-8669.
[http://dx.doi.org/10.1021/jo201100n] [PMID: 21970737]
[76]
Isono, K. Nucleoside antibiotics: Structure, biological activity, and biosynthesis. J. Antibiot. (Tokyo), 1988, 41, 1711-1739.
[http://dx.doi.org/10.7164/antibiotics.41.1711]
[77]
Davis, F.F.; Allen, F.W. Ribonucleic acids from yeast which contain a fifth nucleotide. J. Biol. Chem., 1957, 227(2), 907-915.
[http://dx.doi.org/10.1016/S0021-9258(18)70770-9] [PMID: 13463012]
[78]
Neyts, J.; Meerbach, A.; McKenna, P.; De Clercq, E. Use of the yellow fever virus vaccine strain 17D for the study of strategies for the treatment of yellow fever virus infections. Antiviral Res., 1996, 30(2-3), 125-132.
[http://dx.doi.org/10.1016/0166-3542(96)89697-5] [PMID: 8783804]
[79]
Lim, M-I.; Klein, R.S. Synthesis of “9-deazaadenosine; A new cytotoxic C-nucleoside isostere of adenosine”. Tetrahedron Lett., 1981, 22, 25-28.
[http://dx.doi.org/10.1016/0040-4039(81)80031-7]
[80]
Glazer, R.I.; Hartman, K.D.; Knode, M.C. 9- Deazaadenosine. Cytocidal activity and effects on nucleic acids and protein synthesis in human colon carcinoma cells in culture Mol. Pharmacol., 1983, 24(2), 309-315.
[PMID: 6888372]
[81]
Francheti, P.; Marchetti, S.; Cappellacci, L.; Grifantini, M.; Goldstein, B.M.; Dukhan, D.; Barascut, J-L.; Imbach, J.L. Structure-activity relationships of tiazofurin analogs: Synthesis and computational studies of 4′-thio derivatives of thiophenfurin and furanfurin. Nucleosides Nucleotides Nucleic Acids, 1999, 18, 679-680.
[http://dx.doi.org/10.1080/15257779908041538]
[82]
López Aparicio, F.L.; Zorrilla Benítez, F.; Santoyo González, F.; Asensio Rosell, J. Use of 2-methyl-2-propanethiole in the synthesis of C-thioglycosyl derivatives. Carbohydr. Res., 1986, 155, 151-159.
[http://dx.doi.org/10.1016/S0008-6215(00)90141-1]
[83]
Zhang, H-C.; Brackta, M.; Daves, G.D., Jr Preparation of 1-(tri-n-butylstannyl)furanoid glycals and their use in palladium-mediated coupling reactions. Tetrahedron Lett., 1993, 34, 1571-1574.
[http://dx.doi.org/10.1016/0040-4039(93)85009-L]
[84]
Haraguchi, K.; Konno, K.; Yamada, K.; Kitagawa, Y.; Nakamura, K.T.; Tanaka, H. Electrophilic glycosidation employing 3,5-O-(di-tert-butylsilylene)-erythro-furanoid glycal leads to exclusive formation of the β-anomer: Synthesis of 2′-deoxynucleosides and its 1′-branched analogues. Tetrahedron, 2010, 66, 4587-4600.
[http://dx.doi.org/10.1016/j.tet.2010.04.043]
[85]
Parker, K.A.; Su, D-S. Synthesis of C-aryl furanosides by the “reverse polarity” strategy. J. Org. Chem., 1996, 61, 2191-2194.
[http://dx.doi.org/10.1021/jo951344o]
[86]
Haraguchi, K.; Shimada, H.; Kimura, K.; Akutsu, G.; Tanaka, H.; Abe, H.; Hamasaki, T.; Baba, M.; Gullen, E.A.; Dutschman, G.E.; Cheng, Y-C.; Balzarini, J. Synthesis of 4′-ethynyl-2′-deoxy-4′-thioribonucleosides and discovery of a highly potent and less toxic NRTI. ACS Med. Chem. Lett., 2011, 2(9), 692-697.
[http://dx.doi.org/10.1021/ml2001054] [PMID: 23795238]
[87]
Reynaud, P.; Robba, M.; Moreau, R.C. New synthesis of the thiazole ring Bull. Soc. Chim. Fr., 1962, 1700-17055,1735..
[88]
Bach, T.; Heuser, S. Regioselective cross-coupling reactions as an entry into biologically relevant bithiazoles: first total synthesis of cystothiazole E. Angew. Chem. Int. Ed. Engl., 2001, 40(17), 3184-3185.
[http://dx.doi.org/10.1002/1521-3773(20010903)40:17<3184:AID-ANIE3184>3.0.CO;2-7] [PMID: 29712074]
[89]
Bach, T.; Heuser, S. Synthesis of 2′-substituted 4-bromo-2,4′-bithiazoles by regioselective cross-coupling reactions. J. Org. Chem., 2002, 67(16), 5789-5795.
[http://dx.doi.org/10.1021/jo025661o] [PMID: 12153282]
[90]
Delgado, O.; Heckmann, G.; Müller, H.M.; Bach, T. Synthesis and configurational assignment of the amino alcohol in the eastern fragment of the GE2270 antibiotics by regio- and stereoselective addition of 2-metalated 4-bromothiazoles to α-chiral electrophiles. J. Org. Chem., 2006, 71(12), 4599-4608.
[http://dx.doi.org/10.1021/jo060462g] [PMID: 16749794]
[91]
Pereira, R.; Furst, A.; Iglesias, B.; Germain, P.; Gronemeyer, H.; de Lera, A.R. Insights into the mechanism of the site-selective sequential palladium-catalyzed cross-coupling reactions of dibromothiophenes/dibromothiazoles and arylboronic acids. Synthesis of PPARbeta/δ agonists. Org. Biomol. Chem., 2006, 4(24), 4514-4525.
[http://dx.doi.org/10.1039/B612235C] [PMID: 17268648]
[92]
Furneaux, R.H.; Tyler, P.C. Improved Syntheses of 3H,5H-Pyrrolo[3,2-d]pyrimidines. J. Org. Chem., 1999, 64(22), 8411-8412.
[http://dx.doi.org/10.1021/jo990903e] [PMID: 11674769]
[93]
O′Neil, I.A.; Hamilton, M.; Miller, J.A. A new approach to the synthesis of 4-thio1,2-dideoxyribose. Synlett, 1995, 1053.
[94]
Grohar, P.J.; Chow, C.S. A practical synthesis of the modified RNA nucleoside pseudouridine. Tetrahedron Lett., 1999, 40, 2049-2052.
[http://dx.doi.org/10.1016/S0040-4039(99)00162-8]
[95]
Haraguchi, K.; Takahashi, H.; Tanaka, H. Stereoselective entry to 1′-C-branched 4′-thionucleosides from 4-thiofuranoid glycal: synthesis of 4′-thioangustmycin C. Tetrahedron Lett., 2002, 43, 5647-5660.
[http://dx.doi.org/10.1016/S0040-4039(02)01131-0]
[96]
Sofia, M.J. Beyond sofosbuvir: what opportunity exists for a better nucleoside/nucleotide to treat hepatitis C? Antiviral Res., 2014, 107, 119-124.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.008] [PMID: 24792751]
[97]
Chun, B.K.; Clarke, M.O.H.; Doerffler, E.; Hui, H.C.; Jordan, R.; Mackman, R.L.; Parrish, J.P.; Ray, A.S.; Siegel, D. Methods for treating filoviridae virus infections. US Patent 2016/0122374 2017.
[98]
Uenishi, J. Acyclic and stereocontrolled synthesis of thiosugars and preparation of pseudo-nucleoside having the thiosugar moiety. J. Synth. Org. Chem. Jpn., 1997, 55, 186-195.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.55.186]
[99]
Gschwend, H.W.; Rodriguez, H.R. Heteroatom-facilitated lithiations Org. React., 2005, 26, 1-360.
[100]
Friesen, R.W.; Loo, R.W. Preparation of C-aryl glucals via the palladium catalyzed coupling of metalated aromatics with 1-iodo-3,4,6-tri-O-(triisopropylsilyl)-D-glucal. J. Org. Chem., 1991, 56, 4821-4823.
[http://dx.doi.org/10.1021/jo00016a003]
[101]
Sonogashira, K.; Tohda, Y.; Hagihara, N. Convenient synthesis of acetylenes. Catalytic substitutions of acetylenic hydrogen with bromo alkenes, iodo arenes, and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[102]
Haraguchi, K.; Saitoh, S.; Tanaka, H.; Miyasaka, T. Pummerer rearrangement of selenium-containing uracil nucleosides. Nucleosides Nucleotides, 1992, 11, 483-493.
[http://dx.doi.org/10.1080/07328319208021720]
[103]
Haraguchi, K.; Takahashi, H.; Tanaka, H.; Hayakawa, H.; Ashida, N.; Nitanda, T.; Baba, M. Synthesis and antiviral activities of 1′-carbon-substituted 4′-thiothymidines. Bioorg. Med. Chem., 2004, 12(20), 5309-5316.
[http://dx.doi.org/10.1016/j.bmc.2004.07.057] [PMID: 15388158]
[104]
Coen, N.; Duraffour, S.; Haraguchi, K.; Balzarini, J.; van den Oord, J.J.; Snoeck, R.; Andrei, G. Antiherpesvirus activities of two novel 4′-thiothymidine derivatives, KAY-2-41 and KAH-39-149, are dependent on viral and cellular thymidine kinases. Antimicrob. Agents Chemother., 2014, 58(8), 4328-4340.
[http://dx.doi.org/10.1128/AAC.02825-14] [PMID: 24820089]
[105]
Duraffour, S.; Drillien, R.; Haraguch, K.; Balzarini, J.; Topalis, D.; van den Oord, J.J.; Andrei, G.; Snoeck, R. Kay-2-41, a novel nucleoside analogue inhibitor of orthopoxuviruses in vitro and in vivo. Antimicrob. Agents Chemother., 2014, 58, 27-37.
[http://dx.doi.org/10.1128/AAC.01601-13] [PMID: 24126587]
[106]
Haraguchi, K.; Shiina, N.; Yoshimura, Y.; Shimada, H.; Hashimoto, K.; Tanaka, H. Novel stereoselective entry to 2′-β-carbon-substituted 2′-deoxy-4′-thionucleosides from 4-thiofuranoid glycals. Org. Lett., 2004, 6(16), 2645-2648.
[http://dx.doi.org/10.1021/ol040035u] [PMID: 15281734]
[107]
Keating, M.J.; McCredie, K.B.; Bodey, G.P.; Smith, T.L.; Gehan, E.; Freireich, E.J. Improved prospects for long-term survival in adults with acute myelogenous leukemia. JAMA, 1982, 248(19), 2481-2486.
[http://dx.doi.org/10.1001/jama.1982.03330190045029] [PMID: 6957624]
[108]
Prince, H.N.; Grunberg, E.; Buck, M.; Cleeland, R. A comparative study of the antitumor and antiviral activity of 1-β-D-arabinofuranosyl-5-fluorocytosine (FCA) and 1-β-D-arabinofuranosylcytosine (CA). Proc. Soc. Exp. Biol. Med., 1969, 130(4), 1080-1086.
[http://dx.doi.org/10.3181/00379727-130-33724] [PMID: 4305347]
[109]
Ho, D.H. Distribution of kinase and deaminase of 1-β-Darabinofuranosylcytosine in tissues of man and mouse. Cancer Res., 1973, 33(11), 2816-2820.
[PMID: 4518302]
[110]
Plunkett, W.; Gandhi, V. Cellular pharmacodynamics of anticancer drugs Semin. Oncol., 1993, 20(1), 50-63.
[PMID: 8475410]
[111]
Matsuda, A. Nucleosides and Nucleotides as Antitumor and Antiviral Agents; Chu, C.K; Baker, D.C., Ed.; Plenum Press: New York, 1993, pp. 1-22.
[112]
Yoshimura, Y.; Saitoh, K.; Ashida, N.; Sakata, S.; Matsuda, A. Synthesis of 1-(2-deoxy-2-C-fluoromethyl-β-D-arabinofuranosyl)cytosine as a potential antineoplastic agents. Bioorg. Med. Chem. Lett., 1994, 4, 721-724.
[http://dx.doi.org/10.1016/S0960-894X(01)80187-6]
[113]
Matsumoto, M.; Kuroda, K. A convenient synthesis of 1-bromoolefins and acetylenes by a chain extension of aldehydes. Tetrahedron Lett., 1980, 21, 4021-4024.
[http://dx.doi.org/10.1016/S0040-4039(00)92860-0]
[114]
Kumamoto, H.; Nakai, T.; Haraguchi, K.; Nakamura, K.T.; Tanaka, H. Synthesis and anti-HIV-1 activity of 4′-branched (±)-4′-thiostavudine. J. Med. Chem., 2006, 49, 7861-7867.
[http://dx.doi.org/10.1021/jm060980j] [PMID: 17181169]
[115]
Woodward, R.B.; Eastman, R.H. Tetrahydrothiophene (thiophane) derivatives. J. Am. Chem. Soc., 1946, 68(11), 2229-2235.
[http://dx.doi.org/10.1021/ja01215a034] [PMID: 21002227]
[116]
Luche, J-L. Selective 1,2-reduction of conjugated ketones. J. Am. Chem. Soc., 1978, 100, 2226-2227.
[http://dx.doi.org/10.1021/ja00475a040]
[117]
Luche, J-L.; Rodriguez-Hahn, L.; Crabbe´, P. Reduction of natural enones in the presence of cerium trichloride. J. Chem. Soc. Chem. Commun., 1978, 14, 601-602.
[http://dx.doi.org/10.1039/C39780000601]
[118]
Mansuri, M.M.; Starrett, J.E., Jr; Wos, J.A.; Tortolani, D.R.; Brodfuehrer, P.R.; Howell, H.G.; Martin, J.C. Preparation of 1-(2,3- dideoxy-â-D-glycero-pent-2-enofuranosyl)thymine (d4T) and 2′,3′- dideoxyadenosine (ddA): general methods for the synthesis of 2′,3′- olefinic and 2′,3′-dideoxy nucleoside analogs active against HIV. J. Org. Chem., 1989, 54, 4780-4785.
[http://dx.doi.org/10.1021/jo00281a017]
[119]
Miwa, K.; Aoyama, T.; Shioiri, T. Extension of the Colvin rearrangement using trimethylsilyldiazomethane, a new synthesis of alkynes. Synlett, 1994, 1994(2), 107-108.
[http://dx.doi.org/10.1055/s-1994-22755]
[120]
Ohira, S. Methanolysis of dimethyl (1-diazo-2-oxopropyl)phosphonate: Generation of dimethyl (diazomethyl)phosphonate and reaction with carbonyl compounds. Synth. Commun., 1989, 19, 561-564.
[http://dx.doi.org/10.1080/00397918908050700]
[121]
Müller, S.; Liepold, B.; Roth, G.J.; Bestmann, H.J. An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett, 1996, 1996(6), 521-522.
[http://dx.doi.org/10.1055/s-1996-5474]
[122]
Haraguchi, K.; Takeda, S.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y-C. Synthesis of a highly active new anti-HIV agent 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine. Bioorg. Med. Chem. Lett., 2003, 13(21), 3775-3777.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.009] [PMID: 14552777]
[123]
Dutschman, G.E.; Grill, S.P.; Gullen, E.A.; Haraguchi, K.; Takeda, S.; Tanaka, H.; Baba, M.; Cheng, Y-C. Novel 4′-substituted stavudine analog with improved anti-human immunodeficiency virus activity and decreased cytotoxicity. Antimicrob. Agents Chemother., 2004, 48(5), 1640-1646.
[http://dx.doi.org/10.1128/AAC.48.5.1640-1646.2004] [PMID: 15105115]
[124]
Haraguchi, K.; Itoh, Y.; Takeda, S.; Honma, Y.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y-C. Synthesis and anti-HIV activity of 4′-cyano-2′,3′-didehydro-3′-deoxythymidine. Nucleosides Nucleotides Nucleic Acids, 2004, 23(4), 647-654.
[http://dx.doi.org/10.1081/NCN-120030721] [PMID: 15200028]
[125]
Kumamoto, H.; Haraguchi, K.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y-C.; Kato, K. Synthesis of (+/-)-4′-ethynyl and 4′-cyano carbocyclic analogues of stavudine (d4T) Nucleosides Nucleotides Nucleic Acids, 2005, 24(2), 73-83.
[PMID: 15822615]
[126]
Mansuri, M.; Farina, V.; Starrett, J.E., Jr; Benigni, D.A.; Brankovan, V.; Martin, J.C. Preparation of the geometric isomers of DDC, DDA, D4C and D4T as potential anti-HIV agents. Bioorg. Med. Chem. Lett., 1991, 1, 65-68.
[http://dx.doi.org/10.1016/S0960-894X(01)81093-3]
[127]
Young, R.J.; Shaw-Ponter, S.; Thomson, J.B.; Miller, J.A.; Cumming, J.G.; Pugh, A.W.; Rider, P. Synthesis and antiviral evaluation of enantiomeric 2′,3′-dideoxy- and 2′,3′-didehydro-2′,3′- dideoxy-4′-thionucleosides. Bioorg. Med. Chem. Lett., 1995, 5, 2599-2604.
[http://dx.doi.org/10.1016/0960-894X(95)00472-6]
[128]
Haraguchi, K.; Shimada, H.; Tanaka, H.; Hamasaki, T.; Baba, M.; Gullen, E.A.; Dutschman, G.E.; Cheng, Y-C. Synthesis and anti-HIV activity of 4′-substituted 4′-thiothymidines: a new entry based on nucleophilic substitution of the 4′-acetoxy group. J. Med. Chem., 2008, 51(6), 1885-1893.
[http://dx.doi.org/10.1021/jm070824s] [PMID: 18311897]
[129]
Hayakawa, H.; Kohgo, S.; Kitano, K.; Ashida, N.; Kodama, E.; Mitsuya, H.; Ohrui, H. Potential of 4′-C-substituted nucleosides for the treatment of HIV-1. Antivir. Chem. Chemother., 2004, 15(4), 169-187.
[http://dx.doi.org/10.1177/095632020401500401] [PMID: 15457679]
[130]
Haraguchi, K.; Sumino, M.; Tanaka, H. Nucleophilic substitution at the 4′-position of nucleosides: new access to a promising anti-HIV agent 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine. J. Org. Chem., 2006, 71(12), 4433-4438.
[http://dx.doi.org/10.1021/jo060194m] [PMID: 16749771]
[131]
Inamoto, N.; Masuda, S. Revised method for calculation of group electronegativities. Chem. Lett., 1982, 11(7), 1003-1006.
[http://dx.doi.org/10.1246/cl.1982.1003]
[132]
Al-Masoudi, N.A.; Al-Soud, Y.A.; Schuppler, T. Thiosugar nucleosides. Effect of sulfur in the synthesis of substituted azido-5-thio-D-gluco- and allopyranosyl-N-nucleosides and new isothionucleoside derivative thereof. J. Carbohydr. Chem., 2005, 24, 237-250.
[http://dx.doi.org/10.1081/CAR-200053715]
[133]
Al-Masoudi, N.A.L.; Hughes, N. Sulfur participation in displacement reactions of sulfonate ester of 5-thio-D-allose, 5-thio-D-altrose, and 5-thio-D-glucose derivatives. J. Chem. Soc., Perkin Trans. 1, 1987, 2061-2067.
[http://dx.doi.org/10.1039/p19870002061]
[134]
Masutani, K.; Minowa, T.; Mukaiyama, T. Selective synthesis of isocyanides from secondary alcohols by a new type of oxidation-reduction condensation. Chem. Lett., 2005, 34, 1124-1125.
[http://dx.doi.org/10.1246/cl.2005.1124]
[135]
Batra, H.; Moriaty, R.M.; Penmasta, R.; Sharma, V.; Stanciuc, G.; Stazewski, J.P.; Tuladhar, S.M.; Walsh, D.A. A concise, efficient and production-scale synthesis of a protected L-lyxonolactone derivative: an important aldonolactone core. Org. Process Res. Dev., 2006, 10, 484-486.
[http://dx.doi.org/10.1021/op050222n]
[136]
Jayakanthan, K.; Johnston, B.D.; Pinto, B.M. Stereoselective synthesis of 4′-selenonucleosides using the Pummerer glycosylation reaction. Carbohydr. Res., 2008, 343(10-11), 1790-1800.
[http://dx.doi.org/10.1016/j.carres.2008.02.014] [PMID: 18316068]
[137]
Jeong, L.S.; Lee, H.W.; Jacobson, K.A.; Kim, H.O.; Shin, D.H.; Lee, J.A.; Gao, Z-G.; Lu, C.; Duong, H.T.; Gunaga, P.; Lee, S.K.; Jin, D.Z.; Chun, M.W.; Moon, H.R. Structure-activity relationships of 2-chloro-N6-substituted-4′-thioadenosine-5′-uronamides as highly potent and selective agonists at the human A3 adenosine receptor. J. Med. Chem., 2006, 49(1), 273-281.
[http://dx.doi.org/10.1021/jm050595e] [PMID: 16392812]
[138]
Gunaga, P.; Kim, H.O.; Lee, H.W.; Tosh, D.K.; Ryu, J-S.; Choi, S.; Jeong, L.S. Stereoselective functionalization of the 1′-position of 4′-thionucleosides. Org. Lett., 2006, 8(19), 4267-4270.
[http://dx.doi.org/10.1021/ol061548z] [PMID: 16956203]
[139]
Dong, S.; Paquette, L.A. Stereoselective synthesis of conformationally constrained 2′-deoxy-4′-thia β-anomeric spirocyclic nucleosides featuring either hydroxyl configuration at C5′. J. Org. Chem., 2005, 70(5), 1580-1596.
[http://dx.doi.org/10.1021/jo048071u] [PMID: 15730276]
[140]
Haraguchi, K.; Shimada, H.; Kimura, K.; Akutsu, G.; Tanaka, H.; Abe, H.; Hamasaki, T.; Baba, M.; Gullen, E.A.; Dutschman, G.E.; Cheng, Y-C.; Balzarini, Y. Synthesis of 4-ethynyl-2-deoxy-4-thioribonucleosides and discovery of a highly potent and less toxic NRTI ACS Med. Chem. Lett., 2011, 2, 692-697.
[141]
Haraguchi, K.; Takahashi, H.; Shiina, N.; Horii, C.; Yoshimura, Y.; Nishikawa, A.; Sasakura, E.; Nakamura, K.T.; Tanaka, H. Stereoselective synthesis of β-anomer of 4-thionucleosides based on electrophilic glycosidation to 4-thiofuranoid glycals J. Org. Chem., 2002, 67, 5919-5927.
[142]
Zou, R.; Robins, M.J. High-yield regioselective synthesis of 9-glycosyl guanine nucleosides and analogues via coupling with 2-N-acetyl-6-O-diphenylcarbamoylguanine. Can. J. Chem., 1987, 65, 1436-1437.
[http://dx.doi.org/10.1139/v87-243]
[143]
Soriano, E.; Marco-Contelles, J.; Tomassi, C.; Nguyen Van Nhien, A.; Postel, D. Computational analysis of aza analogues of [2′,5′-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranose]-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide) (TSAO) as HIV-1 reverse transcriptase inhibitors: relevance of conformational properties on the inhibitory activity. J. Chem. Inf. Model., 2006, 46(4), 1666-1677.
[http://dx.doi.org/10.1021/ci0600410] [PMID: 16859298]
[144]
Watts, J.K.; Sadalapure, K.; Choubdar, N.; Pinto, B.M.; Damha, M.J. Synthesis and conformational analysis of 2′-fluoro-5-methyl-4′-thioarabinouridine (4'S-FMAU). J. Org. Chem., 2006, 71(3), 921-925.
[http://dx.doi.org/10.1021/jo051844+] [PMID: 16438502]
[145]
Kubota, Y.; Ishizaki, N.; Kaneda, Y.; Haraguchi, K.; Odanaka, Y.; Tanaka, H.; Kato, N.; Baba, M.; Balzarini, J. Synthesis and antiviral evaluation of 4′-alkoxy analogues of 9-(β-D-xylofuranosyl)adenine. Antivir. Chem. Chemother., 2009, 19(5), 201-212.
[http://dx.doi.org/10.1177/095632020901900503] [PMID: 19483268]
[146]
Haraguchi, K.; Kumamoto, H.; Konno, K.; Yagi, H.; Tanano, Y.; Odanaka, Y.S.; Matsubayashi, S.; Snoeck, R.; Andrei, G. Synthesis of 4′-substituted 2′-deoxy-4′-thiocytidines and its evaluation for antineoplastic and antiviral activities. Tetrahedron, 2019, 75, 4542-4535.
[http://dx.doi.org/10.1016/j.tet.2019.06.044]
[147]
Yoshimura, Y.; Kitano, K.; Yamada, K.; Satoh, H.; Watanabe, M.; Miura, S.; Sakata, S.; Sasaki, T.; Matsuda, A. A novel synthesis of 2′-modified 2′-deoxy-4′-thiocytidines from D-glucose. J. Org. Chem., 1997, 62(10), 3140-3152.
[http://dx.doi.org/10.1021/jo9700540] [PMID: 11671697]
[148]
Yoshimura, Y.; Kitano, K.; Satoh, H.; Watanabe, M.; Miura, S.; Saakata, S.; Sasaki, T.; Matsuda, A. A novel synthesis of new antineoplastic 2′-deoxy-2′-substituted-4′-thiocytidines. J. Org. Chem., 1996, 61, 822-823.
[http://dx.doi.org/10.1021/jo9519423]
[149]
Watts, J.K.; Choubdar, N.; Sadalapure, K.; Robert, F.; Wahba, A.S.; Pelletier, J.; Pinto, B.M.; Damha, M.J. 2′-fluoro-4′-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity. Nucleic Acids Res., 2007, 35(5), 1441-1451.
[http://dx.doi.org/10.1093/nar/gkl1153] [PMID: 17284457]
[150]
Ohkawa, M.; Ohno, Y.; Masuko, K.; Takeuchi, A.; Suda, K.; Kubo, A.; Kawahara, R.; Okazaki, S.; Tanaka, T.; Saya, H.; Seki, M.; Enomoto, T.; Yagi, H.; Hashimoto, Y.; Masuko, T. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy. Biochem. Biophys. Res. Commun., 2011, 406(4), 649-655.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.135] [PMID: 21371427]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy