Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Synthesis of Triazine Based Dendrimers: A Mini-Review

Author(s): Anupama Singh* and Sukhbeer Kumari

Volume 19, Issue 5, 2022

Published on: 13 January, 2022

Page: [569 - 574] Pages: 6

DOI: 10.2174/1570193X18666211111105308

Price: $65

Abstract

Synthesizing s-triazine dendrimers are interesting as they can be synthesized easily, contain diversity in composition, and have a basic potential for molecular recognition. Triazine trichloride is the molecule of choice for synthesizing a novel class of dendrimers as it possesses certain remarkable characteristics like the potential to expand the chemical functionality by nucleophilic aromatic substitution reactions at various temperatures to give the desired dendrimer.

Keywords: Dendrimers, s-Triazine, nucleophilic aromatic substitution, Triazine trichloride (Tz tde), temperature, diversity in composition.

Graphical Abstract
[1]
Fre ´chet, J.M.J.; Tomalia, D.A. Dendrimers and other dendrithic polymers; John Wiley & Sons: UK, 2001.
[2]
Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev., 2010, 110(4), 1857-1959.
[http://dx.doi.org/10.1021/cr900327d] [PMID: 20356105]
[3]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications--reflections on the field. Adv. Drug Deliv. Rev., 2005, 57(15), 2106-2129.
[http://dx.doi.org/10.1016/j.addr.2005.09.018] [PMID: 16305813]
[4]
Fréchet, J.M. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science, 1994, 263(5154), 1710-1715.
[http://dx.doi.org/10.1126/science.8134834] [PMID: 8134834]
[5]
Röglin, L.; Lempens, E.H.; Meijer, E.W. A synthetic “tour de force”: well-defined multivalent and multimodal dendritic structures for biomedical applications. Angew. Chem. Int. Ed. Engl., 2011, 50(1), 102-112.
[http://dx.doi.org/10.1002/anie.201003968] [PMID: 21117109]
[6]
D’Emanuele, A.; Attwood, D. Dendrimer-drug interactions. Adv. Drug Deliv. Rev., 2005, 57(15), 2147-2162.
[http://dx.doi.org/10.1016/j.addr.2005.09.012] [PMID: 16310283]
[7]
Zeng, F.; Zimmerman, S.C. Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem. Rev., 1997, 97(5), 1681-1712.
[http://dx.doi.org/10.1021/cr9603892] [PMID: 11851463]
[8]
Medina, S.H.; El-Sayed, M.E. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev., 2009, 109(7), 3141-3157.
[http://dx.doi.org/10.1021/cr900174j] [PMID: 19534493]
[9]
Dichtel, W.R.; Serin, J.M.; Edder, C.; Fréchet, J.M.; Matuszewski, M.; Tan, L.S.; Ohulchanskyy, T.Y.; Prasad, P.N. Singlet oxygen generation via two-photon excited FRET. J. Am. Chem. Soc., 2004, 126(17), 5380-5381.
[http://dx.doi.org/10.1021/ja031647x] [PMID: 15113208]
[10]
Majoros, I.J.; Williams, C.R.; Baker, J.R., Jr Current dendrimer applications in cancer diagnosis and therapy. Curr. Top. Med. Chem., 2008, 8(14), 1165-1179.
[http://dx.doi.org/10.2174/156802608785849049] [PMID: 18855703]
[11]
Godin, B.; Tasciotti, E.; Liu, X.; Serda, R.E.; Ferrari, M. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc. Chem. Res., 2011, 44(10), 979-989.
[http://dx.doi.org/10.1021/ar200077p] [PMID: 21902173]
[12]
Joshi, N.; Grinstaff, M. Applications of dendrimers in tissue engineering. Curr. Top. Med. Chem., 2008, 8(14), 1225-1236.
[http://dx.doi.org/10.2174/156802608785849067] [PMID: 18855707]
[13]
Lee, C.C.; MacKay, J.A.; Fréchet, J.M.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23(12), 1517-1526.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[14]
Satija, J.; Sai, V.V.R.; Mukherji, S. Dendrimers in biosensors: concept and applications. J. Mater. Chem., 2011, 21, 14367-14386.
[http://dx.doi.org/10.1039/c1jm10527b]
[15]
Martić, S.; Labib, M.; Shipman, P.O.; Kraatz, H.B. Ferrocene-peptido conjugates: from synthesis to sensory applications. Dalton Trans., 2011, 40(28), 7264-7290.
[http://dx.doi.org/10.1039/c0dt01707h] [PMID: 21483964]
[16]
Chouai, A.; Simanek, E.E. Kilogram-scale synthesis of a second-generation dendrimer based on 1,3,5-triazine using green and industrially compatible methods with a single chromatographic step. J. Org. Chem., 2008, 73(6), 2357-2366.
[http://dx.doi.org/10.1021/jo702462t] [PMID: 18307354]
[17]
Chouai, A.; Venditto, V.J.; Simanek, E.E.; Vanderplas, B.C.; Ragan, J.A.; Venditto, E.E.; Simanek, B.C.; Vanderplas, J.A. Ragan, Large scale, green synthesis of a generation-1 melamine (triazine) dendrimer. Org. Synth., 2009, 86, 151.
[http://dx.doi.org/10.15227/orgsyn.086.0151] [PMID: 20072717]
[18]
Chouai, A.; Venditto, V.J.; Simanek, E.E.; McDermott, R.E.; Ragan, J.A.; Venditto, E.E.; Simanek, R.E.; McDermott, J.A. Ragan, Synthesis of 2- 3,3¢-di-(tert-butoxycarbonyl)-aminodipro-pylamine]-4,6,-dichloro-1,3,5-triazine as a monomer and 1,3,5-[tris-piperazine]-triazine as a core for the large scale synthesis of melamine (triazine) dendrimers. Org. Synth., 2009, 86, 141-150.
[http://dx.doi.org/10.15227/orgsyn.086.0141] [PMID: 19784386]
[19]
Lim, J.; Mintzer, M.A.; Perez, L.M.; Simanek, E.E. Synthesis of odd generation triazine dendrimers using a divergent, macromonomer approach. Org. Lett., 2010, 12(6), 1148-1151.
[http://dx.doi.org/10.1021/ol902669g] [PMID: 20170155]
[20]
Lim, J.; Pavan, G.M.; Annunziata, O.; Simanek, E.E. Experimental and computational evidence for an inversion in guest capacity in high-generation triazine dendrimer hosts. J. Am. Chem. Soc., 2012, 134(4), 1942-1945.
[http://dx.doi.org/10.1021/ja210122z] [PMID: 22239724]
[21]
Niederhauser, W.D. Tetracyanoethyl benzoguanamine. U.S. Patent,2,577,477, 1951.
[22]
Simanek, E.E.; Abdou, H.; Lalwani, S.; Lim, J.; Mintzer, M.; Venditto, V.J.; Vittur, B. The 8-year thicket of triazine dendrimers: strategies, targets and applications. Proc. R. Soc. A, 2010, 466, 1445-1468.
[http://dx.doi.org/10.1098/rspa.2009.0108]
[23]
Moreno, K.X.; Simanek, E.E. Identification of diamine linkers with differing reactivity and their application in the synthesis of melamine dendrimers. Tetrahedron Lett., 2008, 49(17), 1152-1154.
[http://dx.doi.org/10.1016/j.tetlet.2007.12.056] [PMID: 19629195]
[24]
Steffensen, M.B.; Simanek, E.E. Chemoselective building blocks for dendrimers from relative reactivity data. Org. Lett., 2003, 5(13), 2359-2361.
[http://dx.doi.org/10.1021/ol0347491] [PMID: 12816448]
[25]
Moreno, K.X.; Simanek, E.E. Conformational analysis of triazine dendrimers: using NMR spectroscopy to probe the choreography of a dendrimer’s dance. Macromolecules, 2008, 41(12), 4108-4114.
[http://dx.doi.org/10.1021/ma702143f] [PMID: 19946610]
[26]
Steffensen, M.B.; Hollink, E.; Kuschel, F.; Bauer, M.; Simanek, E.E. Dendrimers based on [1,3,5]-triazines. J. Polym. Sci. A Polym. Chem., 2006, 44(11), 3411-3433.
[http://dx.doi.org/10.1002/pola.21333] [PMID: 19953202]
[27]
Zhang, W.; Simanek, E.E. Dendrimers based on melamine. Divergent and orthogonal, the convergent synthesis of a G3 dendrimer. Org. Lett., 2000, 2(6), 843-845.
[http://dx.doi.org/10.1021/ol005585g] [PMID: 10814438]
[28]
Zhang, W.; Nowlan, D.T., III; Thomson, L.M.; Lackowski, W.M.; Simanek, E.E. Orthogonal, convergent syntheses of dendrimers based on melamine with one or two unique surface sites for manipulation. J. Am. Chem. Soc., 2001, 123(37), 8914-8922.
[http://dx.doi.org/10.1021/ja0041369] [PMID: 11552798]
[29]
Lim, J.; Simanek, E.E. Toward the next-generation drug delivery vehicle: synthesis of a dendrimer with four orthogonally reactive groups. Mol. Pharm., 2005, 2(4), 273-277.
[http://dx.doi.org/10.1021/mp050030e] [PMID: 16053330]
[30]
Steffensen, M.B.; Simanek, E.E. Synthesis and manipulation of orthogonally protected dendrimers: building blocks for library synthesis. Angew. Chem. Int. Ed., 2004, 43(39), 5178-5180.
[http://dx.doi.org/10.1002/anie.200460031] [PMID: 15317013]
[31]
Umali, A.P.; Crampton, H.L.; Simanek, E.E. Triazine dendrimers with orthogonally protected amines on the periphery. Masking amines with Dde and BOC groups provides an alternative to carrying protected alcohols and disulfides through an iterative synthesis. J. Org. Chem., 2007, 72(26), 9866-9874.
[http://dx.doi.org/10.1021/jo701320h] [PMID: 18052073]
[32]
Keana, J.F.W.; Martin, V.; Ralston, W.H. The University of Oregon.Dentruitic amplifier molecules having multiple terminal active groups stemming from a benzyl core group. U.S. Patent,5,567,411, 1996.
[33]
Umali, A.P.; Simanek, E.E. Thiol-disulfide exchange yields multivalent dendrimers of melamine. Org. Lett., 2003, 5(8), 1245-1247.
[http://dx.doi.org/10.1021/ol034161u] [PMID: 12688730]
[34]
Zhang, W.; Tichy, S.E.; Pérez, L.M.; Maria, G.C.; Lindahl, P.A.; Simanek, E.E. Evaluation of multivalent dendrimers based on melamine: kinetics of thiol-disulfide exchange depends on the structure of the dendrimer. J. Am. Chem. Soc., 2003, 125(17), 5086-5094.
[http://dx.doi.org/10.1021/ja0210906] [PMID: 12708859]
[35]
Crampton, H.; Hollink, E.; Perez, L.M.; Simanek, E.E. A divergent route towards single-chemical entity triazine dendrimers with opportunities for structural diversity. New J. Chem., 2007, 31(7), 1283-1290.
[http://dx.doi.org/10.1039/b617875h] [PMID: 20037678]
[36]
Hollink, E.; Simanek, E.E. A divergent route to diversity in macromolecules. Org. Lett., 2006, 8(11), 2293-2295.
[http://dx.doi.org/10.1021/ol060559p] [PMID: 16706509]
[37]
Mintzer, M.A.; Perez, L.M.; Simanek, E.E. Divergent synthesis of triazine dendrimers using a trimethylene-dipiperidine linker that increases efficiency, simplifies analysis, and improves product solubility. Tetrahedron Lett., 2010, 51(13), 1631-1634.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.048] [PMID: 23585699]
[38]
Lim, J.; Simanek, E.E. Synthesis of water-soluble dendrimers based on melamine bearing 16 paclitaxel groups. Org. Lett., 2008, 10(2), 201-204.
[http://dx.doi.org/10.1021/ol7024907] [PMID: 18088131]
[39]
Merkel, O.M.; Mintzer, M.A.; Sitterberg, J.; Bakowsky, U.; Simanek, E.E.; Kissel, T. Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjug. Chem., 2009, 9, 1799-1806.
[40]
Lim, J.; Chouai, A.; Lo, S.T.; Liu, W.; Sun, X.; Simanek, E.E. Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages. Bioconjug. Chem., 2009, 20(11), 2154-2161.
[http://dx.doi.org/10.1021/bc900324z] [PMID: 19877601]
[41]
Lim, J.; Lo, S.T.; Hill, S.; Pavan, G.M.; Sun, X.; Simanek, E.E. Antitumor activity and molecular dynamics simulations of paclitaxel-laden triazine dendrimers. Mol. Pharm., 2012, 9(3), 404-412.
[http://dx.doi.org/10.1021/mp2005017] [PMID: 22260328]
[42]
Lim, J.; Venditto, V.J.; Simanek, E.E. Synthesis and characterization of a triazine dendrimer that sequesters iron(III) using 12 desferrioxamine B groups. Bioorg. Med. Chem., 2010, 18(15), 5749-5753.
[http://dx.doi.org/10.1016/j.bmc.2010.05.039] [PMID: 20615715]
[43]
Cummin, B.M.; Lim, J.; Simanek, E.E.; Pishko, M.V.; Coté, G.L. Encapsulation of a Concanavalin A/dendrimer glucose sensing assay within microporated poly (ethylene glycol) microspheres. Biomed. Opt. Express, 2011, 2(5), 1243-1257.
[http://dx.doi.org/10.1364/BOE.2.001243] [PMID: 21559135]
[44]
Venditto, V.J.; Allred, K.; Allred, C.D.; Simanek, E.E. Intercepting the synthesis of triazine dendrimers with nucleophilic pharmacophores: a general strategy toward drug delivery vehicles. Chem. Commun. (Camb.), 2009, 7(37), 5541-5542.
[http://dx.doi.org/10.1039/b911353c] [PMID: 19753350]
[45]
Duncan, R.; Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev., 2005, 57(15), 2215-2237.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[46]
Chen, H-T.; Neerman, M.F.; Parrish, A.R.; Simanek, E.E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc., 2004, 126(32), 10044-10048.
[http://dx.doi.org/10.1021/ja048548j] [PMID: 15303879]
[47]
Zhang, W.; Jiang, J.; Qin, C.; Lisa, M.P.; Alan, R.P.; Stephen, H.S. Triazine dendrimers for drug delivery: evaluation of solubilization properties, activity in cell culture, and in vivo toxicity of a candidate vehicle. Supramol. Chem., 2003, 7-8, 15,607-616.
[48]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[49]
Sebestik, J. Reinis, M.; Jezek, J. e book on Biomedical Applications of Peptide-, Glyco- and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures, 1st ed; Springer: Vienna, 2012.
[50]
Golikand, A.N.; Didehban, K.; Irannejad, L. Synthesis and characterization of triazine-based dendrimers and their application in metal ion adsorption. J. Appl. Polym. Sci., 2012, 123(2), 1245-1251.
[http://dx.doi.org/10.1002/app.33893]
[51]
Bonomi, P. Paclitaxel poliglumex (PPX, CT-2103): macromolecular medicine for advanced non-small-cell lung cancer. Expert Rev. Anticancer Ther., 2007, 7(4), 415-422.
[http://dx.doi.org/10.1586/14737140.7.4.415] [PMID: 17428162]
[52]
Feng, Z.; Zhao, G.; Yu, L.; Gough, D.; Howell, S.B. Preclinical efficacy studies of a novel nanoparticle-based formulation of paclitaxel that out-performs Abraxane. Cancer Chemother. Pharmacol., 2010, 65(5), 923-930.
[http://dx.doi.org/10.1007/s00280-009-1099-1] [PMID: 19685054]
[53]
Golikand, A.N.; Didehban, K.; Irannejad, L. Synthesis and characterization of triazine-based dendrimers and their application in metal ion adsorption. J. Appl. Polym., 2011, 123, 1245-1251.
[http://dx.doi.org/10.1002/app.33893]
[54]
Bansal, K.K.; Kakde, D.; Gupta, U.; Jain, N.K. Development and characterization of triazine based dendrimers for delivery of antitumor agent. J. Nanosci. Nanotechnol., 2010, 10(12), 8395-8404.
[http://dx.doi.org/10.1166/jnn.2010.3003] [PMID: 21121345]
[55]
Agard, N.J.; Bertozzi, C.R. Chemical approaches to perturb, profile, and perceive glycans. Acc. Chem. Res., 2009, 42(6), 788-797.
[http://dx.doi.org/10.1021/ar800267j] [PMID: 19361192]
[56]
Amabilino, D.; Ashton, P.; Brown, C.; Cordova, E.; Godinez, L.; Goodnow, T.; Kaifer, A.; Newton, S.; Pietraszkiewicz, M.; Philp, D.; Raymo, F.; Reder, A.; Rutland, M.; Slawin, A. Spencer, N.; Stoddart, J.; Williams, D. Molecular meccano. 2. self-assembly of [n]catenanes. J. Am. Chem. Soc., 1995, 117(4), 1271-1293.
[http://dx.doi.org/10.1021/ja00109a011]
[57]
Astruc, D.; Ornelas, C.; Diallo, A.K.; Ruiz, J. Extremely efficient catalysis of carbon-carbon bond formation using “click” dendrimer-stabilized palladium nanoparticles. Molecules,. 2010, 15(7), 4947-4960.
[http://dx.doi.org/10.3390/molecules15074947] [PMID: 20657402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy