Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Progress in Andrographolide Derivatization: Structural Modification and Biological Activity

Author(s): Wang Wang, Yueying Yang, Yang Liu, Dejuan Sun*, Hua Li* and Lixia Chen*

Volume 22, Issue 11, 2022

Published on: 13 January, 2022

Page: [1559 - 1584] Pages: 26

DOI: 10.2174/1389557521666211022150032

Price: $65

Abstract

Natural products have remarkable structural diversity and biological characteristics, providing researchers with more possibilities to develop novel drugs for disease therapeutics. Andrographolide, an ent-labdane diterpenoid from traditional Chinese medicines, Andrographis paniculata, exhibits a broad range of biological activities, which has been a hot area of research for several years. Up to now, lots of its derivatives with multiple bioactivities have been prepared through chemical modification. This review summarizes andrographolide derivatives prepared in the last ten years (2006-present), classifies them by different biological activities, and provides some discussion about the design of novel and potent derivatives.

Keywords: Andrographolide, modification, bioactivity, drug discovery, Andrographis paniculata, traditional chinese medicines.

« Previous
Graphical Abstract
[1]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[2]
Huang, M.; Lu, J-J.; Huang, M-Q.; Bao, J-L.; Chen, X-P.; Wang, Y-T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(12), 1801-1818.
[http://dx.doi.org/10.1517/13543784.2012.727395] [PMID: 23092199]
[3]
(a)Miller, L.H.; Su, X. Artemisinin: Discovery from the Chinese herbal garden. Cell, 2011, 146(6), 855-858.
[http://dx.doi.org/10.1016/j.cell.2011.08.024] [PMID: 21907397]
(b)Ding, Y.; Ding, C.; Ye, N.; Liu, Z.; Wold, E.A.; Chen, H.; Wild, C.; Shen, Q.; Zhou, J. Discovery and development of natural product oridonin-inspired anticancer agents. Eur. J. Med. Chem., 2016, 122, 102-117.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.015] [PMID: 27344488]
(c)Bedard, P.L.; Di Leo, A.; Pic-cart-Gebhart, M.J. Taxanes: Optimizing adjuvant chemotherapy for early-stage breast cancer. Nat. Rev. Clin. Oncol., 2010, 7(1), 22-36.
[http://dx.doi.org/10.1038/nrclinonc.2009.186] [PMID: 19997076]
[4]
Varma, A.; Padh, H.; Shrivastava, N. Andrographolide: A new plant-derived antineoplastic entity on horizon. Evid. Based Complement. Alternat. Med., 2011, 2011, 815390.
[http://dx.doi.org/10.1093/ecam/nep135] [PMID: 19752167]
[5]
Luo, W.; Liu, Y.; Zhang, J.; Luo, X.; Lin, C.; Guo, J. Andrographolide inhibits the activation of NF-κB and MMP-9 activity in H3255 lung cancer cells. Exp. Ther. Med., 2013, 6(3), 743-746.
[http://dx.doi.org/10.3892/etm.2013.1196] [PMID: 24137258]
[6]
Wang, Y-J.; Wang, J-T.; Fan, Q-X.; Geng, J-G. Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis. Cell Res., 2007, 17(11), 933-941.
[http://dx.doi.org/10.1038/cr.2007.89] [PMID: 17943075]
[7]
Tiwari, B.; Shailajan, S.; Menon, S.; Kulkarni, S. Tuberculosis: History, epidemiology, antitubercular drugs and plant-based alternatives. Indian J. Pharm. Sci., 2019, 81(2), 200-210.
[8]
Angamuthu, D.; Purushothaman, I.; Kothandan, S.; Swaminathan, R. Antiviral study on punica gran-atum L., Momordica charantia L., Andrographis paniculata Nees, and Melia azedarach L., to Human Herpes Virus-3. Eur. J. Integr. Med., 2019, 28, 98-108.
[http://dx.doi.org/10.1016/j.eujim.2019.04.008]
[9]
Najib Nik A Rahman, N.; Furuta, T.; Kojima, S.; Takane, K.; Ali Mohd, M. Antimalarial activity of extracts of Malaysian medicinal plants. J. Ethnopharmacol., 1999, 64(3), 249-254.
[http://dx.doi.org/10.1016/S0378-8741(98)00135-4] [PMID: 10363840]
[10]
Sheeja, K.; Shihab, P.K.; Kuttan, G. Antioxidant and anti-inflammatory activities of the plant An-drographis paniculata Nees. Immunopharmacol. Immunotoxicol., 2006, 28(1), 129-140.
[http://dx.doi.org/10.1080/08923970600626007] [PMID: 16684672]
[11]
Nagalekshmi, R.; Menon, A.; Chandrasekharan, D.K.; Nair, C.K.K. Hepatoprotective activity of An-drographis paniculata and Swertia chirayita. Food Chem. Toxicol., 2011, 49(12), 3367-3373.
[http://dx.doi.org/10.1016/j.fct.2011.09.026] [PMID: 21983487]
[12]
Zhang, C.Y.; Tan, B.K. Mechanisms of cardiovascular activity of Andrographis paniculata in the anaesthetized rat. J. Ethnopharmacol., 1997, 56(2), 97-101.
[http://dx.doi.org/10.1016/S0378-8741(97)01509-2] [PMID: 9174969]
[13]
Radhika, P.; Annapurna, A.; Rao, S.N. Immunostimulant, cerebroprotective & nootropic activities of Andrographis paniculata leaves extract in normal & type 2 diabetic rats. Indian J. Med. Res., 2012, 135(5), 636-641.
[PMID: 22771592]
[14]
(a)Duan, X.; Wang, K.; Wu, J.; Zhang, D.; Liu, X.; Ni, M.; Liu, S.; Meng, Z. Comparative efficacy of Chinese herbal injections combined with azithromycin for mycoplasma pneumonia in children: A Bayesian network meta-analysis of randomized controlled trials. J.Clin. Pharm. Ther., 2019, 44(5), 675-684.
[http://dx.doi.org/10.1111/jcpt.12855] [PMID: 31119782]
(b)Zheng, R.; Tao, L.; Kwong, J.S.W.; Zhong, C.; Li, C.; Chen, S.; Sun, Y.; Zhang, X.; Shang, H. Risk factors associated with the severity of adverse drug reactions by Xiyanping injection: A propensity score-matched analysis. J. Ethnopharmacol., 2020, 250, 112424.
[http://dx.doi.org/10.1016/j.jep.2019.112424] [PMID: 31765765]
[15]
Aromdee, C. Andrographolide: Progression in its modifications and applications - a patent review (2012 - 2014). Expert Opin. Ther. Pat., 2014, 24(10), 1129-1138.
[http://dx.doi.org/10.1517/13543776.2014.956084] [PMID: 25231887]
[16]
Zhou, B.; Zhang, D.; Wu, X. Biological activities and corresponding SARs of andrographolide and its derivatives. Mini Rev. Med. Chem., 2013, 13(2), 298-309.
[PMID: 23438057]
[17]
Kumar, G.; Singh, D.; Tali, J.A.; Dheer, D.; Shankar, R. Andrographolide: Chemical modification and its effect on biological activities. Bioorg. Chem., 2020, 95, 103511.
[http://dx.doi.org/10.1016/j.bioorg.2019.103511] [PMID: 31884143]
[18]
Hazra, A.; Mondal, C.; Chakraborty, D.; Halder, A.K.; Bharitkar, Y.P.; Mondal, S.K.; Banerjee, S.; Jha, T.; Mondal, N.B. Towards the development of anticancer drugs from andrographolide: semisyn-thesis, bioevaluation, QSAR analysis and pharmacokinetic studies. Curr. Top. Med. Chem., 2015, 15(11), 1013-1026.
[http://dx.doi.org/10.2174/1568026615666150317222706] [PMID: 25786506]
[19]
Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: an historical overview of the drug discovery approaches. Nat. Prod. Res., 2018, 32(16), 1926-1950.
[http://dx.doi.org/10.1080/14786419.2017.1356838] [PMID: 28748726]
[20]
(a)Sharma, V.; Sharma, T.; Kaul, S.; Kapoor, K.K.; Dhar, M.K. Anticancer potential of labdane diterpenoid lactone “andrographolide” and its derivatives: A semi-synthetic approach. Phytochem. Rev., 2017, 16(3), 513-526.
[http://dx.doi.org/10.1007/s11101-016-9478-9]
(b)Lim, J.C.W.; Chan, T.K.; Ng, D.S.W.; Sagineedu, S.R.; Stanslas, J.; Wong, W.S.F. Andrographolide and its analogues: Versatile bioactive molecules for combating inflammation and cancer. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 300-310.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05633.x] [PMID: 22017767]
[21]
Jada, S.R.; Hamzah, A.S.; Lajis, N.H.; Saad, M.S.; Stevens, M.F.G.; Stanslas, J. Semisynthesis and cytotoxic activities of andrographolide analogues. J. Enzyme Inhib. Med. Chem., 2006, 21(2), 145-155.
[http://dx.doi.org/10.1080/14756360500499988] [PMID: 16789428]
[22]
Jada, S.R.; Subur, G.S.; Matthews, C.; Hamzah, A.S.; Lajis, N.H.; Saad, M.S.; Stevens, M.F.G.; Stanslas, J. Semisynthesis and in vitro anticancer activities of andrographolide analogues. Phytochemistry, 2007, 68(6), 904-912.
[http://dx.doi.org/10.1016/j.phytochem.2006.11.031] [PMID: 17234223]
[23]
Devendar, P.; Nayak, V.L.; Yadav, D.K.; Kumar, A.N.; Kumar, J.K.; Srinivas, K.V.N.S.; Sridhar, B.; Khan, F.; Sastry, K.P.; Ramakrishna, S. Synthesis and evaluation of anticancer activity of novel an-drographolide derivatives. MedChemComm, 2015, 6(5), 898-904.
[http://dx.doi.org/10.1039/C4MD00566J]
[24]
Wei, S.; Tang, Y-B.; Hua, H.; Ohkoshi, E.; Goto, M.; Wang, L-T.; Lee, K-H.; Xiao, Z. Discovery of novel andrographolide derivatives as cytotoxic agents. Bioorg. Med. Chem. Lett., 2013, 23(14), 4056-4060.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.061] [PMID: 23768904]
[25]
Hocker, H.J.; Cho, K-J.; Chen, C-Y.K.; Rambahal, N.; Sagineedu, S.R.; Shaari, K.; Stanslas, J.; Han-cock, J.F.; Gorfe, A.A. Andrographolide derivatives inhibit guanine nucleotide exchange and abro-gate oncogenic RAS function. Proc. Natl. Acad. Sci. USA, 2013, 110(25), 10201-10206.
[http://dx.doi.org/10.1073/pnas.1300016110] [PMID: 23737504]
[26]
Xu, H.W.; Zhang, J.Y.; Liu, H.M.; Wang, J.F. Synthesis of andrographolide cyclophosphate derivatives and their antitumor activities. Synth. Commun., 2006, 36(4), 407-414.
[http://dx.doi.org/10.1080/00397910500377594]
[27]
Das, B.; Chowdhury, C.; Kumar, D.; Sen, R.; Roy, R.; Das, P.; Chatterjee, M. Synthesis, cytotoxicity, and structure-activity relationship (SAR) studies of andrographolide analogues as anti-cancer agent. Bioorg. Med. Chem. Lett., 2010, 20(23), 6947-6950.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.126] [PMID: 20974534]
[28]
Sirion, U.; Kasemsook, S.; Suksen, K.; Piyachaturawat, P.; Suksamrarn, A.; Saeeng, R. New substi-tuted C-19-andrographolide analogues with potent cytotoxic activities. Bioorg. Med. Chem. Lett., 2012, 22(1), 49-52.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.085] [PMID: 22154665]
[29]
Peng, Y.; Li, J.; Sun, Y.; Chan, J.Y-W.; Sheng, D.; Wang, K.; Wei, P.; Ouyang, P.; Wang, D.; Lee, S.M.Y.; Zhou, G-C. SAR studies of 3,14,19-derivatives of andrographolide on anti-proliferative ac-tivity to cancer cells and toxicity to zebrafish: An in vitro and in vivo study. RSC Advances, 2015, 5(29), 22510-22526.
[http://dx.doi.org/10.1039/C5RA00090D]
[30]
Boechat, N.; Ferreira, V.F.; Ferreira, S.B.; de Lourdes, G. Ferreira, M.; de C da Silva, F.; Bastos, M.M.; Dos S Costa, M.; Lourenço, M.C.S.; Pinto, A.C.; Krettli, A.U.; Aguiar, A.C.; Teixeira, B.M.; da Silva, N.V.; Martins, P.R.C.; Bezerra, F.A.F.M.; Camilo, A.L.S.; da Silva, G.P.; Costa, C.C.P. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem., 2011, 54(17), 5988-5999.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[31]
Chinthala, Y.; Manjulatha, K.; Sharma, P.; Srinivas, S.K.V.N.; Jonnala, K.; Arigari, N.K.; Khan, F.; Setty, O.H. Synthesis and cytotoxicity evaluation of novel andrographolide-1,2,3-Triazole derivatives. J. Heterocycl. Chem., 2016, 53(6), 1902-1910.
[http://dx.doi.org/10.1002/jhet.2505]
[32]
Nateewattana, J.; Saeeng, R.; Kasemsook, S.; Suksen, K.; Dutta, S.; Jariyawat, S.; Chairoungdua, A.; Suksamrarn, A.; Piyachaturawat, P. Inhibition of topoisomerase II α activity and induction of apoptosis in mammalian cells by semi-synthetic andrographolide analogues. Invest. New Drugs, 2013, 31(2), 320-332.
[http://dx.doi.org/10.1007/s10637-012-9868-9] [PMID: 22899371]
[33]
Sirion, U.; Kasemsuk, T.; Piyachaturawat, P.; Suksen, K.; Suksamrarn, A.; Saeeng, R. Synthesis and cytotoxic activity of 14-deoxy-12-hydroxyandrographolide analogs. Med. Chem. Res., 2017, 26(8), 1653-1663.
[http://dx.doi.org/10.1007/s00044-017-1881-2]
[34]
Sombut, S.; Bunthawong, R.; Sirion, U.; Kasemsuk, T.; Piyachaturawat, P.; Suksen, K.; Suksamrarn, A.; Saeeng, R. Synthesis of 14-deoxy-11,12-didehydroandrographolide analogues as potential cyto-toxic agents for cholangiocarcinoma. Bioorg. Med. Chem. Lett., 2017, 27(23), 5139-5143.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.063] [PMID: 29097170]
[35]
Preet, R.; Chakraborty, B.; Siddharth, S.; Mohapatra, P.; Das, D.; Satapathy, S.R.; Das, S.; Maiti, N.C.; Maulik, P.R.; Kundu, C.N.; Chowdhury, C. Synthesis and biological evaluation of andro-grapholide analogues as anti-cancer agents. Eur. J. Med. Chem., 2014, 85, 95-106.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.088] [PMID: 25078313]
[36]
(a)Kumar, R.A.; Sridevi, K.; Kumar, N.V.; Nanduri, S.; Rajagopal, S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J. Ethnopharmacol., 2004, 92(2-3), 291-295.
[http://dx.doi.org/10.1016/j.jep.2004.03.004] [PMID: 15138014]
(b)Nanduri, S.; Nyavanandi, V.K.; Thunuguntla, S.S.R.; Kasu, S.; Pallerla, M.K.; Ram, P.S.; Rajagopal, S.; Kumar, R.A.; Ramanujam, R.; Babu, J.M.; Vyas, K.; Devi, A.S.; Reddy, G.O.; Akella, V. Synthesis and structure-activity rela-tionships of andrographolide analogues as novel cytotoxic agents. Bioorg. Med. Chem. Lett., 2004, 14(18), 4711-4717.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.090] [PMID: 15324893]
(c)Satyanarayana, C.; Deevi, D.S.; Rajagopalan, R.; Srinivas, N.; Rajagopal, S. DRF 3188 a novel semi-synthetic analog of andrographolide: Cellular response to MCF 7 breast cancer cells. BMC Cancer, 2004, 4, 26.
[http://dx.doi.org/10.1186/1471-2407-4-26] [PMID: 15207007]
(d)Nanduri, S.; Nyavanandi, V.K.; Thunuguntla, S.S.R.; Velisoju, M.; Kasu, S.; Rajagopal, S.; Kumar, R.A.; Rajagopalan, R.; Iqbal, J. Novel routes for the generation of structurally diverse labdane diterpenes from andrographolide. Tetrahedron Lett., 2004, 45(25), 4883-4886.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.142]
(e)Thunuguntla, S.S.R.; Nyavanandi, V.K.; Nanduri, S. A facile route for the synthesis of limonidilacto-ne analogues from andrographolide. Tetrahedron Lett., 2004, 45(51), 9357-9360.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.135]
[37]
Kandanur, S.G.S.; Golakoti, N.R.; Nanduri, S. Synthesis and in vitro cytotoxicity of novel C-12 sub-stituted-14-deoxy-andrographolide derivatives as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2015, 25(24), 5781-5786.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.053] [PMID: 26561364]
[38]
Kandanur, S.G.S.; Nanduri, S.; Golakoti, N.R. Synthesis and biological evaluation of new C-12(α/β)-(N-) sulfamoyl-phenylamino-14-deoxy-andrographolide derivatives as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(13), 2854-2862.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.033] [PMID: 28527822]
[39]
Kasemsuk, S.; Sirion, U.; Suksen, K.; Piyachaturawat, P.; Suksamrarn, A.; Saeeng, R. 12-Amino-andrographolide analogues: synthesis and cytotoxic activity. Arch. Pharm. Res., 2013, 36(12), 1454-1464.
[http://dx.doi.org/10.1007/s12272-013-0152-0] [PMID: 23709127]
[40]
Bunthawong, R.; Sirion, U.; Chairoungdua, A.; Suksen, K.; Piyachaturawat, P.; Suksamrarn, A.; Saeeng, R. Synthesis and cytotoxic activity of new 7-acetoxy-12-amino-14-deoxy andrographolide analogues. Bioorg. Med. Chem. Lett., 2021, 33, 127741.
[http://dx.doi.org/10.1016/j.bmcl.2020.127741] [PMID: 33316411]
[41]
Liu, Y.; Liang, R-M.; Ma, Q-P.; Xu, K.; Liang, X-Y.; Huang, W.; Sutton, R.; Ding, J.; O’Neil, P.M.; Cheng, C-R. Synthesis of thioether andrographolide derivatives and their inhibitory effect against cancer cells. MedChemComm, 2017, 8(6), 1268-1274.
[http://dx.doi.org/10.1039/C7MD00169J] [PMID: 30108837]
[42]
(a)Hazra, A.; Bharitkar, Y.P.; Chakraborty, D.; Mondal, S.K.; Singal, N.; Mondal, S.; Maity, A.; Paira, R.; Banerjee, S.; Mondal, N.B. Regio- and stereoselective synthesis of a library of bioactive dispiro-oxindolo/acenaphthoquino andrographolides via 1,3-dipolar cycloaddition reaction under microwave irradiation. ACS Comb. Sci., 2013, 15(1), 41-48.
[http://dx.doi.org/10.1021/co3001154] [PMID: 23167870]
(b)Chakraborty, D.; Maity, A.; Jain, C.K.; Hazra, A.; Bharitkar, Y.P.; Jha, T.; Majumder, H.K.; Roychoudhury, S.; Mondal, N.B. Cytotoxic potential of dispirooxindolo/acenaphthoquino andrographolide derivatives against MCF-7 cell line. MedChemComm, 2015, 6(4), 702-707.
[http://dx.doi.org/10.1039/C4MD00469H]
(c)Hazra, A.; Paira, P.; Sahu, K.B.; Naskar, S.; Saha, P.; Paira, R.; Mondal, S.; Maity, A.; Luger, P.; Weber, M.; Mondal, N.B.; Banerjee, S. Chemistry of an-drographolide: formation of novel di-spiropyrrolidino and di-spiropyrrolizidino-oxindole adducts via one-pot three-component 3+2 azomethine ylide cycloaddition. Tetrahedron Lett., 2010, 51(12), 1585-1588.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.052]
[43]
Dey, S.K.; Bose, D.; Hazra, A.; Naskar, S.; Nandy, A.; Munda, R.N.; Das, S.; Chatterjee, N.; Mon-dal, N.B.; Banerjee, S.; Das Saha, K. PLoS One, 2013, 8(3)
[44]
Wu, Z-W.; Xu, H-W.; Dai, G-F.; Liu, M-J.; Zhu, L-P.; Wu, J.; Wang, Y-N.; Wu, F-J.; Zhao, D.; Gao, M-F.; Nie, S-S.; Han, W.; Song, J-H.; Liu, H-M. Improved inhibitory activities against tumor-cell mi-gration and invasion by 15-benzylidene substitution derivatives of andrographolide. Bioorg. Med. Chem. Lett., 2013, 23(23), 6421-6426.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.049] [PMID: 24120543]
[45]
Luo, Y.; Wang, K.; Zhang, M.H.; Zhang, D.Y.; Wu, Y.C.; Wu, X.M.; Hua, W.Y. Synthesis of new ent-labdane diterpene derivatives from andrographolide and evaluation on cytotoxic activities. Bioorg. Med. Chem. Lett., 2015, 25(11), 2421-2424.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.086] [PMID: 25913115]
[46]
Song, Y.; Xin, Z.; Wan, Y.; Li, J.; Ye, B.; Xue, X. Synthesis and anticancer activity of some novel indolo[3,2-b]andrographolide derivatives as apoptosis-inducing agents. Eur. J. Med. Chem., 2015, 90, 695-706.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.017] [PMID: 25506809]
[47]
Chen, D.; Song, Y.; Lu, Y.; Xue, X. Synthesis and in vitro cytotoxicity of andrographolide-19-oic acid analogues as anti-cancer agents. Bioorg. Med. Chem. Lett., 2013, 23(11), 3166-3169.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.010] [PMID: 23628335]
[48]
Gong, C.; Xu, C.; Ji, L.; Wang, Z. A novel semi-synthetic andrographolide analogue A5 inhibits tumor angiogenesis via blocking the VEGFR2-p38/ERK1/2 signal pathway. Biosci. Trends, 2013, 7(5), 230-236.
[http://dx.doi.org/10.5582/bst.2013.v7.5.230] [PMID: 24241173]
[49]
Kasemsuk, T.; Piyachaturawat, P.; Bunthawong, R.; Sirion, U.; Suksen, K.; Suksamrarn, A.; Saeeng, R. One-pot three steps cascade synthesis of novel isoandrographolide analogues and their cytotoxic activity. Eur. J. Med. Chem., 2017, 138, 952-963.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.035] [PMID: 28755636]
[50]
Marín-Ocampo, L.; Veloza, L.A.; Abonia, R.; Sepúlveda-Arias, J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem., 2019, 162, 435-447.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.027] [PMID: 30469039]
[51]
Recio, M.C.; Andujar, I.; Rios, J.L. Anti-inflammatory agents from plants: progress and potential. Curr. Med. Chem., 2012, 19(14), 2088-2103.
[http://dx.doi.org/10.2174/092986712800229069] [PMID: 22414101]
[52]
Li, J.; Huang, W.; Zhang, H.; Wang, X.; Zhou, H. Synthesis of andrographolide derivatives and their TNF-alpha and IL-6 expression inhibitory activities. Bioorg. Med. Chem. Lett., 2007, 17(24), 6891-6894.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.009] [PMID: 17962017]
[53]
Dai, G-F.; Zhao, J.; Jiang, Z-W.; Zhu, L-P.; Xu, H-W.; Ma, W-Y.; Chen, X-R.; Dong, R-J.; Li, W-Y.; Liu, H-M. Anti-inflammatory effect of novel andrographolide derivatives through inhibition of NO and PGE2 production. Int. Immunopharmacol., 2011, 11(12), 2144-2149.
[http://dx.doi.org/10.1016/j.intimp.2011.09.010] [PMID: 21983643]
[54]
Lim, J.C.W.; Goh, F.Y.; Sagineedu, S.R.; Yong, A.C.H.; Sidik, S.M.; Lajis, N.H.; Wong, W.S.F.; Stanslas, J. A semisynthetic diterpenoid lactone inhibits NF-κB signalling to ameliorate inflammation and airway hyperresponsiveness in a mouse asthma model. Toxicol. Appl. Pharmacol., 2016, 302, 10-22.
[http://dx.doi.org/10.1016/j.taap.2016.04.004] [PMID: 27089844]
[55]
Yang, Y.; Yan, H.; Jing, M.; Zhang, Z.; Zhang, G.; Sun, Y.; Shan, L.; Yu, P.; Wang, Y.; Xu, L. Andrographolide derivative AL-1 ameliorates TNBS-induced colitis in mice: involvement of NF-kappa B and PPAR-gamma signaling pathways. Sci. Rep., 2016, 6.
[http://dx.doi.org/10.1038/srep29716]
[56]
Jiang, N.; Wei, Y.; Cen, Y.; Shan, L.; Zhang, Z.; Yu, P.; Wang, Y.; Xu, L. Andrographolide derivative AL-1 reduces intestinal permeability in dextran sulfate sodium (DSS)-induced mice colitis model. Life Sci., 2020, 241, 117164.
[http://dx.doi.org/10.1016/j.lfs.2019.117164] [PMID: 31838135]
[57]
Deng, S.; Zhang, B.J.; Wang, C.Y.; Tian, Y.; Yao, J.H.; An, L.; Huang, S.S.; Peng, J.Y.; Liu, K.X.; Ma, X.C. Microbial transformation of deoxyandrographolide and their inhibitory activity on LPS-induced NO production in RAW 264.7 macrophages. Bioorg. Med. Chem. Lett., 2012, 22(4), 1615-1618.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.122] [PMID: 22264489]
[58]
Nie, X.; Chen, S-R.; Wang, K.; Peng, Y.; Wang, Y-T.; Wang, D.; Wang, Y.; Zhou, G-C. Attenuation of Innate Immunity by Andrographolide Derivatives Through NF-kappa B Signaling Pathway. Sci. Rep., 2017, 7.
[59]
Guo, B-J.; Liu, Z.; Ding, M-Y.; Li, F.; Jing, M.; Xu, L-P.; Wang, Y-Q.; Zhang, Z-J.; Wang, Y.; Wang, D.; Zhou, G-C.; Wang, Y. Andrographolide derivative ameliorates dextran sulfate sodium-induced experimental colitis in mice. Biochem. Pharmacol., 2019, 163, 416-424.
[http://dx.doi.org/10.1016/j.bcp.2019.03.019] [PMID: 30878550]
[60]
Wang, W.; Wu, Y.; Chen, X.; Zhang, P.; Li, H.; Chen, L. Synthesis of new ent-labdane diterpene derivatives from andrographolide and evaluation of their anti-inflammatory activities. Eur. J. Med. Chem., 2019, 162, 70-79.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.002] [PMID: 30419492]
[61]
Wang, W.; Wu, Y.; Yang, K.; Wu, C.; Tang, R.; Li, H.; Chen, L. Synthesis of novel andrographolide beckmann rearrangement derivatives and evaluation of their HK2-related anti-inflammatory activities. Eur. J. Med. Chem., 2019, 173, 282-293.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.022] [PMID: 31009914]
[62]
Roy, P.; Das, S.; Auddy, R.G.; Saha, A.; Mukherjee, A. Engineered andrographolide nanoparticles mitigate paracetamol hepatotoxicity in mice. Pharm. Res., 2013, 30(5), 1252-1262.
[http://dx.doi.org/10.1007/s11095-012-0964-5] [PMID: 23319171]
[63]
(a)Negi, A.S.; Kumar, J.K.; Luqman, S.; Shanker, K.; Gupta, M.M.; Khanuja, S.P.S. Recent advances in plant hepatoprotectives: a chemical and biological profile of some important leads. Med. Res. Rev., 2008, 28(5), 746-772.
[http://dx.doi.org/10.1002/med.20115] [PMID: 17979145]
(b)Lee, T-Y.; Chang, H-H.; Wen, C-K.; Huang, T-H.; Chang, Y-S. Modulation of thioacetamide-induced hepatic inflammations, angiogenesis and fibrosis by andrographolide in mice. J. Ethnopharmacol., 2014, 158(Pt A), 423-430.
[http://dx.doi.org/10.1016/j.jep.2014.10.056] [PMID: 25446592]
[64]
Chen, S-R.; Li, F.; Ding, M-Y.; Wang, D.; Zhao, Q.; Wang, Y.; Zhou, G-C.; Wang, Y. Andro-grapholide derivative as STAT3 inhibitor that protects acute liver damage in mice. Bioorg. Med. Chem., 2018, 26(18), 5053-5061.
[http://dx.doi.org/10.1016/j.bmc.2018.09.002] [PMID: 30228000]
[65]
Tang, C.; Gu, G.; Wang, B.; Deng, X.; Zhu, X.; Qian, H.; Huang, W. Design, synthesis, and biologi-cal evaluation of andrographolide derivatives as potent hepatoprotective agents. Chem. Biol. Drug Des., 2014, 83(3), 324-333.
[http://dx.doi.org/10.1111/cbdd.12246] [PMID: 24118795]
[66]
Jiang, X.; Yu, P.; Jiang, J.; Zhang, Z.; Wang, Z.; Yang, Z.; Tian, Z.; Wright, S.C.; Larrick, J.W.; Wang, Y. Synthesis and evaluation of antibacterial activities of andrographolide analogues. Eur. J. Med. Chem., 2009, 44(7), 2936-2943.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.014] [PMID: 19152987]
[67]
Wang, Z.; Yu, P.; Zhang, G.; Xu, L.; Wang, D.; Wang, L.; Zeng, X.; Wang, Y. Design, synthesis and antibacterial activity of novel andrographolide derivatives. Bioorg. Med. Chem., 2010, 18(12), 4269-4274.
[http://dx.doi.org/10.1016/j.bmc.2010.04.094] [PMID: 20493714]
[68]
Patil, H.S.; Jadhav, D.D.; Paul, A.; Mulani, F.A.; Karegaonkar, S.J.; Thulasiram, H.V. Regioselective and efficient enzymatic synthesis of antimicrobial andrographolide derivatives. Bioorg. Med. Chem. Lett., 2018, 28(6), 1132-1137.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.007] [PMID: 29475585]
[69]
Tang, C.; Zhang, W.; Wang, X.; Wang, B.; Zhu, X.; Huang, D.; Du, X.; Qian, H.; Huang, W.; Li, J. Synthesis and Biological Evaluation of Andrographolide Derivatives as Potent Antibacterial Agents. Lett. Drug Des. Discov., 2011, 8(9), 816-821.
[http://dx.doi.org/10.2174/157018011797200740]
[70]
Qiao, Y.; Huang, Y.; Feng, F.; Chen, Z-G. Efficient enzymatic synthesis and antibacterial activity of andrographolide glycoside. Process Biochem., 2016, 51(5), 675-680.
[http://dx.doi.org/10.1016/j.procbio.2016.02.008]
[71]
Li, F.; Li, X-M.; Sheng, D.; Chen, S-R.; Nie, X.; Liu, Z.; Wang, D.; Zhao, Q.; Wang, Y.; Wang, Y.; Zhou, G-C. Discovery and preliminary SAR of 14-aryloxy-andrographolide derivatives as antibacterial agents with immunosuppressant activity. RSC Advances, 2018, 8(17), 9440-9456.
[http://dx.doi.org/10.1039/C8RA01063C]
[72]
(a)Gupta, S.; Mishra, K.P.; Ganju, L. Broad-spectrum antiviral properties of andrographolide. Arch. Virol., 2017, 162(3), 611-623.
[http://dx.doi.org/10.1007/s00705-016-3166-3] [PMID: 27896563]
(b)Wintachai, P.; Kaur, P.; Lee, R.C.H.; Ramphan, S.; Kuadkitkan, A.; Wikan, N.; Ubol, S.; Roytrakul, S.; Chu, J.J.H.; Smith, D.R. Activity of andrographolide against chikungunya virus infection. Sci. Rep., 2015, 5, 14179.
[http://dx.doi.org/10.1038/srep14179] [PMID: 26384169]
(c)Sheeja, K.; Kuttan, G. Modulation of natural killer cell activity, antibody-dependent cellular cytotoxicity, and antibody-dependent complement-mediated cytotoxicity by andrographolide in normal and Ehrlich ascites carcinoma-bearing mice. Integr. Cancer Ther., 2007, 6(1), 66-73.
[http://dx.doi.org/10.1177/1534735406298975] [PMID: 17351028]
[73]
Chen, J-X.; Xue, H-J.; Ye, W-C.; Fang, B-H.; Liu, Y-H.; Yuan, S-H.; Yu, P.; Wang, Y-Q. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol. Pharm. Bull., 2009, 32(8), 1385-1391.
[http://dx.doi.org/10.1248/bpb.32.1385] [PMID: 19652378]
[74]
(a)Aromdee, C.; Suebsasana, S.; Ekalaksananan, T.; Pientong, C.; Thongchai, S. Stage of action of naturally occurring andrographolides and their semisynthetic analogues against herpes simplex virus type 1 in vitro. Planta Med., 2011, 77(9), 915-921.
[http://dx.doi.org/10.1055/s-0030-1250659] [PMID: 21259187]
(b)Seubsasana, S.; Pientong, C.; Ekalaksananan, T.; Thongchai, S.; Aromdee, C. A poten-tial andrographolide analogue against the replication of herpes simplex virus type 1 in vero cells. Med. Chem., 2011, 7(3), 237-244.
[http://dx.doi.org/10.2174/157340611795564268] [PMID: 21486208]
[75]
Uttekar, M.M.; Das, T.; Pawar, R.S.; Bhandari, B.; Menon, V. Nutan; Gupta, S.K.; Bhat, S.V. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur. J. Med. Chem., 2012, 56, 368-374.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.030] [PMID: 22858223]
[76]
Chen, H.; Ma, Y-B.; Huang, X-Y.; Geng, C-A.; Zhao, Y.; Wang, L-J.; Guo, R-H.; Liang, W-J.; Zhang, X-M.; Chen, J-J. Synthesis, structure-activity relationships and biological evaluation of dehy-droandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. Bioorg. Med. Chem. Lett., 2014, 24(10), 2353-2359.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.060] [PMID: 24731274]
[77]
Wang, B.; Li, J.; Huang, W.L.; Zhang, H.B.; Qian, H.; Zheng, Y.T. Synthesis and biological evaluation of andrographolide derivatives as potent anti-HIV agents. Chin. Chem. Lett., 2011, 22(7), 781-784.
[http://dx.doi.org/10.1016/j.cclet.2011.01.015]
[78]
Tang, C.; Liu, Y.; Wang, B.; Gu, G.; Yang, L.; Zheng, Y.; Qian, H.; Huang, W. Synthesis and biological evaluation of andrographolide derivatives as potent anti-HIV agents. Arch. Pharm. (Weinheim), 2012, 345(8), 647-656.
[http://dx.doi.org/10.1002/ardp.201200008] [PMID: 22592973]
[79]
Yuan, L.; Zhang, C.; Sun, H.; Liu, Q.; Huang, J.; Sheng, L.; Lin, B.; Wang, J.; Chen, L. The semi-synthesis of novel andrographolide analogues and anti-influenza virus activity evaluation of their derivatives. Bioorg. Med. Chem. Lett., 2016, 26(3), 769-773.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.100] [PMID: 26791013]
[80]
(a)Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet, 2020, 395(10225), 689-697.
[http://dx.doi.org/10.1016/S0140-6736(20)30260-9] [PMID: 32014114]
(b)Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[81]
Wu C.Y.L., Yueying; Yang, Peng; Zhang, Wu; Zhong, Yali; Wang, Qiqi; Wang; Yang, Xu; Mingxue, Li; Xingzhou, Li; Mengzhu, Zheng; Lixia, Chen; Hua, Li Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020.
[82]
(a)Li, F.; Lee, E.M.; Sun, X.; Wang, D.; Tang, H.; Zhou, G-C. Design, synthesis and discovery of andrographolide derivatives against Zika virus infection. Eur. J. Med. Chem., 2020, 187, 111925.
[http://dx.doi.org/10.1016/j.ejmech.2019.111925] [PMID: 31838328]
(b)Li, F.; Khanom, W.; Sun, X.; Paemanee, A.; Roytrakul, S.; Wang, D.; Smith, D.R.; Zhou, G-C. Andrographolide and Its 14-Aryloxy Analogues Inhibit Zika and Dengue Virus Infection. Molecules, 2020, 25(21), E5037.
[http://dx.doi.org/10.3390/molecules25215037] [PMID: 33143016]
[83]
Pandeti, S.; Sonkar, R.; Shukla, A.; Bhatia, G.; Tadigoppula, N. Synthesis of new andrographolide derivatives and evaluation of their antidyslipidemic, LDL-oxidation and antioxidant activity. Eur. J. Med. Chem., 2013, 69, 439-448.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.002] [PMID: 24090915]
[84]
Wang, B.; Tang, C.; Han, Y.; Guo, R.; Qian, H.; Huang, W. Synthesis and preliminary antihyperlipi-daemic activities evaluation of andrographolide derivatives. Med. Chem., 2012, 8(2), 293-298.
[http://dx.doi.org/10.2174/157340612800493629] [PMID: 22385174]
[85]
Liu, J.; Sun, B.; Zhao, X.; Xing, J.; Gao, Y.; Chang, W.; Ji, J.; Zheng, H.; Cui, C.; Ji, A.; Lou, H. Discovery of Potent Orally Active Protease-Activated Receptor 1 (PAR1) Antagonists Based on Andrographolide. J. Med. Chem., 2017, 60(16), 7166-7185.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00951] [PMID: 28745507]
[86]
Zheng, D.; Shao, J.; Chen, W.; Luo, Y. In vitro Metabolism of Sodium 9-dehydro-17-hydro-andrographolide-19-yl Sulfate in Rat Liver S9 by Liquid Chromatography-Mass Spectrometry Method. Pharmacogn. Mag., 2016, 12(46)(Suppl. 2), S102-S108.
[http://dx.doi.org/10.4103/0973-1296.182194] [PMID: 27279693]
[87]
Xiao, X-W.; Fu, H-Z.; Luo, Y-H.; Wei, X-Y. Potential anti-angiogenic sulfates of andrographolide. J. Asian Nat. Prod. Res., 2013, 15(8), 809-818.
[http://dx.doi.org/10.1080/10286020.2013.803473] [PMID: 23777373]
[88]
Sheng, D.; Li, J.; Wang, K.; Peng, Y.; Li, S.; Sun, Y.; Liu, Z.; Wang, D.; Lee, S.M.Y.; Zhou, G-C. Differential in vitro and in vivo anti-angiogenic activities of acetal and ketal andrographolide derivatives in HUVEC and zebrafish models. RSC Advances, 2016, 6(105), 102831-102842.
[http://dx.doi.org/10.1039/C6RA16758F]
[89]
Huang, B.; Peng, Y.; Li, J.; Li, S.; Sun, Y.; Wang, D.; Yang, B.; Chan, J.Y-W.; Yu, H.; Leung, G.P-H.; Hoi, M.P-M.; Zhou, G-C.; Lee, S.M-Y. An andrographolide derivative AGP-26b exhibiting anti-angiogenic activity in HUVECs and zebrafish via blocking the VEGFA/VEGFR2 signaling pathway. Mol. Biosyst., 2017, 13(3), 525-536.
[http://dx.doi.org/10.1039/C6MB00641H] [PMID: 28098292]
[90]
Cui, J.; Li, M-L.; Zhang, Y-b.; Li, F-F. Antifeedant Activities of Tutin and Andrographolide Derivatives Against Mythimna Separata. Heterocycles, 2011, 83(5), 1129-1137.
[http://dx.doi.org/10.3987/COM-11-12150]
[91]
(a)Hao, M.; Sun, Z.; Xu, J.; Lv, M.; Xu, H. Semisynthesis and Pesticidal Activities of Derivatives of the Diterpenoid Andrographolide and Investigation on the Stress Response of Aphis citricola Van der Goot (Homoptera: Aphididae). J. Agric. Food Chem., 2020, 68(14), 4131-4143.
[http://dx.doi.org/10.1021/acs.jafc.9b08242] [PMID: 32162924]
(b)Huang, X.; Zhang, B.; Xu, H. Synthesis of andrographolide-related esters as insecticidal and acaricidal agents. Bioorg. Med. Chem. Lett., 2018, 28(3), 360-364.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.038] [PMID: 29287959]
(c)Xu, M.; Xu, J.; Hao, M.; Zhang, K.; Lv, M.; Xu, H. Evaluation of andrographolide-based analogs derived from Andrographis paniculata against Mythimna separata Walker and Tetranychus cinnabarinus Boisduval. Bioorg. Chem., 2019, 86, 28-33.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.020] [PMID: 30684860]
[92]
Song, Z.; Huang, S.; He, Y.; Li, J.; Lin, K.; Xue, X. Synthesis and anti-fibrosis activity study of 14-deoxyandrographolide-19-oic acid and 14-deoxydidehydroandrographolide-19-oic acid derivatives. Eur. J. Med. Chem., 2018, 157, 805-816.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.046] [PMID: 30144698]
[93]
(a)Dai, G.F.; Xu, H.W.; Wang, J.F.; Liu, F.W.; Liu, H.M. Studies on the novel alpha-glucosidase inhibitory activity and structure-activity relationships for andrographolide analogues. Bioorg. Med. Chem. Lett., 2006, 16(10), 2710-2713.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.011] [PMID: 16504503]
(b)Xu, H-W.; Dai, G-F.; Liu, G-Z.; Wang, J-F.; Liu, H-M. Synthesis of andrographolide derivatives: A new family of alpha-glucosidase inhibitors. Bioorg. Med. Chem., 2007, 15(12), 4247-4255.
[http://dx.doi.org/10.1016/j.bmc.2007.03.063] [PMID: 17428667]
[94]
Xu, H.; Jiang, P.; Li, W.; Wang, J.; Liu, H. Synthesis and Bioactivities of Andrographolide derivatives: New. (-)-Limonidilactone Analogues. Chin. J. Chem., 2011, 29(10), 2114-2118.
[http://dx.doi.org/10.1002/cjoc.201180366]
[95]
Ly, M.H.; Truong, T.N.; Do, T.T.H. Preparation and alpha-glucosidase inhibition of andrographolide derivatives. Med. Chem. Res., 2020, 29(10), 1914-1922.
[http://dx.doi.org/10.1007/s00044-020-02612-6]
[96]
Devendar, P.; Kumar, A.N.; Bethu, M.S.; Zehra, A.; Pamanji, R.; Rao, J.V.; Tiwari, A.K.; Sridhar, B.; Srinivas, K.V.N.S.; Kumar, J.K. Highly selective one pot synthesis and biological evaluation of novel 3-(allyloxy)-propylidene acetals of some natural terpenoids. RSC Advances, 2015, 5(113), 93122-93130.
[http://dx.doi.org/10.1039/C5RA18517C]
[97]
Yan, G-R.; Zhou, H-H.; Wang, Y.; Zhong, Y.; Tan, Z-L.; Wang, Y.; He, Q-Y. Protective effects of andrographolide analogue AL-1 on ROS-induced RIN-mβ cell death by inducing ROS generation. PLoS One, 2013, 8(6), e63656.
[http://dx.doi.org/10.1371/journal.pone.0063656] [PMID: 23750203]
[98]
Liang, Z.; Du, E.; Xu, L.; Sun, Y.; Zhang, G.; Yu, P.; Wang, Y. Synthesis and preliminary biologic activity evaluation of nitric oxide-releasing andrographolide derivatives in RIN-m cells. Chem. Pharm. Bull. (Tokyo), 2014, 62(6), 519-523.
[http://dx.doi.org/10.1248/cpb.c13-00959] [PMID: 24881657]
[99]
Suebsasana, S.; Pongnaratorn, P.; Sattayasai, J.; Arkaravichien, T.; Tiamkao, S.; Aromdee, C. Analgesic, antipyretic, anti-inflammatory and toxic effects of andrographolide derivatives in experimental animals. Arch. Pharm. Res., 2009, 32(9), 1191-1200.
[http://dx.doi.org/10.1007/s12272-009-1902-x] [PMID: 19784573]
[100]
Liu, Z.; Law, W-K.; Wang, D.; Nie, X.; Sheng, D.; Song, G.; Guo, K.; Wei, P.; Ouyang, P.; Wong, C-W.; Zhou, G-C. Synthesis and discovery of andrographolide derivatives as non-steroidal farnesoid X receptor (FXR) antagonists. RSC Advances, 2014, 4(26), 13533-13545.
[http://dx.doi.org/10.1039/C3RA46715E]
[101]
(a)Dai, J.; Liang, K.; Zhao, S.; Jia, W.; Liu, Y.; Wu, H.; Lv, J.; Cao, C.; Chen, T.; Zhuang, S.; Hou, X.; Zhou, S.; Zhang, X.; Chen, X-W.; Huang, Y.; Xiao, R-P.; Wang, Y-L.; Luo, T.; Xiao, J.; Wang, C. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and he-patic steatosis. Proc. Natl. Acad. Sci. USA, 2018, 115(26), E5896-E5905.
[http://dx.doi.org/10.1073/pnas.1801745115] [PMID: 29891721]
(b)Liao, L-X.; Song, X-M.; Wang, L-C.; Lv, H-N.; Chen, J-F.; Liu, D.; Fu, G.; Zhao, M-B.; Jiang, Y.; Zeng, K-W.; Tu, P-F. Highly selec-tive inhibition of IMPDH2 provides the basis of antineuroinflammation therapy. Proc. Natl. Acad. Sci. USA, 2017, 114(29), E5986-E5994.
[http://dx.doi.org/10.1073/pnas.1706778114] [PMID: 28674004]
[102]
(a)Riber, D.; Venkataramana, M.; Sanyal, S.; Duvold, T. Synthesis and biological evaluation of photoaffinity labeled fusidic acid analogues. J. Med. Chem., 2006, 49(5), 1503-1505.
[http://dx.doi.org/10.1021/jm050583t] [PMID: 16509567]
(b)Kita, M.; Hirayama, Y.; Yamagishi, K.; Yoneda, K.; Fujisawa, R.; Kigoshi, H. Interactions of the antitumor macrolide aplyronine A with actin and actin-related proteins established by its versatile photoaffinity derivatives. J. Am. Chem. Soc., 2012, 134(50), 20314-20317.
[http://dx.doi.org/10.1021/ja310495p] [PMID: 23198778]
[103]
He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, 9(1), 2550.
[http://dx.doi.org/10.1038/s41467-018-04947-6] [PMID: 29959312]
[104]
Xu, S.; Luo, S.; Yao, H.; Cai, H.; Miao, X.; Wu, F.; Yang, D-H.; Wu, X.; Xie, W.; Yao, H.; Chen, Z-S.; Xu, J. Probing the Anticancer Action of Oridonin with Fluorescent Analogues: Visualizing Sub-cellular Localization to Mitochondria. J. Med. Chem., 2016, 59(10), 5022-5034.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00408] [PMID: 27089099]
[105]
(a)Chen, H.; Zhou, X.; Wang, A.; Zheng, Y.; Gao, Y.; Zhou, J. Evolutions in fragment-based drug design: the deconstruction-reconstruction approach. Drug Discov. Today, 2015, 20(1), 105-113.
[http://dx.doi.org/10.1016/j.drudis.2014.09.015] [PMID: 25263697]
(b)Hajduk, P.J.; Greer, J. A decade of fragment-based drug design: Strategic advances and lessons learned. Nat. Rev. Drug Discov., 2007, 6(3), 211-219.
[http://dx.doi.org/10.1038/nrd2220] [PMID: 17290284]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy