Generic placeholder image

Nanoscience & Nanotechnology-Asia


ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Multiwall Carbon Nanotubes: A Review on Synthesis and Applications

Author(s): Manisha Vijay Makwana* and Ajay M Patel

Volume 12, Issue 3, 2022

Published on: 13 October, 2021

Article ID: e131021197215 Pages: 13

DOI: 10.2174/2210681211666211013112929

Price: $65


MWCNTs are elongated cylindrical nanoobjects made of sp2 carbon. They have a diameter of 3–30 nm and can grow to be several centimetres long. Therefore, their aspect ratio can range between 10 to 10 million. Carbon nanotubes are the foundation of nanotechnology. It is an exceptionally fascinating material. CNTs possess excellent properties, such as mechanical, electrical, thermal, high adsorption, outstanding stiffness, high strength and low density with a high aspect ratio. These properties can be useful in the fabrication of revolutionary smart nanomaterials. The demand for lighter and more robust nanomaterials in different applications of nanotechnology is increasing every day. Various synthesis techniques for the fabrication of MWCNTs, such as CVD, arc discharge, flame synthesis, laser ablation, and spray pyrolysis, are discussed in this review article, as are their recent applications in a variety of significant fields. The first section presents a brief introduction of CNTs, and then the descriptions of synthesis methods and various applications of MWCNTs in the fields of energy storage and conversion, biomedical, water treatment, drug delivery, biosensors, bucky papers and resonance-based biosensors are provided in the second section. Due to their improved electrical, mechanical, and thermal properties, MWCNTs have been extensively used in the manufacturing and deployment of flexible sensors.

Keywords: CNTs, MWCNTs, SWCNTs, CVD, laser ablation, synthesis techniques, applications.

Graphical Abstract
Paradise, M.; Goswami, T. Carbon nanotubes–production and industrial applications. Mater. Des., 2007, 28(5), 1477-1489.
Kroto, HW; Heath, JR; O’Brien, SC; Curl, RF Smalley, RE C 60: buckminsterfullerene. nature, 1985, 318(6042), 162-163.
Harris, P.J. Fullerene-related structure of commercial glassy carbons. Philos. Mag., 2004, 84(29), 3159-3167.
Iijima, S. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J. Cryst. Growth, 1980, 50(3), 675-683.
Forro, L.; Schoenenberger, C. Physical properties of multi-wall nanotubes; Carbon Nanotubes, 2001, pp. 329-391.
Pravin, J; Khan, AA; Massimo, R; Carlo, R; Alberto, T Multiwalled Carbon nanotube–Strength to polymer composite. Phy. Sci. Rev., 2016, 1(2)
McNally, T.; Pötschke, P. Eds.; Polymer-carbon nanotube composites: Preparation, properties and applications; Elsevier, 2011.
Iijima, S. Helical microtubules of graphitic carbon. nature, 1991, 354(6348), 56-58.
Burstein, E. A major milestone in nanoscale material science: the 2002 Benjamin Franklin Medal in Physics presented to Sumio Iijima. J. Franklin Inst., 2003, 340(3-4), 221-242.
Yamabe, T. Recent development of carbon nanotube. Synth. Met., 1995, 70(1-3), 1511-1518.
Grady, BP Carbon nanotube-polymer composites: manufacture, properties, and applications; John Wiley & Sons, 2011.
Dai, H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res., 2002, 35(12), 1035-1044.
[] [PMID: 12484791]
Kalamkarov, A.L.; Georgiades, A.V.; Rokkam, S.K.; Veedu, V.P.; Ghasemi-Nejhad, M.N. Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct., 2006, 43(22-23), 6832-6854.
Cao, G.; Chen, X.I. The effects of chirality and boundary conditions on the mechanical properties of single-walled carbon nanotubes. Int. J. Solids Struct., 2007, 44(17), 5447-5465.
Shaffer, M.S.; Sandler, J.K. Carbon nanotube/nanofibre polymer composites. In: Processing and properties of nanocomposites;; , 2007; pp. 1-59.
Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube-A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sensors Int., 2020, 1, 100003.
Ding, R.G.; Lu, G.Q.; Yan, Z.F.; Wilson, M.A. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. J. Nanosci. Nanotechnol., 2001, 1(1), 7-29.
[] [PMID: 12914026]
Tang, Z.K.; Zhang, L.; Wang, N.; Zhang, X.X.; Wen, G.H.; Li, G.D.; Wang, J.N.; Chan, C.T.; Sheng, P. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science, 2001, 292(5526), 2462-2465.
[] [PMID: 11431560]
Liu, X.; Du, C.; Ni, D.; Ran, Q.; Liu, F.; Jiang, D.; Pu, X. A simple and sensitive electrochemical sensor for rapid detection of Clostridium tetani based on multi-walled carbon nanotubes. Anal. Methods, 2016, 8(47), 8280-8287.
Rahman, G; Najaf, Z; Mehmood, A; Bilal, S; Mian, SA.; Ali, G An overview of the recent progress in the synthesis and applications of carbon nanotubes. C—J. Carbon Res., 2019, 5(1), 3.
Palisoc, S.T.; Natividad, M.T.; De Jesus, N.; Carlos, J. Highly sensitive AgNP/MWCNT/Nafion modified GCE-based sensor for the determination of heavy metals in organic and non-organic vegetables. Sci. Rep., 2018, 8(1), 17445.
[] [PMID: 30487525]
Revathi, C.; Rajavel, K.; Saranya, M.; Kumar, R.R. MWCNT based non-enzymatic H2O2 sensor: influence of amine functionalization on the electrochemical H2O2 sensing. J. Electrochem. Soc., 2016, 163(13), B627.
Wang, J.; Wang, Y.; Yao, Z.; Liu, C.; Xu, Y.; Jiang, Z. Preparation of Fe3O4/MWCNT nano-hybrid and its application as phenol sensor. Mater. Res. Express, 2018, 5(7), 075003.
José-Yacamán, M.; Miki-Yoshida, M.; Rendon, L.; Santiesteban, J.G. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett., 1993, 62(6), 657-659.
Thess, A; Lee, R; Nikolaev, P; Dai, H; Petit, P; Robert, J; Xu, C; Lee, YH; Kim, SG; Rinzler, AG; Colbert, DT Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274), 483-487.
Li, W.Z.; Xie, S.S.; Qian, L.X.; Chang, B.H.; Zou, B.S.; Zhou, W.Y.; Zhao, R.A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274(5293), 1701-1703.
[] [PMID: 8939858]
Vichchulada, P.; Zhang, Q.; Lay, M.D. Recent progress in chemical detection with single-walled carbon nanotube networks. Analyst (Lond.), 2007, 132(8), 719-723.
[] [PMID: 17646869]
Paul, R. Uniformly dispersed nanocrystalline silver reduces the residual stress within diamond-like carbon hard coatings. Nano-Structures & Nano-Objects., 2017, 10, 69-79.
Schünemann, C.; Schäffel, F.; Bachmatiuk, A.; Queitsch, U.; Sparing, M.; Rellinghaus, B.; Lafdi, K.; Schultz, L.; Büchner, B.; Rümmeli, M.H. Catalyst poisoning by amorphous carbon during carbon nanotube growth: fact or fiction? ACS Nano, 2011, 5(11), 8928-8934.
[] [PMID: 22023292]
Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol., 2010, 10(6), 3739-3758.
[] [PMID: 20355365]
Zhang, Q.; Huang, J.Q.; Zhao, M.Q.; Qian, W.Z.; Wei, F. Carbon nanotube mass production: principles and processes. ChemSusChem, 2011, 4(7), 864-889.
[] [PMID: 21732544]
Sarangdevot, K.; Sonigara, B.S. The wondrous world of carbon nanotubes: Structure, synthesis, properties and applications. J. Chem. Pharm. Res., 2015, 7(6), 916-933.
Lin, H.Y.; Luan, J.; Tian, Y.; Liu, Q.Q.; Wang, X.L. Thiophene-based Ni-coordination polymer as a catalyst precursor and promoter for multi-walled carbon nanotubes synthesis in CVD. J. Solid State Chem., 2021, 293, 121782.
Merchan-Merchan, W.; Saveliev, A.V.; Kennedy, L.; Jimenez, W.C. Combustion synthesis of carbon nanotubes and related nanostructures. Pror. Energy Combust. Sci., 2010, 36(6), 696-727.
Xu, Z.; Zhao, H. Simultaneous measurement of internal and external properties of nanoparticles in flame based on thermophoresis. Combust. Flame, 2015, 162(5), 2200-2213.
Yuan, L.; Saito, K.; Pan, C.; Williams, F.A.; Gordon, A.S. Nanotubes from methane flames. Chem. Phys. Lett., 2001, 340(3-4), 237-241.
Height, M.J.; Howard, J.B.; Tester, J.W.; Vander Sande, J.B. Flame synthesis of single-walled carbon nanotubes. Carbon, 2004, 42(11), 2295-2307.
Yuan, L.; Saito, K.; Hu, W.; Chen, Z. Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes. Chem. Phys. Lett., 2001, 346(1-2), 23-28.
Annu, A.; Bhattacharya, B.; Singh, P.K.; Shukla, P.K.; Rhee, H.W. Carbon nanotube using spray pyrolysis: recent scenario. J. Alloys Compd., 2017, 691, 970-982.
Afre, R.A.; Soga, T.; Jimbo, T.; Kumar, M.; Ando, Y.; Sharon, M.; Somani, P.R.; Umeno, M. Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies. Microporous Mesoporous Mater., 2006, 96(1-3), 184-190.
Zhao, H.; Ma, H.; Li, X.; Liu, B.; Liu, R.; Komarneni, S. Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application. Appl. Clay Sci., 2021, 200, 105907.
Robertson, D.H.; Brenner, D.W.; Mintmire, J.W. Energetics of nanoscale graphitic tubules. Phys. Rev. B Condens. Matter, 1992, 45(21), 12592-12595.
[] [PMID: 10001304]
Yu, M.F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett., 2000, 84(24), 5552-5555.
[] [PMID: 10990992]
Saifuddin, N.; Raziah, A.Z.; Junizah, A.R. Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem., 2013, 2013
Tans, S.J.; Verschueren, A.R.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393(6680), 49-52.
Bandyopadhyaya, R.; Nativ-Roth, E.; Regev, O.; Yerushalmi-Rozen, R. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett., 2002, 2(1), 25-28.
Ma, L.; Hendrickson, K.E.; Wei, S.; Archer, L.A. Nanomaterials: Science and applications in the lithium–sulfur battery. Nano Today, 2015, 10(3), 315-338.
Shende, R.C.; Ramaprabhu, S. Thermo-optical properties of partially unzipped multiwalled carbon nanotubes dispersed nanofluids for direct absorption solar thermal energy systems. Sol. Energy Mater. Sol. Cells, 2016, 157, 117-125.
Muhammad, M.J.; Muhammad, I.A.; Sidik, N.A.; Yazid, M.N.; Mamat, R.; Najafi, G. The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review. Renew. Sustain. Energy Rev., 2016, 63, 226-236.
Mesgari, S.; Taylor, R.A.; Hjerrild, N.E.; Crisostomo, F.; Li, Q.; Scott, J. An investigation of thermal stability of carbon nanofluids for solar thermal applications. Sol. Energy Mater. Sol. Cells, 2016, 157, 652-659.
Li, X.; Zou, C.; Chen, W.; Lei, X. Experimental investigation of β-cyclodextrin modified carbon nanotubes nanofluids for solar energy systems: Stability, optical properties and thermal conductivity. Sol. Energy Mater. Sol. Cells, 2016, 157, 572-579.
Dürkop, T.; Getty, S.A.; Cobas, E.; Fuhrer, M.S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett., 2004, 4(1), 35-39.
Anitha, K.; Namsani, S.; Singh, J.K. Removal of heavy metal ions using a functionalized single-walled carbon nanotube: A molecular dynamics study. J. Phys. Chem. A, 2015, 119(30), 8349-8358.
[] [PMID: 26158866]
Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J., 2016, 306, 1116-1137.
Wu, C.H. Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J. Hazard. Mater., 2007, 144(1-2), 93-100.
[] [PMID: 17081687]
Mpouras, T.; Polydera, A.; Dermatas, D.; Verdone, N.; Vilardi, G. Multi wall carbon nanotubes application for treatment of Cr(VI)-contaminated groundwater; Modeling of batch & column experiments. Chemosphere, 2021, 269, 128749.
[] [PMID: 33272668]
Sinha, N.; Yeow, J.T. Carbon nanotubes for biomedical applications. IEEE Trans. Nanobioscience, 2005, 4(2), 180-195.
[] [PMID: 16117026]
Joseph, H. MEMS in the medical world. Sensors-the Journal of Applied Sensing Technology., 1997, 14(4), 47-51.
Wu, L.; Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev., 2015, 44(10), 2963-2997.
[] [PMID: 25739971]
Hong, H.; Gao, T.; Cai, W. Molecular imaging with single-walled carbon nanotubes. Nano Today, 2009, 4(3), 252-261.
[] [PMID: 21754949]
Wang, J.T.; Fabbro, C.; Venturelli, E.; Ménard-Moyon, C.; Chaloin, O.; Da Ros, T.; Methven, L.; Nunes, A.; Sosabowski, J.K.; Mather, S.J.; Robinson, M.K.; Amadou, J.; Prato, M.; Bianco, A.; Kostarelos, K.; Al-Jamal, K.T. The relationship between the diameter of chemically-functionalized multi-walled carbon nanotubes and their organ biodistribution profiles in vivo. Biomaterials, 2014, 35(35), 9517-9528.
[] [PMID: 25168822]
Wen, S.; Liu, H.; Cai, H.; Shen, M.; Shi, X. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv. Healthc. Mater., 2013, 2(9), 1267-1276.
[] [PMID: 23447549]
Khan, M.U.; Reddy, K.R.; Snguanwongchai, T.; Haque, E.; Gomes, V.G. Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym. Sci., 2016, 294(10), 1599-1610.
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9(6), 674-679.
[] [PMID: 16233988]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[PMID: 11261847]
Badihi-Mossberg, M.; Buchner, V.; Rishpon, J. Electrochemical biosensors for pollutants in the environment. Electroanalysis. An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis., 2007, 19(19-20), 2015-2028.
Wang, J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron., 2006, 21(10), 1887-1892.
[] [PMID: 16330202]
Lim, J.W.; Ha, D.; Lee, J.; Lee, S.K.; Kim, T. Review of micro/nanotechnologies for microbial biosensors. Front. Bioeng. Biotechnol., 2015, 3, 61.
[] [PMID: 26029689]
Lima, H.R.S.; da Silva, J.S.; de Oliveira Farias, E.A.; Teixeira, P.R.S.; Eiras, C.; Nunes, L.C.C. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens. Bioelectron., 2018, 108, 27-37.
[] [PMID: 29494885]
Wang, Z.; Dai, Z. Carbon nanomaterial-based electrochemical biosensors: An overview. Nanoscale, 2015, 7(15), 6420-6431.
[] [PMID: 25805626]
Kara, P.; de la Escosura-Muñiz, A.; Maltez-da Costa, M.; Guix, M.; Ozsoz, M.; Merkoçi, A. Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. Biosens. Bioelectron., 2010, 26(4), 1715-1718.
[] [PMID: 20729068]
Sinha, N.; Ma, J.; Yeow, J.T. Carbon nanotube-based sensors. J. Nanosci. Nanotechnol., 2006, 6(3), 573-590.
[] [PMID: 16573108]
Jacobs, C.B.; Peairs, M.J.; Venton, B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta, 2010, 662(2), 105-127.
[] [PMID: 20171310]
Yang, N.; Chen, X.; Ren, T.; Zhang, P.; Yang, D. Carbon nanotube based biosensors. Sensors and Actu Yang N, Chen X, Ren T, Zhang P, Yang D. Carbon nanotube based biosensors. Sensors and Actuators B: Chemical. Chemical., 2015, 207, 690-715.
Wright, AW ART. VII. On the production of Transparent Metallic Films by the Electrical Discharge in exhausted tubes. American Journal of Science and Arts (1820-1879), 1877, 13(73), 49.
Baedeker, K. Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen; JA Barth, 1906.
Xia, Q.; Zhang, Z.; Liu, Y.; Leng, J. Buckypaper and its composites for aeronautic applications. Compos., Part B Eng., 2020, 108231.
Wang, S.; Haldane, D.; Liang, R.; Smithyman, J.; Zhang, C.; Wang, B. Nanoscale infiltration behaviour and through-thickness permeability of carbon nanotube buckypapers. Nanotechnology, 2013, 24(1), 015704.
[] [PMID: 23221271]
Li, Y.; Kröger, M. A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper. Carbon, 2012, 50(5), 1793-1806.
He, S.; Wei, J.; Guo, F.; Xu, R.; Li, C.; Cui, X.; Zhu, H.; Wang, K.; Wu, D. A large area, flexible polyaniline/buckypaper composite with a core–shell structure for efficient supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(16), 5898-5902.
Lu, H.; Gou, J. Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer. Nanosci. Nanotechnol. Lett., 2012, 4(12), 1155-1159.
Che, J.; Chen, P.; Chan-Park, M.B. High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(12), 4057-4066.
Liu, Q.; Nayfeh, M.H.; Yau, S.T. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J. Power Sources, 2010, 195(21), 7480-7483.
Chen, I.P.; Yang, M.C.; Yang, C.H.; Zhong, D.X.; Hsu, M.C.; Chen, Y. Newton output blocking force under low-voltage stimulation for carbon nanotube–electroactive polymer composite artificial muscles. ACS Appl. Mater. Interfaces, 2017, 9(6), 5550-5555.
[] [PMID: 28107622]
Schwengber, A.; Prado, H.J.; Zilli, D.A.; Bonelli, P.R.; Cukierman, A.L. Carbon nanotubes buckypapers for potential transdermal drug delivery. Mater. Sci. Eng. C, 2015, 57, 7-13.
[] [PMID: 26354234]
Aqil, A.; Vlad, A.; Piedboeuf, M.L.; Aqil, M.; Job, N.; Melinte, S.; Detrembleur, C.; Jérôme, C. A new design of organic radical batteries (ORBs): carbon nanotube buckypaper electrode functionalized by electrografting. Chem. Commun. (Camb.), 2015, 51(45), 9301-9304.
[] [PMID: 25960263]
Giubileo, F.; Iemmo, L.; Luongo, G.; Martucciello, N.; Raimondo, M.; Guadagno, L.; Passacantando, M.; Lafdi, K.; Di Bartolomeo, A. Transport and field emission properties of buckypapers obtained from aligned carbon nanotubes. J. Mater. Sci., 2017, 52(11), 6459-6468.
Wu, Q.; Zhu, W.; Zhang, C.; Liang, Z.; Wang, B. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon, 2010, 48(6), 1799-1806.
Yang, X.; Lee, J.; Yuan, L.; Chae, S.R.; Peterson, V.K.; Minett, A.I.; Yin, Y.; Harris, A.T. Removal of natural organic matter in water using functionalised carbon nanotube buckypaper. Carbon, 2013, 59, 160-166.
Rashid, M.H.; Pham, S.Q.; Sweetman, L.J.; Alcock, L.J.; Wise, A.; Nghiem, L.D.; Triani, G.; in het Panhuis, M.; Ralph, S.F. Synthesis, properties, water and solute permeability of MWNT buckypapers. J. Membr. Sci., 2014, 456, 175-184.
Wen, G.; Yu, H.; Huang, X. Synthesis of carbon microtube buckypaper by a gas pressure enhanced chemical vapor deposition method. Carbon, 2011, 49(12), 4067-4069.
LeMieux, M.C.; Roberts, M.; Barman, S.; Jin, Y.W.; Kim, J.M.; Bao, Z. Self-sorted, aligned nanotube networks for thin-film transistors. Science, 2008, 321(5885), 101-104.
[] [PMID: 18599781]
Khan, Z.U.; Kausar, A.; Ullah, H.; Badshah, A.; Khan, W.U. A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques. J. Plast. Film Sheeting, 2016, 32(4), 336-379.
Slattery, A.D.; Shearer, C.J.; Gibson, C.T.; Shapter, J.G.; Lewis, D.A.; Stapleton, A.J. Carbon nanotube modified probes for stable and high sensitivity conductive atomic force microscopy. Nanotechnology, 2016, 27(47), 475708.
[] [PMID: 27782008]
Lu, C.; Czanderna, A.W. Eds.; Applications of piezoelectric quartz crystal microbalances; Elsevier, 2012.
Wenzel, S.W.; White, R.M. Analytic comparison of the sensitivities of bulk wave, surface wave, and flexural plate wave ultrasonic gravimetric sensors. Appl. Phys. Lett., 1989, 54(20), 1976-1978.
Lavrik, N.V.; Datskos, P.G. Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl. Phys. Lett., 2003, 82(16), 2697-2699.
Patel, A.M.; Joshi, A.Y. Vibration analysis of double wall carbon nanotube-based resonators for zeptogram level mass recognition. Comput. Mater. Sci., 2013, 79, 230-238.
Patel, A.M.; Joshi, A.Y. Investigating the influence of surface deviations in double walled carbon nanotube based nanomechanical sensors. Comput. Mater. Sci., 2014, 89, 157-164.
Patel, A.M.; Joshi, A.Y. Effect of waviness on the dynamic characteristics of double walled carbon nanotubes. Nanosci. Nanotechnol. Lett., 2014, 6(1), 1-9.
Patel, T.M.; Patel, M.A.; Joshi, A. Zeptogram Mass Detection Using Triple Walled Carbon Nanotubes. Curr. Nanosci., 2017, 13(3), 281-291.
Li, X.F.; Tang, G.J.; Shen, Z.B.; Lee, K.Y. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics, 2015, 55, 75-84.
[] [PMID: 25149195]
Zhang, S.; Wen, L.; Wang, H.; Zhu, K.; Zhang, M. Vertical CNT–Ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6(19), 5132-5139.
Liu, H. Eds.; Nanocomposites for musculoskeletal tissue regeneration; Woodhead Publishing, 2016.
Namasivayam, M.; Shapter, J. Factors affecting carbon nanotube fillers towards enhancement of thermal conductivity in polymer nanocomposites: A review. J. Compos. Mater., 2017, 51(26), 3657-3668.
Nag, A.; Alahi, M.E.E.; Mukhopadhyay, S.C.; Liu, Z.; Liu, Z. Multi-Walled Carbon Nanotubes-Based Sensors for Strain Sensing Applications. Sensors (Basel), 2021, 21(4), 1261.
[] [PMID: 33578782]
Gangu, KK; Maddila, S; Mukkamala, SB Jonnalagadda, SB Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review. J. Energy Chem., 2019, 30, 132-144.
Park, S.J.; Lee, S.Y. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int. J. Hydrogen Energy, 2010, 35(23), 13048-13054.
Reyhani, A; Mortazavi, SZ; Mirershadi, S; Golikand, AN; Moshfegh, AZ H2 adsorption mechanism in Mg modified multi-walled carbon nanotubes for hydrogen storage. Int. J. Hydrogen Energy, 2012, 37(2), 1919-1926.
Suttisawat, Y.; Rangsunvigit, P.; Kitiyanan, B.; Williams, M.; Ndungu, P.; Lototskyy, M.V.; Nechaev, A.; Linkov, V.; Kulprathipanja, S. Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V. Int. J. Hydrogen Energy, 2009, 34(16), 6669-6675.
Lueking, A.; Yang, R.T. Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes—implications for hydrogen storage. J. Catal., 2002, 206(1), 165-168.
Reyhani, A.; Mortazavi, S.Z.; Moshfegh, A.Z.; Golikand, A.N.; Amiri, M. Enhanced electrochemical hydrogen storage by catalytic Fe-doped multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition. J. Power Sources, 2009, 188(2), 404-410.
Aravinda, L.S.; Nagaraja, K.K.; Bhat, K.U.; Bhat, B.R. Magnetron sputtered MoO3/carbon nanotube composite electrodes for electrochemical supercapacitor. J. Electroanal. Chem. (Lausanne), 2013, 699, 28-32.
Reyhani, A.; Mortazavi, S.Z.; Mirershadi, S.; Moshfegh, A.Z.; Parvin, P.; Golikand, A.N. Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions. J. Phys. Chem. C, 2011, 115(14), 6994-7001.
Chen, C.Y.; Chang, J.K.; Tsai, W.T. Improved hydrogen storage performance of defected carbon nanotubes with Pd spillover catalysts dispersed using supercritical CO2 fluid. Int. J. Hydrogen Energy, 2012, 37(4), 3305-3312.
Chen, C.Y.; Chang, J.K.; Tsai, W.T.; Hung, C.H. Uniform dispersion of Pd nanoparticles on carbon nanostructures using a supercritical fluid deposition technique and their catalytic performance towards hydrogen spillover. J. Mater. Chem., 2011, 21(47), 19063-19068.
Kukovecz, Á.; Kanyó, T.; Kónya, Z.; Kiricsi, I. Long-time low-impact ball milling of multi-wall carbon nanotubes. Carbon, 2005, 43(5), 994-1000.
Nikitin, A.; Li, X.; Zhang, Z.; Ogasawara, H.; Dai, H.; Nilsson, A. Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds. Nano Lett., 2008, 8(1), 162-167.
[] [PMID: 18088150]
Dong, B.X.; Zhang, Y.R.; Chen, L.T.; Teng, Y.L.; Zhao, J. Effects of MWCNTs on improving the hydrogen storage performance of the Li3N system. Int. J. Hydrogen Energy, 2017, 42(2), 987-995.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy