Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Novel Benzotriazole Acetamide Derivatives as Benzo-Fused Five- Membered Nitrogen-Containing Heterocycles - In silico Screening, Molecular Docking, and Synthesis

Author(s): Tejaswini D. Patil* and Sunil V. Amrutkar

Volume 19, Issue 4, 2022

Published on: 07 October, 2021

Page: [337 - 349] Pages: 13

DOI: 10.2174/1570180818666211007110509

Price: $65

Abstract

Background: DNA gyrase subunit B (1KZN) is an attractive target for antibacterial drug development because of its role in DNA replication. The fast development of antimicrobial medication resistance necessitates the quick discovery of new antimicrobial medicines.

Objective: The goal of this research was to design, synthesize, and discover benzo-fused five-membered nitrogen-containing heterocycles that bind to DNA gyrase subunit B via molecular docking (1KZN).

Methods: Based on literature research, 2-(1H-1,2,3-Benzotriazol-1-yl)-N-substituted acetamide was synthesized using an efficient method. All synthesized compounds were evaluated for antibacterial activity against three distinct organisms: E. coli, Pseudomonas aeruginosa, Staphylococcus aureus.

Results: In a docking investigation, the chemical interacts with the active site of DNA gyrase subunit B (1KZN), indicating that it might have antibacterial action.

Conclusion: According to the findings of this research, the compounds 3d and 3f showed antibacterial properties. For Staphylococcus aureus, 3c has the potential to be an antibacterial agent.

Keywords: Benzotriazole, molecular docking, antimicrobial, DNA gyrase, in silico, MDR.

Graphical Abstract
[1]
Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health, 2017, 10(4), 369-378.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[2]
Nandwana, N.K.; Singh, R.P.; Patel, O.P.S.; Dhiman, S.; Saini, H.K.; Jha, P.N.; Kumar, A. Design and synthesis of imidazo/benzimidazo[1,2-c]quinazoline derivatives and evaluation of their antimicrobial activity. ACS Omega, 2018, 3(11), 16338-16346.
[http://dx.doi.org/10.1021/acsomega.8b01592] [PMID: 31458269]
[3]
Laws, M.; Shaaban, A.; Rahman, K.M. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol. Rev., 2019, 43(5), 490-516.
[http://dx.doi.org/10.1093/femsre/fuz014] [PMID: 31150547]
[4]
Courvalin, P. Why is antibiotic resistance a deadly emerging disease? Clin. Microbiol. Infect., 2016, 22(5), 405-407.
[http://dx.doi.org/10.1016/j.cmi.2016.01.012] [PMID: 26806259]
[5]
Sharland, M.; Saroey, P.; Berezin, E.N. The global threat of antimicrobial resistance--The need for standardized surveillance tools to define burden and develop interventions. J. Pediatr. (Rio J.), 2015, 91(5), 410-412.
[http://dx.doi.org/10.1016/j.jped.2015.06.001] [PMID: 26113428]
[6]
Cozzarelli, N.R. DNA Gyrase and the Supercoiling of DNA. Science, 1980, 207(4434), 953-960.
[http://dx.doi.org/10.1126/science.6243420]
[7]
Brown, P.O.; Peebles, C.L.; Cozzarelli, N.R. A topoisomerase from Escherichia coli related to DNA gyrase. Proc. Natl. Acad. Sci. USA, 1979, 76(12), 6110-6114.
[http://dx.doi.org/10.1073/pnas.76.12.6110] [PMID: 230498]
[8]
Pisano, M.B.; Kumar, A.; Medda, R.; Gatto, G.; Pal, R.; Fais, A.; Era, B.; Cosentino, S.; Uriarte, E.; Santana, L.; Pintus, F.; Matos, M.J. Antibacterial Activity and Molecular Docking Studies of a Selected Series of Hydroxy-3-arylcoumarins. Molecules, 2019, 24(15), 1-12.
[http://dx.doi.org/10.3390/molecules24152815] [PMID: 31375003]
[9]
Ostrov, D.A. HernAndez Prada, J.A.; Corsino, P.E.; Finton, K.A.; Le, N.; Rowe, T.C. Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antimicrob. Agents Chemother., 2007, 51(10), 3688-3698.
[http://dx.doi.org/10.1128/AAC.00392-07] [PMID: 17682095]
[10]
Picconi, P.; Hind, C.; Jamshidi, S.; Nahar, K.; Clifford, M.; Wand, M.E.; Sutton, J.M.; Rahman, K.M. Triaryl benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms. J. Med. Chem., 2017, 60(14), 6045-6059.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00108] [PMID: 28650661]
[11]
Hameed, S. Kanwal; Seraj, F.; Rafique, R.; Chigurupati, S.; Wadood, A.; Rehman, A.U.; Venugopal, V.; Salar, U.; Taha, M.; Khan, K.M. Synthesis of benzotriazoles derivatives and their dual potential as In-amylase and In-glucosidase inhibitors in vitro: Structure-activity relationship, molecular docking, and kinetic studies. Eur. J. Med. Chem., 2019, 183, 111677.
[http://dx.doi.org/10.1016/j.ejmech.2019.111677] [PMID: 31514061]
[12]
Briguglio, I.; Piras, S.; Corona, P.; Gavini, E.; Nieddu, M.; Boatto, G.; Carta, A. Benzotriazole: An overview on its versatile biological behavior. Eur. J. Med. Chem., 2015, 97, 612-648.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.089] [PMID: 25293580]
[13]
Wan, J.; Lv, P.C.; Tian, N.N.; Zhu, H.L. Facile synthesis of novel benzotriazole derivatives and their antibacterial activities. J. Chem. Sci., 2010, 122(4), 597-606.
[http://dx.doi.org/10.1007/s12039-010-0094-8] [PMID: 32218649]
[14]
Datta, A.; Alpana, A.; Shrikant, M.; Pratyush, K.; Abhibnav, B.; Ruchita, T. Review on synthetic study of benzotriazole. GSC Biol. Pharm. Sci., 2020, 11(02), 215-225.
[http://dx.doi.org/10.30574/gscbps.2020.11.2.0137]
[15]
Suma, B.V.; Natesh, N.N.; Madhavan, V. Benzotriazole in Medicinal Chemistry: An Overview. J. Chem. Pharm. Res., 2011, 3(6), 375-381.
[16]
CatalAn. J.; Palomar, J.; De Paz, J.L.G. On the acidity and basicity of azoles: The taft scheme for electrostatic proximity effects. Int. J. Mass Spectrom. Ion Process., 1998, 175(1-2), 51-59.
[http://dx.doi.org/10.1016/S0168-1176(98)00111-6]
[17]
MartA-nez. A.; VAzquez, M.V.; CarreA3n-Macedo, J.L.; Sansores, L.E.; Salcedo, R. Benzene fused five-membered heterocycles. A theoretical approach. Tetrahedron, 2003, 59(34), 6415-6422.
[http://dx.doi.org/10.1016/S0040-4020(03)01075-5]
[18]
Suma, B.V.; Natesh, N.N.; Madhavan, V. Benzotrizole in medicinal chemistry: An overview. J. Chem. Pharm. Res., 2011, 3(4), 287-294.
[19]
Singh, V.K.; Rishishwar, P.; Bhardwaj, P.; Alok, S. Benzotriazole: A heterocyclic molecule with diversified pharmacological activities. Int. J. Pharm. Sci. Res., 2017, 8(2), 446-456.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.8(2).446-56]
[20]
Jamkhandi, C.M.; Disouza, J.I. Benzotriazole derivatives as antimicrobial agents. Asian J. Biochem. Pharm. Res., 2012, 2(3), 123-130.
[21]
Li, Q.; Liu, G.; Wang, N.; Yin, H.; Li, Z. Synthesis and anticancer activity of benzotriazole derivatives. J. Heterocycl. Chem., 2020, 57(3), 1220-1227.
[http://dx.doi.org/10.1002/jhet.3859]
[22]
Singh, N.; Pandurangan, A.; Rana, K.; Anand, P.; Ahamad, A.; Tiwari, A.K. Benzimidazole: A short review of their antimicrobial activities. Int. Curr. Pharm. J., 2012, 1(5), 110-118.
[http://dx.doi.org/10.3329/icpj.v1i5.10284]
[23]
Dawood, K.M.; Abdel-Gawad, H.; Rageb, E.A.; Ellithey, M.; Mohamed, H.A. Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorg. Med. Chem., 2006, 14(11), 3672-3680.
[http://dx.doi.org/10.1016/j.bmc.2006.01.033] [PMID: 16464601]
[24]
Sanna, P.; Carta, A.; Gherardini, L.; Esmail, M.; Nikookar, R. Synthesis and antimycobacterial activity of 3-aryl-, 3-cyclohexyl- and 3-heteroaryl- substituted-2-(1H(2H)-benzotriazol-1(2)-yl)prop-2-enenitriles, prop-2-enamides and propenoic acids. II. Farmaco, 2002, 57(1), 79-87.
[http://dx.doi.org/10.1016/S0014-827X(01)01174-0] [PMID: 11902649]
[25]
Sanna, P.; Carta, A.; Nikookar, M.E.R. Synthesis and antitubercular activity of 3-aryl substituted-2-[1H(2H)benzotriazol-1(2)-yl]acrylonitriles. Eur. J. Med. Chem., 2000, 35(5), 535-543.
[http://dx.doi.org/10.1016/S0223-5234(00)00144-6] [PMID: 10889332]
[26]
Parekh, D.V.; Desai, P.S. Synthesis, characterization and antimicrobial activity studies of 5-(2-(5-benzoyl-1H-1,2,3-benzotriazole-1-Yl)2-oxoethylamino)-2-hydroxy benzoic acid and their transition metal chelates. Adv. Appl. Sci. Res., 2012, 3(4), 1992-1996.
[27]
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry, 2004.
[28]
Harte, A.J.; Gunnlaugsson, T. Synthesis of in-chloroamides in water. Tetrahedron Lett., 2006, 47(35), 6321-6324.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.090]
[29]
Mishra, D.; Singh, R.; Rout, C. A facile amidation of chloroacetyl chloride using DBU. Int. J. Chemtech Res., 2017, 10(3), 365-372.
[30]
Saxena, P.; Singh, D.C.P.; Ali, A.; Sharma, V. Synthesis of some derivatives of 2-mercaptobenzothiazole and their evaluation as anti-inflammatory agents. Int. J. Pharm. Pharm. Sci., 2013, 5(1), 454-458.
[31]
Patil, A.S.; Ram, B.G.; Mahajan, S.K.; Amrutkar, S.V. Synthesis of N- (alkyl or aryl) -2- (1 H -benzotriazol-1-Yl) -acetamides as selective COX-2 inhibitor. J. Pharm. Sci. Res., 2013, 5(1), 1-4.
[32]
El-serwy, W.S.; Mohamed, H.S.; El-serwy, W.S.; Mohamed, N.A.; Kassem, E.M.M.; Nossier, E.S.; Shalaby, A.S.G. Molecular docking study of newly synthesized thiopyrimidines as antimicrobial agents targeting DNA gyrase enzyme. J. Heterocycl. Chem., 2019, (July), 2027-2035.
[http://dx.doi.org/10.1002/jhet.3583]
[33]
Aruna Kumari, M.; Triloknadh, S.; Harikrishna, N.; Vijjulatha, M.; Venkata Rao, C. Synthesis, antibacterial activity, and docking studies of 1,2,3-triazole-tagged thieno[2,3-d]pyrimidinone derivatives. J. Heterocycl. Chem., 2017, 54(6), 3672-3681.
[http://dx.doi.org/10.1002/jhet.2995]
[34]
A-nkol. T.; DoZYruer, D.S.; Uzun, L.; Adak, S.; A-zkan, S.; Sahin, M.F. Synthesis and antimicrobial activity of new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. J. Enzyme Inhib. Med. Chem., 2008, 23(2), 277-284.
[http://dx.doi.org/10.1080/14756360701408697] [PMID: 18343916]
[35]
Al-Kaissy, W.W.N.; Safaa, H.F.; Tuama, S.; Al-Majidi, M.H. Synthesis, characterization and evaluation of antimicrobial activity of some new acetylenic amine and 2-oxoazetidine of carbazole. Am. J. Sci. Ind. Res, 2013, 4(3), 389-398.
[http://dx.doi.org/10.5251/ajsir.2013.4.4.389.398]
[36]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3(33), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[37]
DeLano, W.L. Pymol: An open-source molecular graphics tool. Newsl. Protein Crystallogr., 2002, 40(1), 82-92.
[38]
Allouche, A. Software news and updates gabedit - a graphical user interface for computational chemistry softwares. J. Comput. Chem., 2012, 32, 174-182.
[http://dx.doi.org/10.1002/jcc.21600] [PMID: 20607691]
[39]
Biovia, D.S. Discovery Studio Modeling Environment; Dassault SystA"mes: San Diego , 2017.
[40]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2016, 2017(7), 1-13.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy