Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Effects of Natural Products on Neuromuscular Junction

Author(s): Esra Küpeli Akkol*, Gökçe Şeker Karatoprak, Elif Carpar, Yaseen Hussain, Haroon Khan and Michael Aschner

Volume 20, Issue 3, 2022

Published on: 10 February, 2022

Page: [594 - 610] Pages: 17

DOI: 10.2174/1570159X19666210924092627

Price: $65

Abstract

Neuromuscular junction (NMJ) disorders result from damage, malfunction or absence of one or more key proteins involved in neuromuscular transmission, comprising a wide range of disorders. The most common pathology is antibody-mediated or downregulation of ion channels or receptors, resulting in Lambert-Eaton myasthenic syndrome, myasthenia gravis, and acquired neuromyotonia (Isaac’s syndrome), and rarely congenital myasthenic syndromes caused by mutations in NMJ proteins. A wide range of symptomatic treatments, immunomodulating therapies, or immunosuppressive drugs have been used to treat NMJ diseases. Future research must be directed at a better understanding of the pathogenesis of these diseases, and developing novel disease-specific treatments. Numerous secondary metabolites, especially alkaloids isolated from plants, have been used to treat NMJ diseases in traditional and clinical practices. An ethnopharmacological approach has provided leads for identifying new treatments for NMJ diseases. In this review, we performed a literature survey in Pubmed, Science Direct, and Google Scholar to gather information on drug discovery from plant sources for NMJ disease treatments. To date, most research has focused on the effects of herbal remedies on cholinesterase inhibitory and antioxidant activities. This review provides leads for identifying potential new drugs from plant sources for the treatment of NMJ diseases.

Keywords: Acetylcholinesterase, lambert-eaton myasthenic syndrome, myasthenia gravis, natural product, neuromuscular junction, NMJ diseases.

Graphical Abstract
[1]
Martinez-Pena y Valenzuela, I.; Akaaboune, M. Acetylcholinesterase mobility and stability at the neuromuscular junction of living mice. Mol. Biol. Cell, 2007, 18(8), 2904-2911.
[http://dx.doi.org/10.1091/mbc.e07-02-0093] [PMID: 17538015]
[2]
Srikanth, M.; Gil, W.; Richard, B. Diseases of the neuromuscular junction.Pediatric neurology: Principles and practice., 2012, 1549-1569.
[3]
Hill, M. The neuromuscular junction disorders. J. Neurol. Neurosurg. Psychiatry, 2003, 74(Suppl. 2), ii32-ii37.
[http://dx.doi.org/10.1136/jnnp.74.suppl_2.ii32] [PMID: 12754327]
[4]
Li, L.; Xiong, W.C.; Mei, L. Neuromuscular junction formation, aging, and disorders. Annu. Rev. Physiol., 2018, 80, 159-188.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034255] [PMID: 29195055]
[5]
Sieb, J.P. Myasthenia gravis: An update for the clinician. Clin. Exp. Immunol., 2014, 175(3), 408-418.
[http://dx.doi.org/10.1111/cei.12217] [PMID: 24117026]
[6]
Verschuuren, J.; Strijbos, E.; Vincent, A. Neuromuscular junction disorders. Handb. Clin. Neurol., 2016, 133, 447-466.
[http://dx.doi.org/10.1016/B978-0-444-63432-0.00024-4] [PMID: 27112691]
[7]
Deenen, J.C.; Horlings, C.G.; Verschuuren, J.J.; Verbeek, A.L.; van Engelen, B.G. The epidemiology of neuromuscular disorders: A comprehensive overview of the literature. J. Neuromuscul. Dis., 2015, 2(1), 73-85.
[http://dx.doi.org/10.3233/JND-140045] [PMID: 28198707]
[8]
Cea, G.; Martinez, D.; Salinas, R.; Vidal, C.; Hoffmeister, L.; Stuardo, A. Clinical and epidemiological features of myasthenia gravis in Chilean population. Acta Neurol. Scand., 2018, 138(4), 338-343.
[http://dx.doi.org/10.1111/ane.12967] [PMID: 29845611]
[9]
Lefter, S.; Hardiman, O.; Ryan, A.M. A population-based epidemiologic study of adult neuromuscular disease in the Republic of Ireland. Neurology, 2017, 88(3), 304-313.
[http://dx.doi.org/10.1212/WNL.0000000000003504] [PMID: 27927941]
[10]
Lee, H.S.; Lee, H.S.; Shin, H.Y.; Choi, Y.C.; Kim, S.M. The epidemiology of myasthenia gravis in Korea. Yonsei Med. J., 2016, 57(2), 419-425.
[http://dx.doi.org/10.3349/ymj.2016.57.2.419] [PMID: 26847295]
[11]
Breiner, A.; Widdifield, J.; Katzberg, H.D.; Barnett, C.; Bril, V.; Tu, K. Epidemiology of myasthenia gravis in Ontario, Canada. Neuromuscul. Disord., 2016, 26(1), 41-46.
[http://dx.doi.org/10.1016/j.nmd.2015.10.009] [PMID: 26573434]
[12]
Juel, V.C.; Sanders, D.B. The Lambert–Eaton myasthenic syndrome. Myasthenia gravis and myasthenic disorders.Myasthenia gravis and myasthenic disorders, 2nd ed; Oxford University Press: Oxford, 2012, pp. 156-169.
[http://dx.doi.org/10.1093/med/9780199738670.003.0007]
[13]
Arnon, S.S. Infant botulism.Textbook of pediatric infectous disease., 2018, 3
[14]
Lee, J.Y.; Min, J.H.; Han, S.H.; Han, J. Transient neonatal myasthenia gravis due to a mother with ocular onset of anti-muscle specific kinase myasthenia gravis. Neuromuscul. Disord., 2017, 27(7), 655-657.
[http://dx.doi.org/10.1016/j.nmd.2017.03.012] [PMID: 28495046]
[15]
Engel, A.G. Congenital myasthenic syndromes in 2018. Curr. Neurol. Neurosci. Rep., 2018, 18(8), 46.
[http://dx.doi.org/10.1007/s11910-018-0852-4] [PMID: 29892917]
[16]
Punga, A.R.; Ruegg, M.A. Signaling and aging at the neuromuscular synapse: Lessons learnt from neuromuscular diseases. Curr. Opin. Pharmacol., 2012, 12(3), 340-346.
[http://dx.doi.org/10.1016/j.coph.2012.02.002] [PMID: 22365504]
[17]
Gilhus, N.E.; Verschuuren, J.J. Myasthenia gravis: Subgroup classification and therapeutic strategies. Lancet Neurol., 2015, 14(10), 1023-1036.
[http://dx.doi.org/10.1016/S1474-4422(15)00145-3] [PMID: 26376969]
[18]
Wong, S.H.; Huda, S.; Vincent, A.; Plant, G.T. Ocular myasthenia gravis: Controversies and updates. Curr. Neurol. Neurosci. Rep., 2014, 14(1), 421.
[http://dx.doi.org/10.1007/s11910-013-0421-9] [PMID: 24272275]
[19]
Bouzat, C.; Mukhtasimova, N. The nicotinic acetylcholine receptor as a molecular machine for neuromuscular transmission. Curr. Opin. Physiol., 2018, 4, 40-48.
[http://dx.doi.org/10.1016/j.cophys.2018.04.008]
[20]
Eguchi, T.; Tezuka, T.; Fukudome, T.; Watanabe, Y.; Sagara, H.; Yamanashi, Y. Overexpression of Dok-7 in skeletal muscle enhances neuromuscular transmission with structural alterations of neuromuscular junctions: Implications in robustness of neuromuscular transmission. Biochem. Biophys. Res. Commun., 2020, 523(1), 214-219.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.011] [PMID: 31848047]
[21]
Titulaer, M.J.; Lang, B.; Verschuuren, J.J. Lambert-Eaton myasthenic syndrome: From clinical characteristics to therapeutic strategies. Lancet Neurol., 2011, 10(12), 1098-1107.
[http://dx.doi.org/10.1016/S1474-4422(11)70245-9] [PMID: 22094130]
[22]
Hülsbrink, R.; Hashemolhosseini, S. Lambert-Eaton myasthenic syndrome - diagnosis, pathogenesis and therapy. Clin. Neurophysiol., 2014, 125(12), 2328-2336.
[http://dx.doi.org/10.1016/j.clinph.2014.06.031] [PMID: 25065299]
[23]
Lorenzoni, P.J.; Scola, R.H.; Kay, C.S.K.; Werneck, L.C. Congenital myasthenic syndrome: A brief review. Pediatr. Neurol., 2012, 46(3), 141-148.
[http://dx.doi.org/10.1016/j.pediatrneurol.2011.12.001] [PMID: 22353287]
[24]
Mazzocchio, R.; Caleo, M. More than at the neuromuscular synapse: Actions of botulinum neurotoxin A in the central nervous system. Neuroscientist, 2015, 21(1), 44-61.
[http://dx.doi.org/10.1177/1073858414524633] [PMID: 24576870]
[25]
Howard, J.F. Toxic neuromuscular transmission disorders.Myasthenia gravis and related disorders; Humana Press: Cham, 2018, pp. 275-298.
[http://dx.doi.org/10.1007/978-3-319-73585-6_17]
[26]
Levin, K.H.; Chauvel, P. Clinical neurophysiology of neuromuscular junction disease. In: Clinical neurophysiology: Diseases and disorders: Handbook of clinical neurology series,; , 2019.
[27]
Strobl, W.; Theologis, T.; Brunner, R.; Kocer, S.; Viehweger, E.; Pascual-Pascual, I.; Placzek, R. Best clinical practice in botulinum toxin treatment for children with cerebral palsy. Toxins (Basel), 2015, 7(5), 1629-1648.
[http://dx.doi.org/10.3390/toxins7051629] [PMID: 25969944]
[28]
Ravenni, R.; De Grandis, D.; Mazza, A. Conversion ratio between Dysport and Botox in clinical practice: An overview of available evidence. Neurol. Sci., 2013, 34(7), 1043-1048.
[http://dx.doi.org/10.1007/s10072-013-1357-1] [PMID: 23576131]
[29]
Zafirova, Z.; Dalton, A. Neuromuscular blockers and reversal agents and their impact on anesthesia practice. Best Pract. Res. Clin. Anaesthesiol., 2018, 32(2), 203-211.
[http://dx.doi.org/10.1016/j.bpa.2018.06.004] [PMID: 30322460]
[30]
Pohanka, M. Acetylcholinesterase inhibitors: A patent review (2008 - present). Expert Opin. Ther. Pat., 2012, 22(8), 871-886.
[http://dx.doi.org/10.1517/13543776.2012.701620] [PMID: 22768972]
[31]
Sanders, D.B.; Wolfe, G.I.; Benatar, M.; Evoli, A.; Gilhus, N.E.; Illa, I.; Kuntz, N.; Massey, J.M.; Melms, A.; Murai, H.; Nicolle, M.; Palace, J.; Richman, D.P.; Verschuuren, J.; Narayanaswami, P. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology, 2016, 87(4), 419-425.
[http://dx.doi.org/10.1212/WNL.0000000000002790] [PMID: 27358333]
[32]
Wang, L.; Huan, X.; Xi, J.Y.; Wu, H.; Zhou, L.; Lu, J.H.; Zhang, T.S.; Zhao, C.B. Immunosuppressive and monoclonal antibody treatment for myasthenia gravis: A network meta-analysis. CNS Neurosci. Ther., 2019, 25(5), 647-658.
[http://dx.doi.org/10.1111/cns.13110] [PMID: 30809966]
[33]
Chalk, C.H.; Benstead, T.J.; Pound, J.D.; Keezer, M.R. Medical treatment for botulism. Cochrane Database Syst. Rev., 2019, 4(4) ,CD008123
[PMID: 30993666]
[34]
Sussman, J.; Farrugia, M.E.; Maddison, P.; Hill, M.; Leite, M.I.; Hilton-Jones, D. Myasthenia gravis: Association of British Neurologists’ management guidelines. Pract. Neurol., 2015, 15(3), 199-206.
[http://dx.doi.org/10.1136/practneurol-2015-001126] [PMID: 25977271]
[35]
Zhou, X.; Liu, J.; Yang, B.; Lin, X.; Yang, X.W.; Liu, Y. Marine natural products with anti-HIV activities in the last decade. Curr. Med. Chem., 2013, 20(7), 953-973.
[PMID: 23210782]
[36]
Omoruyi, B.E.; Bradley, G.; Afolayan, A.J. Antioxidant and phytochemical properties of Carpobrotus edulis (L.) bolus leaf used for the management of common infections in HIV/AIDS patients in Eastern Cape Province. BMC Complement. Altern. Med., 2012, 12, 215.
[http://dx.doi.org/10.1186/1472-6882-12-215] [PMID: 23140206]
[37]
Park, J.J.; Seo, S.M.; Kim, E.J.; Lee, Y.J.; Ko, Y.G.; Ha, J.; Lee, M. Berberine inhibits human colon cancer cell migration via AMP-activated protein kinase-mediated downregulation of integrin β1 signaling. Biochem. Biophys. Res. Commun., 2012, 426(4), 461-467.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.091] [PMID: 22943849]
[38]
O’Neill, M.J.; Badavari, S.; Heckelman, P.E.; Merck, C.O.; Smith, A.; D’Arecca, M.A. Al. the merck index: An encyclopedia of chemicals, drugs and biologicals, 13th ed; John Willey & Sons: New York, 2001.
[39]
Smeller, T.; Wink, M. Alkaloids in modern medicine.Alkaloids. Biochemistry, Ecology, and Medicinal Applications; Roberts, M.F.; Wink, M., Eds.; Academic Press: New York, London,; , 1998, pp. 435-459.
[40]
Reynolds, J.E.F. Martindale-The extra pharmacopedia; Pharmaceutical press: London, 1993.
[41]
Harborne, J.B.; Baxter, H. A handbook of bioactive compounds from plants.Phytochemical dictionary; Taylor and Francis: London, 1993.
[42]
Bellamy, D.; Pfister, A.A. A. World Medicine. In: Plants, patients and people; Blackwell: Oxford, UK, , 1992.
[43]
Wu, Z.Q.; Jia, W.Z.; Wang, K.; Xu, J.J.; Chen, H.Y.; Xia, X.H. Exploration of two-enzyme coupled catalysis system using scanning electrochemical microscopy. Anal. Chem., 2012, 84(24), 10586-10592.
[http://dx.doi.org/10.1021/ac3030224] [PMID: 23181438]
[44]
Howes, M.J.R.; Perry, E. The role of phytochemicals in the treatment and prevention of dementia. Drugs Aging, 2011, 28(6), 439-468.
[http://dx.doi.org/10.2165/11591310-000000000-00000] [PMID: 21639405]
[45]
Walker, M.B. Treatment of myasthenia gravis with physostigmine. Lancet, 1934, 223(5779), 1200-1201.
[http://dx.doi.org/10.1016/S0140-6736(00)94294-6]
[46]
Harris, L.W.; Lennox, W.J.; Talbot, B.G.; Anderson, D.R.; Swanson, D.R. Toxicity of anticholinesterases: Interactions of pyridostigmine and physostigmine with soman. Drug Chem. Toxicol., 1984, 7(5), 507-526.
[http://dx.doi.org/10.3109/01480548408994216] [PMID: 6510256]
[47]
Hallak, M.; Giacobini, E. Relation of brain regional physostigmine concentration to cholinesterase activity and acetylcholine and choline levels in rat. Neurochem. Res., 1986, 11(7), 1037-1048.
[http://dx.doi.org/10.1007/BF00965592] [PMID: 3748273]
[48]
Giacobini, E.; Somani, S.; McIlhany, M.; Downen, M.; Hallak, M. Pharmacokinetics and pharmacodynamics of physostigmine after intravenous administration in beagle dogs. Neuropharmacology, 1987, 26(7B), 831-836.
[http://dx.doi.org/10.1016/0028-3908(87)90059-1] [PMID: 3658115]
[49]
Somani, S.M.; Khalique, A. Pharmacokinetics and pharmacodynamics of physostigmine in the rat after intravenous administration. Drug Metab. Dispos., 1987, 15(5), 627-633.
[PMID: 2891478]
[50]
Hallak, M.; Giacobini, E. A comparison of the effects of two inhibitors on brain cholinesterase. Neuropharmacology, 1987, 26(6), 521-530.
[http://dx.doi.org/10.1016/0028-3908(87)90143-2] [PMID: 3601008]
[51]
Harris, L.W.; Anderson, D.R.; Lennox, W.J.; Solana, R.P. Effects of subacute administration of physostigmine on blood acetylcholinesterase activity, motor performance, and soman intoxication. Toxicol. Appl. Pharmacol., 1989, 97(2), 267-271.
[http://dx.doi.org/10.1016/0041-008X(89)90331-1] [PMID: 2922758]
[52]
Somani, S.M.; Dube, S.N. In vivo dose response relationship between physostigmine and cholinesterase activity in RBC and tissues of rats. Life Sci., 1989, 44(25), 1907-1915.
[http://dx.doi.org/10.1016/0024-3205(89)90402-5] [PMID: 2739507]
[53]
Osman, M.Y.; Abdel Tawab, S.M.; Sharaf, I.A. Effect of physostigmine on cholinesterase activity in different parts of rat brain. Arzneimittelforschung, 1995, 45(6), 663-665.
[PMID: 7646566]
[54]
Shaw, K.P.; Aracava, Y.; Akaike, A.; Daly, J.W.; Rickett, D.L.; Albuquerque, E.X. The reversible cholinesterase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor-ion channel complex. Mol. Pharmacol., 1985, 28(6), 527-538.
[PMID: 2417099]
[55]
Clarke, P.B.S.; Reuben, M.; el-Bizri, H. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum. Br. J. Pharmacol., 1994, 111(3), 695-702.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14793.x] [PMID: 8019748]
[56]
Greig, N.H.; Pei, X.F.; Soncrant, T.T.; Ingram, D.K.; Brossi, A. Phenserine and ring C hetero-analogues: Drug candidates for the treatment of Alzheimer’s disease. Med. Res. Rev., 1995, 15(1), 3-31.
[http://dx.doi.org/10.1002/med.2610150103] [PMID: 7898167]
[57]
Greig, N.H.; Sambamurti, K.; Yu, Q.S.; Brossi, A.; Bruinsma, G.B.; Lahiri, D.K. An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Curr. Alzheimer Res., 2005, 2(3), 281-290.
[http://dx.doi.org/10.2174/1567205054367829] [PMID: 15974893]
[58]
Klein, J. Phenserine. Expert Opin. Investig. Drugs, 2007, 16(7), 1087-1097.
[http://dx.doi.org/10.1517/13543784.16.7.1087] [PMID: 17594192]
[59]
Yu, Q.S.; Holloway, H.W.; Luo, W.; Lahiri, D.K.; Brossi, A.; Greig, N.H. Long-acting anticholinesterases for myasthenia gravis:Synthesis and activities of quaternary phenylcarbamates of neostigmine, pyridostigmine and physostigmine. Bioorg. Med. Chem., 2010, 18(13), 4687-4693.
[http://dx.doi.org/10.1016/j.bmc.2010.05.022] [PMID: 20627738]
[60]
Oh, S.J.; Kim, D.S.; Head, T.C.; Claussen, G.C. Low-dose guanidine and pyridostigmine: Relatively safe and effective long-term symptomatic therapy in Lambert-Eaton myasthenic syndrome. Muscle Nerve, 1997, 20(9), 1146-1152.
[http://dx.doi.org/10.1002/(SICI)1097-4598(199709)20:9<1146:AID-MUS9>3.0.CO;2-8] [PMID: 9270671]
[61]
Wirtz, P.W.; Verschuuren, J.J.; van Dijk, J.G.; de Kam, M.L.; Schoemaker, R.C.; van Hasselt, J.G.; Titulaer, M.J.; Tjaden, U.R.; den Hartigh, J.; van Gerven, J.M. Efficacy of 3,4-diaminopyridine and pyridostigmine in the treatment of Lambert-Eaton myasthenic syndrome: a randomized, double-blind, placebo-controlled, crossover study. Clin. Pharmacol. Ther., 2009, 86(1), 44-48.
[http://dx.doi.org/10.1038/clpt.2009.35] [PMID: 19357643]
[62]
Keogh, M.; Sedehizadeh, S.; Maddison, P. Treatment for Lambert-Eaton myasthenic syndrome. Cochrane Database Syst. Rev., 2011, 2(2) ,CD003279
[PMID: 21328260]
[63]
Gökçal, E.; Gürsoy, A.E.; Asil, T.; Ertaş, M. Lambert-Eaton myasthenic syndrome with a twenty-three-year delay in diagnosis. Noro Psikiyatri Arsivi, 2017, 54(2), 189-190.
[http://dx.doi.org/10.5152/npa.2016.12709] [PMID: 28680320]
[64]
Say, B.; Ergün, U.; Karaca, G. Case with atrophy and proximal muscle weakness: Seronegative Lambert Eaton Myasthenic Syndrome. Pamukkale Med. J., 2019, 12(1), 181-183.
[65]
Revadigar, V.; Ghalib, R.M.; Murugaiyah, V.; Embaby, M.A.; Jawad, A.; Mehdi, S.H.; Hashim, R.; Sulaiman, O. Enzyme inhibitors involved in the treatment of Alzheimer’s disease. Drug. des. discov. alzheimer’s dis, 2014, 142-198.
[66]
Zhao, Q.; Tang, X.C. Effects of huperzine A on acetylcholinesterase isoforms in vitro: Comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur. J. Pharmacol., 2002, 455(2-3), 101-107.
[http://dx.doi.org/10.1016/S0014-2999(02)02589-X] [PMID: 12445575]
[67]
Yan, X.F.; Lu, W.H.; Lou, W.J.; Tang, X.C. Effects of huperzine A and B on skeletal muscle and the electroencephalogram Zhongguo Yao Li Xue Bao, 1987, 8(2), 117-123.
[PMID: 2958995]
[68]
Tang, X.C.; De Sarno, P.; Sugaya, K.; Giacobini, E. Effect of huperzine A, a new cholinesterase inhibitor, on the central cholinergic system of the rat. J. Neurosci. Res., 1989, 24(2), 276-285.
[http://dx.doi.org/10.1002/jnr.490240220] [PMID: 2585551]
[69]
Cheng, Y.S.; Lu, C.Z.; Ying, Z.L.; Ni, W.Y.; Zhang, C.L.; Sang, G.W. 128 cases of myasthenia gravis treated with Huperzine A. New Drugs and Clinical Remedies, 1986, 5(4), 197-199.
[70]
Alcalá, Mdel.M.; Vivas, N.M.; Hospital, S.; Camps, P.; Muñoz-Torrero, D.; Badia, A. Characterisation of the anticholinesterase activity of two new tacrine-huperzine A hybrids. Neuropharmacology, 2003, 44(6), 749-755.
[http://dx.doi.org/10.1016/S0028-3908(03)00071-6] [PMID: 12681373]
[71]
Tang, X.C.; Kindel, G.H.; Kozikowski, A.P.; Hanin, I. Comparison of the effects of natural and synthetic huperzine-A on rat brain cholinergic function in vitro and in vivo. J. Ethnopharmacol., 1994, 44(3), 147-155.
[http://dx.doi.org/10.1016/0378-8741(94)01182-6] [PMID: 7898122]
[72]
Galdeano, C.; Coquelle, N.; Cieslikiewicz-Bouet, M.; Bartolini, M.; Pérez, B.; Clos, M.V.; Silman, I.; Jean, L.; Colletier, J.P.; Renard, P.Y.; Muñoz-Torrero, D. Silman[REMOVED HYPERLINK FIELD], I.; Jean, L.; Colletier, J.P.; Renard, P.Y.; Muñoz-Torrero, D. Increasing polarity in tacrine and huprine derivatives: Potent anticholinesterase agents for the treatment of Myasthenia Gravis. Molecules, 2018, 23(3), 634.
[http://dx.doi.org/10.3390/molecules23030634] [PMID: 29534488]
[73]
Sieb, J.P.; Engel, A.G. Ephedrine: Effects on neuromuscular transmission. Brain Res., 1993, 623(1), 167-171.
[http://dx.doi.org/10.1016/0006-8993(93)90025-I] [PMID: 8221087]
[74]
Engel, A.G. Myasthenia gravis and myasthenic syndromes.Handbook of Clinical Neurology; Elsevier: Amsterdam, 1992.
[75]
Palace, J.; Lashley, D.; Newsom-Davis, J.; Cossins, J.; Maxwell, S.; Kennett, R.; Jayawant, S.; Yamanashi, Y.; Beeson, D. Clinical features of the DOK7 neuromuscular junction synaptopathy. Brain, 2007, 130(Pt 6), 1507-1515.
[http://dx.doi.org/10.1093/brain/awm072] [PMID: 17452375]
[76]
Cereda, C.; Kuntzer, T. The potential use of ephedrine in Lambert-Eaton myasthenic syndrome: Clinical and electrophysiological evaluation. J. Neurol., 2008, 255(8), 1259-1260.
[http://dx.doi.org/10.1007/s00415-008-0856-0] [PMID: 18535871]
[77]
Gallagher, J.P.; Shinnick-Gallagher, P. Ephedrine and neuromuscular transmission, in vivo. Neuropharmacology, 1979, 18(10), 749-754.
[http://dx.doi.org/10.1016/0028-3908(79)90017-0] [PMID: 229434]
[78]
Lashley, D.; Palace, J.; Jayawant, S.; Robb, S.; Beeson, D. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology, 2010, 74(19), 1517-1523.
[http://dx.doi.org/10.1212/WNL.0b013e3181dd43bf] [PMID: 20458068]
[79]
Haran, M.; Schattner, A.; Mate, A.; Starobin, D.; Haran, G.; Shtalrid, M. Can a rare form of myasthenia gravis shed additional light on disease mechanisms? Clin. Neurol. Neurosurg., 2013, 115(5), 562-566.
[http://dx.doi.org/10.1016/j.clineuro.2012.06.038] [PMID: 22854280]
[80]
Vrinten, C.; Lipka, A.F.; van Zwet, E.W.; Schimmel, K.J.M.; Cornel, M.C.; Kuijpers, M.R.; Hekster, Y.A.; Weinreich, S.S.; Verschuuren, J.J.G.M. Ephedrine as add-on therapy for patients with myasthenia gravis: Protocol for a series of randomised, placebo-controlled n-of-1 trials. BMJ Open, 2015, 5(7) ,e007863
[http://dx.doi.org/10.1136/bmjopen-2015-007863] [PMID: 26185179]
[81]
Lipka, A.F.; Vrinten, C.; van Zwet, E.W.; Schimmel, K.J.; Cornel, M.C.; Kuijpers, M.R.; Hekster, Y.A.; Weinreich, S.S.; Verschuuren, J.J. Ephedrine treatment for autoimmune myasthenia gravis. Neuromuscul. Disord., 2017, 27(3), 259-265.
[http://dx.doi.org/10.1016/j.nmd.2016.11.009] [PMID: 28007405]
[82]
Brown, J.C.; Charlton, J.E.; White, D.J.K. A regional technique for the study of sensitivity to curare in human muscle. J. Neurol. Neurosurg. Psychiatry, 1975, 38(1), 18-26.
[http://dx.doi.org/10.1136/jnnp.38.1.18] [PMID: 1117297]
[83]
Feldman, S.A.; Tyrrell, M.F. A new theory of the termination of action of the muscle relaxants. Proc. R. Soc. Med., 1970, 63(7), 692-695.
[http://dx.doi.org/10.1177/003591577006300716] [PMID: 4317548]
[84]
Bennett, A.E.; Cash, P.T. Myasthenia gravis. Curare sensitivity; a new diagnostic test and approach to causation. Arch. Neurol. Psychiatry, 1943, 49, 537-547.
[http://dx.doi.org/10.1001/archneurpsyc.1943.02290160059004]
[85]
Meijer, D.K.; Weitering, J.G.; Vermeer, G.A.; Scaf, A.H. Comparative pharmacokinetics of d-tubocurarine and metocurine in man. Anesthesiology, 1979, 51(5), 402-407.
[http://dx.doi.org/10.1097/00000542-197911000-00007] [PMID: 496054]
[86]
Savarese, J.J.; Ali, H.H.; Antonio, R.P. The clinical pharmacology of metocurine: Dimethyltubocurarine revisited. Anesthesiology, 1977, 47(3), 277-284.
[http://dx.doi.org/10.1097/00000542-197709000-00009] [PMID: 70179]
[87]
Clar, D.T.; Liu, M.M. StatPearls . In: Non-depolarizing Neuromuscular Blockers; StatPearls Publishing.: Treasure Island. , 2020.
[88]
Fideler, F.; Grasshoff, C. Premedication for neonates requiring nonemergency intubation. JAMA, 2018, 320(11), 1199.
[http://dx.doi.org/10.1001/jama.2018.10014] [PMID: 30422295]
[89]
Staikou, C.; Stamelos, M.; Stavroulakis, E. Perioperative management of patients with pre-excitation syndromes. Rom J Anaesth Intensive Care, 2018, 25(2), 131-147.
[PMID: 30393770]
[90]
Murray, M.J.; Coursin, D.B.; Scuderi, P.E.; Kamath, G.; Prough, D.S.; Howard, D.M.; Abou-Donia, M.A. Double-blind, randomized, multicenter study of doxacurium vs. pancuronium in intensive care unit patients who require neuromuscular-blocking agents. Crit. Care Med., 1995, 23(3), 450-458.
[http://dx.doi.org/10.1097/00003246-199503000-00007] [PMID: 7874894]
[91]
Head-Rapson, A.G.; Devlin, J.C.; Parker, C.J.; Hunter, J.M. Pharmacokinetics and pharmacodynamics of the three isomers of mivacurium in health, in end-stage renal failure and in patients with impaired renal function. Br. J. Anaesth., 1995, 75(1), 31-36.
[http://dx.doi.org/10.1093/bja/75.1.31] [PMID: 7669465]
[92]
Cook, D.R.; Freeman, J.A.; Lai, A.A.; Kang, Y.; Stiller, R.L.; Aggarwal, S.; Harrelson, J.C.; Welch, R.M.; Samara, B. Pharmacokinetics of mivacurium in normal patients and in those with hepatic or renal failure. Br. J. Anaesth., 1992, 69(6), 580-585.
[http://dx.doi.org/10.1093/bja/69.6.580] [PMID: 1334687]
[93]
Phillips, B.J.; Hunter, J.M. Use of mivacurium chloride by constant infusion in the anephric patient. Br. J. Anaesth., 1992, 68(5), 492-498.
[http://dx.doi.org/10.1093/bja/68.5.492] [PMID: 1642938]
[94]
Zeng, R.; Liu, X.; Zhang, J.; Yin, N.; Fei, J.; Zhong, S.; Hu, Z.; Hu, M.; Zhang, M.; Li, B.; Li, J.; Lian, Q. ShangGuan, W. The efficacy and safety of mivacurium in pediatric patients. BMC Anesthesiol., 2017, 17(1), 58.
[http://dx.doi.org/10.1186/s12871-017-0350-2] [PMID: 28415988]
[95]
Pohanka, M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci., 2014, 15(6), 9809-9825.
[http://dx.doi.org/10.3390/ijms15069809] [PMID: 24893223]
[96]
Taschev, T.; Kilimov, N. Über die zentrale Wirkung des Nivalins. Folia Med, 1961, 3, 65-70.
[97]
Thomsen, T.; Kewitz, H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci., 1990, 46(21), 1553-1558.
[http://dx.doi.org/10.1016/0024-3205(90)90429-U] [PMID: 2355800]
[98]
Bickel, U.; Thomsen, T.; Fischer, J.P.; Weber, W.; Kewitz, H. Galanthamine: Pharmacokinetics, tissue distribution and cholinesterase inhibition in brain of mice. Neuropharmacology, 1991, 30(5), 447-454.
[http://dx.doi.org/10.1016/0028-3908(91)90005-V] [PMID: 1865992]
[99]
Bores, G.M.; Huger, F.P.; Petko, W.; Mutlib, A.E.; Camacho, F.; Rush, D.K.; Selk, D.E.; Wolf, V.; Kosley, R.W., Jr; Davis, L.; Vargas, H.M. Pharmacological evaluation of novel Alzheimer’s disease therapeutics: Acetylcholinesterase inhibitors related to galanthamine. J. Pharmacol. Exp. Ther., 1996, 277(2), 728-738.
[PMID: 8627552]
[100]
Mary, A.; Renko, D.Z.; Guillou, C.; Thal, C. Potent acetylcholinesterase inhibitors: Design, synthesis, and structure-activity relationships of bis-interacting ligands in the galanthamine series. Bioorg. Med. Chem., 1998, 6(10), 1835-1850.
[http://dx.doi.org/10.1016/S0968-0896(98)00133-3] [PMID: 9839013]
[101]
Guillou, C.; Mary, A.; Renko, D.Z.; Gras, E.; Thal, C. Potent acetylcholinesterase inhibitors: Design, synthesis and structure-activity relationships of alkylene linked bis-galanthamine and galanthamine-galanthaminium salts. Bioorg. Med. Chem. Lett., 2000, 10(7), 637-639.
[http://dx.doi.org/10.1016/S0960-894X(00)00059-7] [PMID: 10762042]
[102]
Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. N-Alkylated galanthamine derivatives: Potent acetylcholinesterase inhibitors from Leucojum aestivum. Bioorg. Med. Chem. Lett., 2008, 18(7), 2263-2266.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.008] [PMID: 18356045]
[103]
Heinrich, M. Ethnopharmacology and drug discovery. Comprehensive Natutaral Products II, chemistry and biology; Verpoorte, R., Ed.; Elsevier: Oxford, 2010, Vol. 3, pp. 351-381.
[104]
Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed. Pharmacother., 2018, 107, 615-624.
[http://dx.doi.org/10.1016/j.biopha.2018.07.147] [PMID: 30114645]
[105]
Ingkaninan, K.; Hazekamp, A.; de Best, C.M.; Irth, H.; Tjaden, U.R.; van der Heijden, R.; van der Greef, J.; Verpoorte, R. The application of HPLC with on-line coupled UV/MS-biochemical detection for isolation of an acetylcholinesterase inhibitor from narcissus ‘Sir Winston Churchill’. J. Nat. Prod., 2000, 63(6), 803-806.
[http://dx.doi.org/10.1021/np9905719] [PMID: 10869205]
[106]
López, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci., 2002, 71(21), 2521-2529.
[http://dx.doi.org/10.1016/S0024-3205(02)02034-9] [PMID: 12270757]
[107]
Jensen, B.S.; Christensen, S.B.; Jäger, A.K.; Rønsted, N. Amaryllidaceae alkaloids from the Australasian tribe Calostemmateae with acetylcholinesterase inhibitory activity. Biochem. Syst. Ecol., 2011, 39, 153-155.
[http://dx.doi.org/10.1016/j.bse.2011.01.012]
[108]
Berkov, S.; Reyes-Chilpa, R.; Codina, C.; Viladomat, F.; Bastida, J. Revised NMR data for incartine: An alkaloid from Galanthus elwesii. Molecules, 2007, 12(7), 1430-1435.
[http://dx.doi.org/10.3390/12071430] [PMID: 17909498]
[109]
Piozzi, F.; Fuganti, C.; Mondelli, R.; Ceriotti, G. Narciclasine and narciprimine. Tetrahedron, 1968, 24(3), 1119-1131.
[http://dx.doi.org/10.1016/0040-4020(68)88061-5]
[110]
Nair, J.J.; Aremu, A.O.; van Staden, J. Isolation of narciprimine from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity. J. Ethnopharmacol., 2011, 137(3), 1102-1106.
[http://dx.doi.org/10.1016/j.jep.2011.07.028] [PMID: 21787856]
[111]
McNulty, J.; Nair, J.J.; Little, J.R.L.; Brennan, J.D.; Bastida, J. Structure-activity studies on acetylcholinesterase inhibition in the lycorine series of Amaryllidaceae alkaloids. Bioorg. Med. Chem. Lett., 2010, 20(17), 5290-5294.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.130] [PMID: 20655219]
[112]
Monton, M.R.N.; Lebert, J.M.; Little, J.R.L.; Nair, J.J.; McNulty, J.; Brennan, J.D. A sol-gel-derived acetylcholinesterase microarray for nanovolume small-molecule screening. Anal. Chem., 2010, 82(22), 9365-9373.
[http://dx.doi.org/10.1021/ac101949s] [PMID: 20949898]
[113]
Elgorashi, E.E.; Malan, S.F.; Stafford, G.I.; Van Staden, J. Quantitative structure-activity relationship studies on acetylcholinesterase enzyme inhibitory effects of Amaryllidaceae alkaloids. S. Afr. J. Bot., 2006, 72, 224-231.
[http://dx.doi.org/10.1016/j.sajb.2005.08.001]
[114]
Barbosa Filho, J.M.; Paula Medeiros, K.C.; Margareth de Fátima, F.M.D. Batista, Leônia M.; Athayde-Filho, P.F.; Silva, M. S.; da Cunha, E.V.L.; Silva Almeida, J.R.G. Quintans-Júnior, L.J. Natural products inhibitors of the enzyme acetylcholinesterase. Braz. J. Pharmacognosy, 2006, 16(2), 258-285.
[http://dx.doi.org/10.1590/S0102-695X2006000200021]
[115]
Ingkaninan, K.; Temkitthawon, P.; Chuenchom, K.; Yuyaem, T.; Thongnoi, W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol., 2003, 89(2-3), 261-264.
[http://dx.doi.org/10.1016/j.jep.2003.08.008] [PMID: 14611889]
[116]
Xiang, J.; Yu, C.; Yang, F. Yang, L.; Ding, H. Conformation-activity studies on the interaction of berberine with acetylcholinesterase. Prog. Nat. Sci., 2009, 19, 1721-1725.
[http://dx.doi.org/10.1016/j.pnsc.2009.07.010]
[117]
Hostalkova, A.; Marikova, J.; Opletal, L.; Korabecny, J.; Hulcova, D.; Kunes, J.; Novakova, L.; Perez, D.I.; Jun, D.; Kucera, T.; Andrisano, V.; Siatka, T.; Cahlikova, L. Isoquinoline alkaloids from Berberis vulgaris as potential lead compounds for the treatment of Alzheimer’s disease. J. Nat. Prod., 2019, 82(2), 239-248.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00592] [PMID: 30701972]
[118]
Tsai, S.F.; Lee, S.S. Characterization of acetylcholinesterase inhibitory constituents from Annona glabra assisted by HPLC microfractionation. J. Nat. Prod., 2010, 73(10), 1632-1635.
[http://dx.doi.org/10.1021/np100247r] [PMID: 20828184]
[119]
Huang, L.; Shi, A.; He, F.; Li, X. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2010, 18(3), 1244-1251.
[http://dx.doi.org/10.1016/j.bmc.2009.12.035] [PMID: 20056426]
[120]
Mak, S.; Luk, W.W.; Cui, W.; Hu, S.; Tsim, K.W.; Han, Y. Synergistic inhibition on acetylcholinesterase by the combination of berberine and palmatine originally isolated from Chinese medicinal herbs. J. Mol. Neurosci., 2014, 53(3), 511-516.
[http://dx.doi.org/10.1007/s12031-014-0288-5] [PMID: 24793543]
[121]
Balkrishna, A.; Pokhrel, S.; Tomer, M.; Verma, S.; Kumar, A.; Nain, P.; Gupta, A.; Varshney, A. Anti-acetylcholinesterase activities of mono-herbal extracts and exhibited synergistic effects of the phytoconstituents: A biochemical and computational study. Molecules, 2019, 24(22), 4175.
[http://dx.doi.org/10.3390/molecules24224175] [PMID: 31752124]
[122]
Kong, X.P.; Liu, E.Y.L.; Chen, Z.C.; Xu, M.L.; Yu, A.X.D.; Wu, Q.Y.; Xia, Y.J.; Duan, R.; Dong, T.T.X.; Tsim, K.W.K. Synergistic ınhibition of acetylcholinesterase by alkaloids derived from Stephaniae tetrandrae radix, Coptidis rhizoma and Phellodendri Chinensis cortex. Molecules, 2019, 24(24), 4567.
[http://dx.doi.org/10.3390/molecules24244567] [PMID: 31847089]
[123]
Park, C.H.; Lee, Y.J.; Lee, S.H.; Choi, S.H.; Kim, H.S.; Jeong, S.J.; Kim, S.S.; Suh, Y.H. Dehydroevodiamine.HCl prevents impairment of learning and memory and neuronal loss in rat models of cognitive disturbance. J. Neurochem., 2000, 74(1), 244-253.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740244.x] [PMID: 10617126]
[124]
Decker, M. Novel inhibitors of acetyl- and butyrylcholinesterase derived from the alkaloids dehydroevodiamine and rutaecarpine. Eur. J. Med. Chem., 2005, 40(3), 305-313.
[http://dx.doi.org/10.1016/j.ejmech.2004.12.003] [PMID: 15725500]
[125]
Solfrizzo, M.; Visconti, A. Anticholinesterase activity of the fusarium metabolite visoltricin and its N-methyl derivative. Toxicol. In Vitro, 1994, 8(3), 461-465.
[http://dx.doi.org/10.1016/0887-2333(94)90169-4] [PMID: 20692939]
[126]
Pagliosa, L.B.; Monteiro, S.C.; Silva, K.B.; de Andrade, J.P.; Dutilh, J.; Bastida, J.; Cammarota, M.; Zuanazzi, J.A.S. Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine, 2010, 17(8-9), 698-701.
[http://dx.doi.org/10.1016/j.phymed.2009.10.003] [PMID: 19969445]
[127]
Karadsheh, N.; Kussie, P.; Linthicum, D.S. Inhibition of acetylcholinesterase by caffeine, anabasine, methyl pyrrolidine and their derivatives. Toxicol. Lett., 1991, 55(3), 335-342.
[http://dx.doi.org/10.1016/0378-4274(91)90015-X] [PMID: 2003276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy