Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

High-Frequency Oscillations and Epileptogenic Network

Author(s): Xiaonan Li, Herui Zhang, Huanling Lai, Jiaoyang Wang, Wei Wang and Xiaofeng Yang*

Volume 20, Issue 9, 2022

Published on: 20 April, 2022

Page: [1687 - 1703] Pages: 17

DOI: 10.2174/1570159X19666210908165641

Price: $65

Abstract

Epilepsy is a network disease caused by aberrant neocortical large-scale connectivity spanning regions on the scale of several centimeters. High-frequency oscillations, characterized by the 80-600 Hz signals in electroencephalography, have been proven to be a promising biomarker of epilepsy that can be used in assessing the severity and susceptibility of epilepsy as well as the location of the epileptogenic zone. However, the presence of a high-frequency oscillation network remains a topic of debate as high-frequency oscillations have been previously thought to be incapable of propagation, and the relationship between high-frequency oscillations and the epileptogenic network has rarely been discussed. Some recent studies reported that high-frequency oscillations may behave like networks that are closely relevant to the epileptogenic network. Pathological highfrequency oscillations are network-driven phenomena and elucidate epileptogenic network development; high-frequency oscillations show different characteristics coincident with the epileptogenic network dynamics, and cross-frequency coupling between high-frequency oscillations and other signals may mediate the generation and propagation of abnormal discharges across the network.

Keywords: High-frequency oscillations, HFO network, epileptogenic network, biomarker in epilepsy, epileptogenic zone, surgery.

Graphical Abstract
[1]
Feindel, W.; Leblanc, R.; de Almeida, A.N. Epilepsy surgery: historical highlights 1909-2009. Epilepsia, 2009, 50(Suppl. 3), 131-151.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02043.x] [PMID: 19298436]
[2]
Téllez-Zenteno, J.F.; Hernández Ronquillo, L.; Moien-Afshari, F.; Wiebe, S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res., 2010, 89(2-3), 310-318.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.02.007] [PMID: 20227852]
[3]
Jin, P.; Wu, D.; Li, X.; Ren, L.; Wang, Y. Towards precision medicine in epilepsy surgery. Ann. Transl. Med., 2016, 4(2), 24.
[PMID: 26889477]
[4]
Spencer, S.S. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia, 2002, 43(3), 219-227.
[http://dx.doi.org/10.1046/j.1528-1157.2002.26901.x] [PMID: 11906505]
[5]
Kramer, M.A.; Cash, S.S. Epilepsy as a disorder of cortical network organization. Neuroscientist, 2012, 18(4), 360-372.
[http://dx.doi.org/10.1177/1073858411422754] [PMID: 22235060]
[6]
Naftulin, J.S.; Ahmed, O.J.; Piantoni, G.; Eichenlaub, J.B.; Martinet, L.E.; Kramer, M.A.; Cash, S.S. Ictal and preictal power changes outside of the seizure focus correlate with seizure generalization. Epilepsia, 2018, 59(7), 1398-1409.
[http://dx.doi.org/10.1111/epi.14449] [PMID: 29897628]
[7]
Brennan, G.P.; Garcia-Curran, M.M.; Patterson, K.P.; Luo, R.; Baram, T.Z. Multiple disruptions of glial-neuronal networks in epileptogenesis that follows prolonged febrile seizures. Front. Neurol., 2021, 12, 615802.
[http://dx.doi.org/10.3389/fneur.2021.615802] [PMID: 33679583]
[8]
Hagemann, A.; Wilting, J.; Samimizad, B.; Mormann, F.; Priesemann, V. Assessing criticality in pre-seizure single-neuron activity of human epileptic cortex. PLOS Comput. Biol., 2021, 17(3), e1008773.
[http://dx.doi.org/10.1371/journal.pcbi.1008773] [PMID: 33684101]
[9]
Reddy, D.S.; Thompson, W.; Calderara, G. Molecular mechanisms of sex differences in epilepsy and seizure susceptibility in chemical, genetic and acquired epileptogenesis. Neurosci. Lett., 2021, 750, 135753.
[http://dx.doi.org/10.1016/j.neulet.2021.135753] [PMID: 33610673]
[10]
Izsak, J.; Seth, H.; Iljin, M.; Theiss, S.; Ågren, H.; Funa, K.; Aigner, L.; Hanse, E.; Illes, S. Differential acute impact of therapeutically effective and overdose concentrations of lithium on human neuronal single cell and network function. Transl. Psychiatry, 2021, 11(1), 281.
[http://dx.doi.org/10.1038/s41398-021-01399-3] [PMID: 33980815]
[11]
Siniatchkin, M.; Moehring, J.; Kroeher, B.; Galka, A.; von Ondarza, G.; Moeller, F.; Wolff, S.; Tagliazucchi, E.; Steinmann, E.; Boor, R.; Stephani, U. Multifocal epilepsy in children is associated with increased long-distance functional connectivity: An explorative EEG-fMRI study. Eur. J. Paediatr. Neurol., 2018, 22(6), 1054-1065.
[http://dx.doi.org/10.1016/j.ejpn.2018.07.001] [PMID: 30017619]
[12]
Shafi, M.M.; Vernet, M.; Klooster, D.; Chu, C.J.; Boric, K.; Barnard, M.E.; Romatoski, K.; Westover, M.B.; Christodoulou, J.A.; Gabrieli, J.D.; Whitfield-Gabrieli, S.; Pascual-Leone, A.; Chang, B.S. Physiological consequences of abnormal connectivity in a developmental epilepsy. Ann. Neurol., 2015, 77(3), 487-503.
[http://dx.doi.org/10.1002/ana.24343] [PMID: 25858773]
[13]
Iannotti, G.R.; Preti, M.G.; Grouiller, F.; Carboni, M.; De Stefano, P.; Pittau, F.; Momjian, S.; Carmichael, D.; Centeno, M.; Seeck, M.; Korff, C.M.; Schaller, K.; De Ville, D.V.; Vulliemoz, S. Modulation of epileptic networks by transient interictal epileptic activity: A dynamic approach to simultaneous EEG-fMRI. Neuroimage Clin., 2020, 28, 102467.
[http://dx.doi.org/10.1016/j.nicl.2020.102467] [PMID: 33395963]
[14]
Jiang, S.; Luo, C.; Gong, J.; Peng, R.; Ma, S.; Tan, S.; Ye, G.; Dong, L.; Yao, D. Aberrant thalamocortical connectivity in juvenile myoclonic epilepsy. Int. J. Neural Syst., 2018, 28(1), 1750034.
[http://dx.doi.org/10.1142/S0129065717500344] [PMID: 28830309]
[15]
Deleo, F.; Thom, M.; Concha, L.; Bernasconi, A.; Bernhardt, B.C.; Bernasconi, N. Histological and MRI markers of white matter damage in focal epilepsy. Epilepsy Res., 2018, 140, 29-38.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.11.010] [PMID: 29227798]
[16]
Yang, C.; Luan, G.; Wang, Q.; Liu, Z.; Zhai, F.; Wang, Q. Localization of epileptogenic zone with the correction of pathological networks. Front. Neurol., 2018, 9, 143.
[http://dx.doi.org/10.3389/fneur.2018.00143] [PMID: 29593641]
[17]
Jiang, H.; Cai, Z.; Worrell, G.A.; He, B. Multiple oscillatory push-pull antagonisms constrain seizure propagation. Ann. Neurol., 2019, 86(5), 683-694.
[http://dx.doi.org/10.1002/ana.25583] [PMID: 31566799]
[18]
Panzica, F.; Varotto, G.; Rotondi, F.; Spreafico, R.; Franceschetti, S. Identification of the epileptogenic zone from stereo-EEG signals: a connectivity-graph theory approach. Front. Neurol., 2013, 4, 175.
[http://dx.doi.org/10.3389/fneur.2013.00175] [PMID: 24223569]
[19]
Supriya, S.; Siuly, S.; Wang, H.; Zhang, Y. Epilepsy detection from EEG using complex network techniques: A review. IEEE Rev. Biomed. Eng., 2021. [online ahead of print].
[20]
Rashed-Al-Mahfuz, M.; Moni, M.A.; Uddin, S.; Alyami, S.A.; Summers, M.A.; Eapen, V. A Deep Convolutional Neural Network Method to Detect Seizures and Characteristic Frequencies Using Epileptic Electroencephalogram (EEG) Data. IEEE J. Transl. Eng. Health Med., 2021, 9, 2000112.
[http://dx.doi.org/10.1109/JTEHM.2021.3050925] [PMID: 33542859]
[21]
Jacobs, J.; LeVan, P.; Chander, R.; Hall, J.; Dubeau, F.; Gotman, J. Interictal high-frequency oscillations (80-500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia, 2008, 49(11), 1893-1907.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01656.x] [PMID: 18479382]
[22]
Frauscher, B.; Bartolomei, F.; Kobayashi, K.; Cimbalnik, J.; van ’t Klooster, M.A.; Rampp, S.; Otsubo, H.; Höller, Y.; Wu, J.Y.; Asano, E.; Engel, J., Jr; Kahane, P.; Jacobs, J.; Gotman, J. High-frequency oscillations: The state of clinical research. Epilepsia, 2017, 58(8), 1316-1329.
[http://dx.doi.org/10.1111/epi.13829] [PMID: 28666056]
[23]
Jacobs, J.; Staba, R.; Asano, E.; Otsubo, H.; Wu, J.Y.; Zijlmans, M.; Mohamed, I.; Kahane, P.; Dubeau, F.; Navarro, V.; Gotman, J. High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol., 2012, 98(3), 302-315.
[http://dx.doi.org/10.1016/j.pneurobio.2012.03.001] [PMID: 22480752]
[24]
Sharifshazileh, M.; Burelo, K.; Sarnthein, J.; Indiveri, G. An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in intracranial EEG. Nat. Commun., 2021, 12(1), 3095.
[http://dx.doi.org/10.1038/s41467-021-23342-2] [PMID: 34035249]
[25]
Burelo, K.; Sharifshazileh, M.; Krayenbühl, N.; Ramantani, G.; Indiveri, G.; Sarnthein, J. A spiking neural network (SNN) for detecting high frequency oscillations (HFOs) in the intraoperative ECoG. Sci. Rep., 2021, 11(1), 6719.
[http://dx.doi.org/10.1038/s41598-021-85827-w] [PMID: 33762590]
[26]
Jiang, C.; Li, X.; Yan, J.; Yu, T.; Wang, X.; Ren, Z.; Li, D.; Liu, C.; Du, W.; Zhou, X.; Xing, Y.; Ren, G.; Zhang, G.; Yang, X. Determining the quantitative threshold of high-frequency oscillation distribution to delineate the epileptogenic zone by automated detection. Front. Neurol., 2018, 9, 889.
[http://dx.doi.org/10.3389/fneur.2018.00889] [PMID: 30483204]
[27]
Höller, Y.; Kutil, R.; Klaffenböck, L.; Thomschewski, A.; Höller, P.M.; Bathke, A.C.; Jacobs, J.; Taylor, A.C.; Nardone, R.; Trinka, E. High-frequency oscillations in epilepsy and surgical outcome. A meta-analysis. Front. Hum. Neurosci., 2015, 9, 574.
[http://dx.doi.org/10.3389/fnhum.2015.00574] [PMID: 26539097]
[28]
Li, X.; Yu, T.; Ren, Z.; Wang, X.; Yan, J.; Chen, X.; Yan, X.; Wang, W.; Xing, Y.; Zhang, X.; Zhang, H.; Loh, H.H.; Zhang, G.; Yang, X. Localization of the epileptogenic zone by multimodal neuroimaging and high-frequency oscillation. Front. Hum. Neurosci., 2021, 15, 677840.
[http://dx.doi.org/10.3389/fnhum.2021.677840] [PMID: 34168546]
[29]
Cuello-Oderiz, C.; von Ellenrieder, N.; Dubeau, F.; Gotman, J. Influence of the location and type of epileptogenic lesion on scalp interictal epileptiform discharges and high-frequency oscillations. Epilepsia, 2017, 58(12), 2153-2163.
[http://dx.doi.org/10.1111/epi.13922] [PMID: 28983917]
[30]
González Otárula, K.A.; von Ellenrieder, N.; Cuello-Oderiz, C.; Dubeau, F.; Gotman, J. High-frequency oscillation networks and surgical outcome in adult focal epilepsy. Ann. Neurol., 2019, 85(4), 485-494.
[http://dx.doi.org/10.1002/ana.25442] [PMID: 30786048]
[31]
Barot, N. Networks in frontal lobe epilepsy. Neurosurg. Clin. N. Am., 2020, 31(3), 319-324.
[http://dx.doi.org/10.1016/j.nec.2020.03.001] [PMID: 32475482]
[32]
Bartolomei, F.; Lagarde, S.; Wendling, F.; McGonigal, A.; Jirsa, V.; Guye, M.; Bénar, C. Defining epileptogenic networks: Contribution of SEEG and signal analysis. Epilepsia, 2017, 58(7), 1131-1147.
[http://dx.doi.org/10.1111/epi.13791] [PMID: 28543030]
[33]
Friston, K.J. Functional and effective connectivity: a review. Brain Connect., 2011, 1(1), 13-36.
[http://dx.doi.org/10.1089/brain.2011.0008] [PMID: 22432952]
[34]
van den Heuvel, M.P.; Stam, C.J.; Boersma, M.; Hulshoff Pol, H.E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage, 2008, 43(3), 528-539.
[http://dx.doi.org/10.1016/j.neuroimage.2008.08.010] [PMID: 18786642]
[35]
Bernhardt, B.C.; Hong, S.; Bernasconi, A.; Bernasconi, N. Imaging structural and functional brain networks in temporal lobe epilepsy. Front. Hum. Neurosci., 2013, 7, 624.
[http://dx.doi.org/10.3389/fnhum.2013.00624] [PMID: 24098281]
[36]
Pittau, F.; Mégevand, P.; Sheybani, L.; Abela, E.; Grouiller, F.; Spinelli, L.; Michel, C.M.; Seeck, M.; Vulliemoz, S. Mapping epileptic activity: sources or networks for the clinicians? Front. Neurol., 2014, 5, 218.
[http://dx.doi.org/10.3389/fneur.2014.00218] [PMID: 25414692]
[37]
Scott, R.C.; Menendez de la Prida, L.; Mahoney, J.M.; Kobow, K.; Sankar, R.; de Curtis, M. WONOEP APPRAISAL: The many facets of epilepsy networks. Epilepsia, 2018, 59(8), 1475-1483.
[http://dx.doi.org/10.1111/epi.14503] [PMID: 30009398]
[38]
Stam, C.J.; van Straaten, E.C. The organization of physiological brain networks. Clin. Neurophysiol., 2012, 123(6), 1067-1087.
[http://dx.doi.org/10.1016/j.clinph.2012.01.011] [PMID: 22356937]
[39]
van Diessen, E.; Hanemaaijer, J.I.; Otte, W.M.; Zelmann, R.; Jacobs, J.; Jansen, F.E.; Dubeau, F.; Stam, C.J.; Gotman, J.; Zijlmans, M. Are high frequency oscillations associated with altered network topology in partial epilepsy? Neuroimage, 2013, 82, 564-573.
[http://dx.doi.org/10.1016/j.neuroimage.2013.06.031] [PMID: 23792218]
[40]
Xu, N.; Shan, W.; Qi, J.; Wu, J.; Wang, Q. Presurgical evaluation of epilepsy using resting-state MEG functional connectivity. Front. Hum. Neurosci., 2021, 15, 649074.
[http://dx.doi.org/10.3389/fnhum.2021.649074] [PMID: 34276321]
[41]
Ortiz, F.; Zapfe, W.P.K.; Draguhn, A.; Gutiérrez, R. Early appearance and spread of fast ripples in the hippocampus in a model of cortical traumatic brain injury. J. Neurosci., 2018, 38(42), 9034-9046.
[http://dx.doi.org/10.1523/JNEUROSCI.3507-17.2018] [PMID: 30190413]
[42]
Korzeniewska, A.; Cervenka, M.C.; Jouny, C.C.; Perilla, J.R.; Harezlak, J.; Bergey, G.K.; Franaszczuk, P.J.; Crone, N.E. Ictal propagation of high frequency activity is recapitulated in interictal recordings: effective connectivity of epileptogenic networks recorded with intracranial EEG. Neuroimage, 2014, 101, 96-113.
[http://dx.doi.org/10.1016/j.neuroimage.2014.06.078] [PMID: 25003814]
[43]
van Klink, N.E.C.; Van’t Klooster, M.A.; Zelmann, R.; Leijten, F.S.S.; Ferrier, C.H.; Braun, K.P.J.; van Rijen, P.C.; van Putten, M.J.A.M.; Huiskamp, G.J.M.; Zijlmans, M. High frequency oscillations in intra-operative electrocorticography before and after epilepsy surgery. Clin. Neurophysiol., 2014, 125(11), 2212-2219.
[http://dx.doi.org/10.1016/j.clinph.2014.03.004] [PMID: 24704141]
[44]
van ’t Klooster, M.A.; van Klink, N.E.; Leijten, F.S.; Zelmann, R.; Gebbink, T.A.; Gosselaar, P.H.; Braun, K.P.; Huiskamp, G.J.; Zijlmans, M. Residual fast ripples in the intraoperative corticogram predict epilepsy surgery outcome. Neurology, 2015, 85(2), 120-128.
[http://dx.doi.org/10.1212/WNL.0000000000001727] [PMID: 26070338]
[45]
Zweiphenning, W.J.; van ’t Klooster, M.A.; van Diessen, E.; van Klink, N.E.; Huiskamp, G.J.; Gebbink, T.A.; Leijten, F.S.; Gosselaar, P.H.; Otte, W.M.; Stam, C.J.; Braun, K.P.; Zijlmans, G.J. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy. Neuroimage Clin., 2016, 12, 928-939.
[http://dx.doi.org/10.1016/j.nicl.2016.09.014] [PMID: 27882298]
[46]
Farrell, J.S.; Nguyen, Q.A.; Soltesz, I. Resolving the micro-macro disconnect to address core features of seizure networks. Neuron, 2019, 101(6), 1016-1028.
[http://dx.doi.org/10.1016/j.neuron.2019.01.043] [PMID: 30897354]
[47]
Helling, R.M.; Koppert, M.M.; Visser, G.H.; Kalitzin, S.N. Gap junctions as common cause of high-frequency oscillations and epileptic seizures in a computational cascade of neuronal mass and compartmental modeling. Int. J. Neural Syst., 2015, 25(6), 1550021.
[http://dx.doi.org/10.1142/S0129065715500215] [PMID: 26058401]
[48]
Dudek, F.E.; Snow, R.W.; Taylor, C.P. Role of electrical interactions in synchronization of epileptiform bursts. Adv. Neurol., 1986, 44, 593-617.
[PMID: 3706022]
[49]
Shamas, M.; Benquet, P.; Merlet, I.; Khalil, M.; El Falou, W.; Nica, A.; Wendling, F. On the origin of epileptic high frequency oscillations observed on clinical electrodes. Clin. Neurophysiol., 2018, 129(4), 829-841.
[http://dx.doi.org/10.1016/j.clinph.2018.01.062] [PMID: 29482079]
[50]
Righes Marafiga, J.; Vendramin Pasquetti, M.; Calcagnotto, M. E. GABAergic interneurons in epilepsy: More than a simple change in inhibition. Epilepsy Behav., 2021, 121(Pt B), 106935.
[51]
Maier, N.; Nimmrich, V.; Draguhn, A. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J. Physiol., 2003, 550(Pt 3), 873-887.
[http://dx.doi.org/10.1113/jphysiol.2003.044602] [PMID: 12807984]
[52]
Bragin, A.; Mody, I.; Wilson, C.L.; Engel, J., Jr Local generation of fast ripples in epileptic brain. J. Neurosci., 2002, 22(5), 2012-2021.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-02012.2002] [PMID: 11880532]
[53]
Ylinen, A.; Bragin, A.; Nádasdy, Z.; Jandó, G.; Szabó, I.; Sik, A.; Buzsáki, G. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci., 1995, 15(1 Pt 1), 30-46.
[http://dx.doi.org/10.1523/JNEUROSCI.15-01-00030.1995] [PMID: 7823136]
[54]
Shiri, Z.; Manseau, F.; Lévesque, M.; Williams, S.; Avoli, M. Activation of specific neuronal networks leads to different seizure onset types. Ann. Neurol., 2016, 79(3), 354-365.
[http://dx.doi.org/10.1002/ana.24570] [PMID: 26605509]
[55]
Bragin, A.; Engel, J., Jr; Wilson, C.L.; Fried, I.; Buzsáki, G. High-frequency oscillations in human brain. Hippocampus, 1999, 9(2), 137-142.
[http://dx.doi.org/10.1002/(SICI)1098-1063(1999)9:2<137:AID-HIPO5>3.0.CO;2-0] [PMID: 10226774]
[56]
Bragin, A.; Engel, J., Jr; Wilson, C.L.; Fried, I.; Mathern, G.W. Hippocampal and entorhinal cortex high-frequency oscillations (100--500 Hz) in human epileptic brain and in kainic acid--treated rats with chronic seizures. Epilepsia, 1999, 40(2), 127-137.
[http://dx.doi.org/10.1111/j.1528-1157.1999.tb02065.x] [PMID: 9952257]
[57]
Demont-Guignard, S.; Benquet, P.; Gerber, U.; Biraben, A.; Martin, B.; Wendling, F. Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes. Ann. Neurol., 2012, 71(3), 342-352.
[http://dx.doi.org/10.1002/ana.22610] [PMID: 22451202]
[58]
Zweiphenning, W.J.E.M.; Keijzer, H.M.; van Diessen, E.; van ’t Klooster, M.A.; van Klink, N.E.C.; Leijten, F.S.S.; van Rijen, P.C.; van Putten, M.J.A.M.; Braun, K.P.J.; Zijlmans, M. Increased gamma and decreased fast ripple connections of epileptic tissue: A high-frequency directed network approach. Epilepsia, 2019, 60(9), 1908-1920.
[http://dx.doi.org/10.1111/epi.16296] [PMID: 31329277]
[59]
Cepeda, C.; Levinson, S.; Nariai, H.; Yazon, V.W.; Tran, C.; Barry, J.; Oikonomou, K.D.; Vinters, H.V.; Fallah, A.; Mathern, G.W.; Wu, J.Y. Pathological high frequency oscillations associate with increased GABA synaptic activity in pediatric epilepsy surgery patients. Neurobiol. Dis., 2020, 134, 104618.
[http://dx.doi.org/10.1016/j.nbd.2019.104618] [PMID: 31629890]
[60]
Lasztóczi, B.; Nyitrai, G.; Héja, L.; Kardos, J. Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices. J. Neurophysiol., 2009, 102(4), 2538-2553.
[http://dx.doi.org/10.1152/jn.91318.2008] [PMID: 19675286]
[61]
Le Van Quyen, M.; Khalilov, I.; Ben-Ari, Y. The dark side of high-frequency oscillations in the developing brain. Trends Neurosci., 2006, 29(7), 419-427.
[http://dx.doi.org/10.1016/j.tins.2006.06.001] [PMID: 16793147]
[62]
Ben-Ari, Y.; Gho, M. Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid. J. Physiol., 1988, 404, 365-384.
[http://dx.doi.org/10.1113/jphysiol.1988.sp017294] [PMID: 2908124]
[63]
Pallud, J.; Le Van Quyen, M.; Bielle, F.; Pellegrino, C.; Varlet, P.; Cresto, N.; Baulac, M.; Duyckaerts, C.; Kourdougli, N.; Chazal, G.; Devaux, B.; Rivera, C.; Miles, R.; Capelle, L.; Huberfeld, G. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl. Med., 2014, 6(244), 244ra89.
[http://dx.doi.org/10.1126/scitranslmed.3008065] [PMID: 25009229]
[64]
Reddy, D.S.; Kuruba, R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int. J. Mol. Sci., 2013, 14(9), 18284-18318.
[http://dx.doi.org/10.3390/ijms140918284] [PMID: 24013377]
[65]
Burman, R.J.; Selfe, J.S.; Lee, J.H.; van den Berg, M.; Calin, A.; Codadu, N.K.; Wright, R.; Newey, S.E.; Parrish, R.R.; Katz, A.A.; Wilmshurst, J.M.; Akerman, C.J.; Trevelyan, A.J.; Raimondo, J.V. Excitatory GABAergic signalling is associated with benzodiazepine resistance in status epilepticus. Brain, 2019, 142(11), 3482-3501.
[http://dx.doi.org/10.1093/brain/awz283] [PMID: 31553050]
[66]
Bragin, A.; Wilson, C.L.; Almajano, J.; Mody, I.; Engel, J., Jr High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia, 2004, 45(9), 1017-1023.
[http://dx.doi.org/10.1111/j.0013-9580.2004.17004.x] [PMID: 15329064]
[67]
Bragin, A.; Wilson, C.L.; Engel, J., Jr Voltage depth profiles of high-frequency oscillations after kainic acid-induced status epilepticus. Epilepsia, 2007, 48(Suppl. 5), 35-40.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01287.x] [PMID: 17910579]
[68]
Khalilov, I.; Le Van Quyen, M.; Gozlan, H.; Ben-Ari, Y. Epileptogenic actions of GABA and fast oscillations in the developing hippocampus. Neuron, 2005, 48(5), 787-796.
[http://dx.doi.org/10.1016/j.neuron.2005.09.026] [PMID: 16337916]
[69]
Santana-Gomez, C.; Andrade, P.; Hudson, M.R.; Paananen, T.; Ciszek, R.; Smith, G.; Ali, I.; Rundle, B.K.; Ndode-Ekane, X.E.; Casillas-Espinosa, P.M.; Immonen, R.; Puhakka, N.; Jones, N.; Brady, R.D.; Perucca, P.; Shultz, S.R.; Pitkänen, A.; O’Brien, T.J.; Staba, R. Harmonization of pipeline for detection of HFOs in a rat model of post-traumatic epilepsy in preclinical multicenter study on post-traumatic epileptogenesis. Epilepsy Res., 2019, 156, 106110.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.03.008] [PMID: 30981541]
[70]
Luckett, P.; Pavelescu, E.; McDonald, T.; Hively, L.; Ochoa, J. Predicting state transitions in brain dynamics through spectral difference of phase-space graphs. J. Comput. Neurosci., 2019, 46(1), 91-106.
[http://dx.doi.org/10.1007/s10827-018-0700-1] [PMID: 30315514]
[71]
Halász, P.; Bódizs, R.; Ujma, P.P.; Fabó, D.; Szűcs, A. Strong relationship between NREM sleep, epilepsy and plastic functions - A conceptual review on the neurophysiology background. Epilepsy Res., 2019, 150, 95-105.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.11.008] [PMID: 30712997]
[72]
Staba, R.J.; Wilson, C.L.; Bragin, A.; Jhung, D.; Fried, I.; Engel, J., Jr High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann. Neurol., 2004, 56(1), 108-115.
[http://dx.doi.org/10.1002/ana.20164] [PMID: 15236407]
[73]
Bagshaw, A.P.; Jacobs, J.; LeVan, P.; Dubeau, F.; Gotman, J. Effect of sleep stage on interictal high-frequency oscillations recorded from depth macroelectrodes in patients with focal epilepsy. Epilepsia, 2009, 50(4), 617-628.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01784.x] [PMID: 18801037]
[74]
von Ellenrieder, N.; Dubeau, F.; Gotman, J.; Frauscher, B. Physiological and pathological high-frequency oscillations have distinct sleep-homeostatic properties. Neuroimage Clin., 2017, 14, 566-573.
[http://dx.doi.org/10.1016/j.nicl.2017.02.018] [PMID: 28337411]
[75]
Halász, P.; Szűcs, A. Sleep and epilepsy link by plasticity. Front. Neurol., 2020, 11, 911.
[http://dx.doi.org/10.3389/fneur.2020.00911] [PMID: 32982931]
[76]
Yin, C.; Zhang, X.; Xiang, J.; Chen, Z.; Li, X.; Wu, S.; Lv, P.; Wang, Y. Altered effective connectivity network in patients with insular epilepsy: A high-frequency oscillations magnetoencephalography study. Clin. Neurophysiol., 2020, 131(2), 377-384.
[http://dx.doi.org/10.1016/j.clinph.2019.11.021] [PMID: 31865139]
[77]
Fahoum, F.; Melani, F.; Andrade-Valença, L.; Dubeau, F.; Gotman, J. Epileptic scalp ripples are associated with corticothalamic BOLD changes. Epilepsia, 2014, 55(10), 1611-1619.
[http://dx.doi.org/10.1111/epi.12760] [PMID: 25167766]
[78]
Gliske, S.V.; Irwin, Z.T.; Chestek, C.; Hegeman, G.L.; Brinkmann, B.; Sagher, O.; Garton, H.J.L.; Worrell, G.A.; Stacey, W.C. Variability in the location of high frequency oscillations during prolonged intracranial EEG recordings. Nat. Commun., 2018, 9(1), 2155.
[http://dx.doi.org/10.1038/s41467-018-04549-2] [PMID: 29858570]
[79]
Worrell, G.A.; Parish, L.; Cranstoun, S.D.; Jonas, R.; Baltuch, G.; Litt, B. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain, 2004, 127(Pt 7), 1496-1506.
[http://dx.doi.org/10.1093/brain/awh149] [PMID: 15155522]
[80]
Song, P.P.; Xiang, J.; Jiang, L.; Chen, H.S.; Liu, B.K.; Hu, Y. Dynamic changes in spectral and spatial signatures of high frequency oscillations in rat hippocampi during epileptogenesis in acute and chronic stages. Front. Neurol., 2016, 7, 204.
[http://dx.doi.org/10.3389/fneur.2016.00204] [PMID: 27965619]
[81]
Epstein, C.M.; Adhikari, B.M.; Gross, R.; Willie, J.; Dhamala, M. Application of high-frequency Granger causality to analysis of epileptic seizures and surgical decision making. Epilepsia, 2014, 55(12), 2038-2047.
[http://dx.doi.org/10.1111/epi.12831] [PMID: 25369316]
[82]
Fisher, R.S.; Webber, W.R.; Lesser, R.P.; Arroyo, S.; Uematsu, S. High-frequency EEG activity at the start of seizures. J. Clin. Neurophysiol., 1992, 9(3), 441-448.
[http://dx.doi.org/10.1097/00004691-199207010-00012] [PMID: 1517412]
[83]
Inoue, T.; Kobayashi, K.; Matsumoto, R.; Inouchi, M.; Togo, M.; Togawa, J.; Usami, K.; Shimotake, A.; Matsuhashi, M.; Kikuchi, T.; Yoshida, K.; Kawawaki, H.; Sawamoto, N.; Kunieda, T.; Miyamoto, S.; Takahashi, R.; Ikeda, A. Engagement of cortico-cortical and cortico-subcortical networks in a patient with epileptic spasms: An integrated neurophysiological study. Clin. Neurophysiol., 2020, 131(9), 2255-2264.
[http://dx.doi.org/10.1016/j.clinph.2020.04.167] [PMID: 32736326]
[84]
Lévesque, M.; Salami, P.; Gotman, J.; Avoli, M. Two seizure-onset types reveal specific patterns of high-frequency oscillations in a model of temporal lobe epilepsy. J. Neurosci., 2012, 32(38), 13264-13272.
[http://dx.doi.org/10.1523/JNEUROSCI.5086-11.2012] [PMID: 22993442]
[85]
Avoli, M.; de Curtis, M.; Gnatkovsky, V.; Gotman, J.; Köhling, R.; Lévesque, M.; Manseau, F.; Shiri, Z.; Williams, S. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy. J. Neurophysiol., 2016, 115(6), 3229-3237.
[http://dx.doi.org/10.1152/jn.01128.2015] [PMID: 27075542]
[86]
Lévesque, M.; Avoli, M. High-frequency oscillations and focal seizures in epileptic rodents. Neurobiol. Dis., 2019, 124, 396-407.
[http://dx.doi.org/10.1016/j.nbd.2018.12.016] [PMID: 30590178]
[87]
Schönberger, J.; Frauscher, B.; von Ellenrieder, N.; Avoli, M.; Dubeau, F.; Gotman, J. Fast ripple analysis in human mesial temporal lobe epilepsy suggests two different seizure-generating mechanisms. Neurobiol. Dis., 2019, 127, 374-381.
[http://dx.doi.org/10.1016/j.nbd.2019.03.030] [PMID: 30928645]
[88]
Akiyama, T.; Chan, D.W.; Go, C.Y.; Ochi, A.; Elliott, I.M.; Donner, E.J.; Weiss, S.K.; Snead, O.C., III; Rutka, J.T.; Drake, J.M.; Otsubo, H. Topographic movie of intracranial ictal high-frequency oscillations with seizure semiology: epileptic network in Jacksonian seizures. Epilepsia, 2011, 52(1), 75-83.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02776.x] [PMID: 21070217]
[89]
Zijlmans, M.; Jacobs, J.; Zelmann, R.; Dubeau, F.; Gotman, J. High-frequency oscillations mirror disease activity in patients with epilepsy. Neurology, 2009, 72(11), 979-986.
[http://dx.doi.org/10.1212/01.wnl.0000344402.20334.81] [PMID: 19289737]
[90]
Birk, N.; Schönberger, J.; Somerlik-Fuchs, K.H.; Schulze-Bonhage, A.; Jacobs, J. Ictal occurrence of high-frequency oscillations correlates with seizure severity in a rat model of temporal lobe epilepsy. Front. Hum. Neurosci., 2021, 15, 624620.
[http://dx.doi.org/10.3389/fnhum.2021.624620] [PMID: 34168542]
[91]
Rampp, S.; Schmitt, H.J.; Heers, M.; Schönherr, M.; Schmitt, F.C.; Hopfengärtner, R.; Stefan, H. Etomidate activates epileptic high frequency oscillations. Clin. Neurophysiol., 2014, 125(2), 223-230.
[http://dx.doi.org/10.1016/j.clinph.2013.07.006] [PMID: 23911722]
[92]
Lévesque, M.; Behr, C.; Avoli, M. The anti-ictogenic effects of levetiracetam are mirrored by interictal spiking and high-frequency oscillation changes in a model of temporal lobe epilepsy. Seizure, 2015, 25, 18-25.
[http://dx.doi.org/10.1016/j.seizure.2014.11.008] [PMID: 25645630]
[93]
Herrington, R.; Lévesque, M.; Avoli, M. Neurosteroids modulate epileptiform activity and associated high-frequency oscillations in the piriform cortex. Neuroscience, 2014, 256, 467-477.
[http://dx.doi.org/10.1016/j.neuroscience.2013.10.025] [PMID: 24157930]
[94]
Lévesque, M.; Herrington, R.; Leclerc, L.; Rogawski, M.A.; Avoli, M. Allopregnanolone decreases interictal spiking and fast ripples in an animal model of mesial temporal lobe epilepsy. Neuropharmacology, 2017, 121, 12-19.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.020] [PMID: 28416442]
[95]
Behr, C.; Lévesque, M.; Ragsdale, D.; Avoli, M. Lacosamide modulates interictal spiking and high-frequency oscillations in a model of mesial temporal lobe epilepsy. Epilepsy Res., 2015, 115, 8-16.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.05.006] [PMID: 26220372]
[96]
Hamidi, S.; Avoli, M. Carbonic anhydrase inhibition by acetazolamide reduces in vitro epileptiform synchronization. Neuropharmacology, 2015, 95, 377-387.
[http://dx.doi.org/10.1016/j.neuropharm.2015.04.015] [PMID: 25937211]
[97]
Yan, L.; Li, L.; Chen, J.; Wang, L.; Jiang, L.; Hu, Y. Application of high-frequency oscillations on scalp EEG in infant spasm: a prospective controlled study. Front. Hum. Neurosci., 2021, 15, 682011.
[http://dx.doi.org/10.3389/fnhum.2021.682011] [PMID: 34177501]
[98]
Wang, W.; Li, H.; Yan, J.; Zhang, H.; Li, X.; Zheng, S.; Wang, J.; Xing, Y.; Cheng, L.; Li, D.; Lai, H.; Qu, J.; Loh, H.H.; Fang, F.; Yang, X. Automatic detection of interictal ripples on scalp EEG to evaluate the effect and prognosis of ACTH therapy in patients with infantile spasms. Epilepsia, 2021, 62(9), 2240-2251.
[http://dx.doi.org/10.1111/epi.17018] [PMID: 34309835]
[99]
Cao, D.; Chen, Y.; Liao, J.; Nariai, H.; Li, L.; Zhu, Y.; Zhao, X.; Hu, Y.; Wen, F.; Zhai, Q. Scalp EEG high frequency oscillations as a biomarker of treatment response in epileptic encephalopathy with continuous spike-and-wave during sleep (CSWS). Seizure, 2019, 71, 151-157.
[http://dx.doi.org/10.1016/j.seizure.2019.05.023] [PMID: 31351306]
[100]
Kramer, M.A.; Ostrowski, L.M.; Song, D.Y.; Thorn, E.L.; Stoyell, S.M.; Parnes, M.; Chinappen, D.; Xiao, G.; Eden, U.T.; Staley, K.J.; Stufflebeam, S.M.; Chu, C.J. Scalp recorded spike ripples predict seizure risk in childhood epilepsy better than spikes. Brain, 2019, 142(5), 1296-1309.
[http://dx.doi.org/10.1093/brain/awz059] [PMID: 30907404]
[101]
Scholly, J.; Pizzo, F.; Timofeev, A.; Valenti-Hirsch, M.P.; Ollivier, I.; Proust, F.; Roehri, N.; Bénar, C.G.; Hirsch, E.; Bartolomei, F. High-frequency oscillations and spikes running down after SEEG-guided thermocoagulations in the epileptogenic network of periventricular nodular heterotopia. Epilepsy Res., 2019, 150, 27-31.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.12.006] [PMID: 30610969]
[102]
van ’t Klooster, M.A.; van Klink, N.E.C.; Zweiphenning, W.J.E.M.; Leijten, F.S.S.; Zelmann, R.; Ferrier, C.H.; van Rijen, P.C.; Otte, W.M.; Braun, K.P.J.; Huiskamp, G.J.M.; Zijlmans, M. Tailoring epilepsy surgery with fast ripples in the intraoperative electrocorticogram. Ann. Neurol., 2017, 81(5), 664-676.
[http://dx.doi.org/10.1002/ana.24928] [PMID: 28380659]
[103]
Uda, T.; Kuki, I.; Inoue, T.; Kunihiro, N.; Suzuki, H.; Uda, H.; Kawashima, T.; Nakajo, K.; Nakanishi, Y.; Maruyama, S.; Shibata, T.; Ogawa, H.; Okazaki, S.; Kawawaki, H.; Ohata, K.; Goto, T.; Otsubo, H. Phase-amplitude coupling of interictal fast activities modulated by slow waves on scalp EEG and its correlation with seizure outcomes of disconnection surgery in children with intractable nonlesional epileptic spasms. J. Neurosurg. Pediatr., 2021, 27(5), 572-580.
[PMID: 33636702]
[104]
Eissa, T.L.; Dijkstra, K.; Brune, C.; Emerson, R.G.; van Putten, M.J.A.M.; Goodman, R.R.; McKhann, G.M., Jr; Schevon, C.A.; van Drongelen, W.; van Gils, S.A. Cross-scale effects of neural interactions during human neocortical seizure activity. Proc. Natl. Acad. Sci. USA, 2017, 114(40), 10761-10766.
[http://dx.doi.org/10.1073/pnas.1702490114] [PMID: 28923948]
[105]
Rodin, E.; Funke, M. Cerebral electromagnetic infraslow activity. J. Clin. Neurophysiol., 2012, 29(4), 289-290.
[http://dx.doi.org/10.1097/WNP.0b013e318262429d] [PMID: 22854761]
[106]
Ikeda, A.; Terada, K.; Mikuni, N.; Burgess, R.C.; Comair, Y.; Taki, W.; Hamano, T.; Kimura, J.; Lüders, H.O.; Shibasaki, H. Subdural recording of ictal DC shifts in neocortical seizures in humans. Epilepsia, 1996, 37(7), 662-674.
[http://dx.doi.org/10.1111/j.1528-1157.1996.tb00631.x] [PMID: 8681899]
[107]
Voipio, J.; Tallgren, P.; Heinonen, E.; Vanhatalo, S.; Kaila, K. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. J. Neurophysiol., 2003, 89(4), 2208-2214.
[http://dx.doi.org/10.1152/jn.00915.2002] [PMID: 12612037]
[108]
Modur, P.N.; Scherg, M. Intracranial broadband EEG analysis and surgical outcome: case report. Clin. Neurophysiol., 2009, 120(6), 1220-1224.
[http://dx.doi.org/10.1016/j.clinph.2009.03.022] [PMID: 19410503]
[109]
Rodin, E.; Modur, P. Ictal intracranial infraslow EEG activity. Clin. Neurophysiol., 2008, 119(10), 2188-2200.
[http://dx.doi.org/10.1016/j.clinph.2008.07.222] [PMID: 18782678]
[110]
Constantino, T.; Rodin, E. Peri-ictal and interictal, intracranial infraslow activity. J. Clin. Neurophysiol., 2012, 29(4), 298-308.
[http://dx.doi.org/10.1097/WNP.0b013e3182624289] [PMID: 22854763]
[111]
Hashimoto, H.; Khoo, H.M.; Yanagisawa, T.; Tani, N.; Oshino, S.; Kishima, H.; Hirata, M. Coupling between infraslow activities and high-frequency oscillations precedes seizure onset. Epilepsia Open, 2020, 5(3), 501-506.
[http://dx.doi.org/10.1002/epi4.12425] [PMID: 32913958]
[112]
Kanazawa, K.; Matsumoto, R.; Imamura, H.; Matsuhashi, M.; Kikuchi, T.; Kunieda, T.; Mikuni, N.; Miyamoto, S.; Takahashi, R.; Ikeda, A. Intracranially recorded ictal direct current shifts may precede high frequency oscillations in human epilepsy. Clin. Neurophysiol., 2015, 126(1), 47-59.
[http://dx.doi.org/10.1016/j.clinph.2014.05.028] [PMID: 25034473]
[113]
Imamura, H.; Matsumoto, R.; Inouchi, M.; Matsuhashi, M.; Mikuni, N.; Takahashi, R.; Ikeda, A. Ictal wideband ECoG: direct comparison between ictal slow shifts and high frequency oscillations. Clin. Neurophysiol., 2011, 122(8), 1500-1504.
[http://dx.doi.org/10.1016/j.clinph.2010.12.060] [PMID: 21353632]
[114]
Modur, P.N.; Vitaz, T.W.; Zhang, S. Seizure localization using broadband EEG: comparison of conventional frequency activity, high-frequency oscillations, and infraslow activity. J. Clin. Neurophysiol., 2012, 29(4), 309-319.
[http://dx.doi.org/10.1097/WNP.0b013e318262435d] [PMID: 22854764]
[115]
Modur, P.N. High frequency oscillations and infraslow activity in epilepsy. Ann. Indian Acad. Neurol., 2014, 17(Suppl. 1), S99-S106.
[http://dx.doi.org/10.4103/0972-2327.128674] [PMID: 24791097]
[116]
Gnatkovsky, V.; de Curtis, M.; Pastori, C.; Cardinale, F.; Lo Russo, G.; Mai, R.; Nobili, L.; Sartori, I.; Tassi, L.; Francione, S. Biomarkers of epileptogenic zone defined by quantified stereo-EEG analysis. Epilepsia, 2014, 55(2), 296-305.
[http://dx.doi.org/10.1111/epi.12507] [PMID: 24417731]
[117]
Lee, S.; Issa, N.P.; Rose, S.; Tao, J.X.; Warnke, P.C.; Towle, V.L.; van Drongelen, W.; Wu, S. DC shifts, high frequency oscillations, ripples and fast ripples in relation to the seizure onset zone. Seizure, 2020, 77, 52-58.
[http://dx.doi.org/10.1016/j.seizure.2019.05.001] [PMID: 31101405]
[118]
Inoue, T.; Inouchi, M.; Matsuhashi, M.; Matsumoto, R.; Hitomi, T.; Daifu-Kobayashi, M.; Kobayashi, K.; Nakatani, M.; Kanazawa, K.; Shimotake, A.; Kikuchi, T.; Yoshida, K.; Kunieda, T.; Miyamoto, S.; Takahashi, R.; Ikeda, A. Interictal slow and high-frequency oscillations: is it an epileptic slow or red slow? J. Clin. Neurophysiol., 2019, 36(2), 166-170.
[http://dx.doi.org/10.1097/WNP.0000000000000527] [PMID: 30589767]
[119]
Canolty, R.T.; Edwards, E.; Dalal, S.S.; Soltani, M.; Nagarajan, S.S.; Kirsch, H.E.; Berger, M.S.; Barbaro, N.M.; Knight, R.T. High gamma power is phase-locked to theta oscillations in human neocortex. Science, 2006, 313(5793), 1626-1628.
[http://dx.doi.org/10.1126/science.1128115] [PMID: 16973878]
[120]
von Stein, A.; Sarnthein, J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol., 2000, 38(3), 301-313.
[http://dx.doi.org/10.1016/S0167-8760(00)00172-0] [PMID: 11102669]
[121]
Motoi, H.; Miyakoshi, M.; Abel, T.J.; Jeong, J.W.; Nakai, Y.; Sugiura, A.; Luat, A.F.; Agarwal, R.; Sood, S.; Asano, E. Phase-amplitude coupling between interictal high-frequency activity and slow waves in epilepsy surgery. Epilepsia, 2018, 59(10), 1954-1965.
[http://dx.doi.org/10.1111/epi.14544] [PMID: 30146766]
[122]
Ibrahim, G.M.; Wong, S.M.; Anderson, R.A.; Singh-Cadieux, G.; Akiyama, T.; Ochi, A.; Otsubo, H.; Okanishi, T.; Valiante, T.A.; Donner, E.; Rutka, J.T.; Snead, O.C., III; Doesburg, S.M. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms. Exp. Neurol., 2014, 251, 30-38.
[http://dx.doi.org/10.1016/j.expneurol.2013.10.019] [PMID: 24211781]
[123]
Zhang, R.; Ren, Y.; Liu, C.; Xu, N.; Li, X.; Cong, F.; Ristaniemi, T.; Wang, Y. Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy. Clin. Neurophysiol., 2017, 128(9), 1707-1718.
[http://dx.doi.org/10.1016/j.clinph.2017.05.020] [PMID: 28755546]
[124]
Kuroda, N.; Sonoda, M.; Miyakoshi, M.; Nariai, H.; Jeong, J. W.; Motoi, H.; Luat, A. F.; Sood, S.; Asano, E. Objective interictal electrophysiology biomarkers optimize prediction of epilepsy surgery outcome. Brain communications, 2021, 3(2), fcab042.
[125]
Frauscher, B.; von Ellenrieder, N.; Ferrari-Marinho, T.; Avoli, M.; Dubeau, F.; Gotman, J. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves. Brain, 2015, 138(Pt 6), 1629-1641.
[http://dx.doi.org/10.1093/brain/awv073] [PMID: 25792528]
[126]
Jacobs, J.; Kahana, M.J. Neural representations of individual stimuli in humans revealed by gamma-band electrocorticographic activity. J. Neurosci., 2009, 29(33), 10203-10214.
[http://dx.doi.org/10.1523/JNEUROSCI.2187-09.2009] [PMID: 19692595]
[127]
Ren, G.; Yan, J.; Sun, Y.; Ren, J.; Dai, J.; Mei, S.; Li, Y.; Wang, X.; Yang, X.; Wang, Q. Association between interictal high-frequency oscillations and slow wave in refractory focal epilepsy with good surgical outcome. Front. Hum. Neurosci., 2020, 14, 335.
[http://dx.doi.org/10.3389/fnhum.2020.00335] [PMID: 33005137]
[128]
Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res. Brain Res. Rev., 2007, 53(1), 63-88.
[http://dx.doi.org/10.1016/j.brainresrev.2006.06.003] [PMID: 16887192]
[129]
Sheybani, L.; van Mierlo, P.; Birot, G.; Michel, C.M.; Quairiaux, C. Large-scale 3-5 Hz oscillation constrains the expression of neocortical fast ripples in a mouse model of mesial temporal lobe epilepsy. eNeuro, 2019, 6(1), ENEURO.0494-18.2019.
[http://dx.doi.org/10.1523/ENEURO.0494-18.2019] [PMID: 30783615]
[130]
Amiri, M.; Frauscher, B.; Gotman, J. Interictal coupling of HFOs and slow oscillations predicts the seizure-onset pattern in mesiotemporal lobe epilepsy. Epilepsia, 2019, 60(6), 1160-1170.
[http://dx.doi.org/10.1111/epi.15541] [PMID: 31087662]
[131]
de Curtis, M.; Avanzini, G. Interictal spikes in focal epileptogenesis. Prog. Neurobiol., 2001, 63(5), 541-567.
[http://dx.doi.org/10.1016/S0301-0082(00)00026-5] [PMID: 11164621]
[132]
Vannest, J.; Tenney, J.R.; Gelineau-Morel, R.; Maloney, T.; Glauser, T.A. Cognitive and behavioral outcomes in benign childhood epilepsy with centrotemporal spikes. Epilepsy Behav., 2015, 45, 85-91.
[http://dx.doi.org/10.1016/j.yebeh.2015.01.041] [PMID: 25775975]
[133]
Besseling, R.M.; Overvliet, G.M.; Jansen, J.F.; van der Kruijs, S.J.; Vles, J.S.; Ebus, S.C.; Hofman, P.A.; de Louw, A.J.; Aldenkamp, A.P.; Backes, W.H. Aberrant functional connectivity between motor and language networks in rolandic epilepsy. Epilepsy Res., 2013, 107(3), 253-262.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.10.008] [PMID: 24210960]
[134]
Wang, S.; Wang, I.Z.; Bulacio, J.C.; Mosher, J.C.; Gonzalez-Martinez, J.; Alexopoulos, A.V.; Najm, I.M.; So, N.K. Ripple classification helps to localize the seizure-onset zone in neocortical epilepsy. Epilepsia, 2013, 54(2), 370-376.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03721.x] [PMID: 23106394]
[135]
Urrestarazu, E.; Chander, R.; Dubeau, F.; Gotman, J. Interictal high-frequency oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients. Brain, 2007, 130(Pt 9), 2354-2366.
[http://dx.doi.org/10.1093/brain/awm149] [PMID: 17626037]
[136]
Bourel-Ponchel, E.; Mahmoudzadeh, M.; Berquin, P.; Wallois, F. Local and distant dysregulation of synchronization around interictal spikes in BECTS. Front. Neurosci., 2017, 11, 59.
[http://dx.doi.org/10.3389/fnins.2017.00059] [PMID: 28239337]
[137]
Bourel-Ponchel, E.; Mahmoudzadeh, M.; Adebimpe, A.; Wallois, F. Functional and structural network disorganizations in typical epilepsy with centro-temporal spikes and impact on cognitive neurodevelopment. Front. Neurol., 2019, 10, 809.
[http://dx.doi.org/10.3389/fneur.2019.00809] [PMID: 31555191]
[138]
Tavakol, S.; Royer, J.; Lowe, A.J.; Bonilha, L.; Tracy, J.I.; Jackson, G.D.; Duncan, J.S.; Bernasconi, A.; Bernasconi, N.; Bernhardt, B.C. Neuroimaging and connectomics of drug-resistant epilepsy at multiple scales: From focal lesions to macroscale networks. Epilepsia, 2019, 60(4), 593-604.
[http://dx.doi.org/10.1111/epi.14688] [PMID: 30889276]
[139]
Ferrari-Marinho, T.; Perucca, P.; Mok, K.; Olivier, A.; Hall, J.; Dubeau, F.; Gotman, J. Pathologic substrates of focal epilepsy influence the generation of high-frequency oscillations. Epilepsia, 2015, 56(4), 592-598.
[http://dx.doi.org/10.1111/epi.12940] [PMID: 25754852]
[140]
Battaglia, G.; Granata, T.; Farina, L.; D’Incerti, L.; Franceschetti, S.; Avanzini, G. Periventricular nodular heterotopia: epileptogenic findings. Epilepsia, 1997, 38(11), 1173-1182.
[http://dx.doi.org/10.1111/j.1528-1157.1997.tb01213.x] [PMID: 9579917]
[141]
Raymond, A.A.; Fish, D.R.; Stevens, J.M.; Sisodiya, S.M.; Alsanjari, N.; Shorvon, S.D. Subependymal heterotopia: a distinct neuronal migration disorder associated with epilepsy. J. Neurol. Neurosurg. Psychiatry, 1994, 57(10), 1195-1202.
[http://dx.doi.org/10.1136/jnnp.57.10.1195] [PMID: 7931380]
[142]
Jacobs, J.; Levan, P.; Châtillon, C.E.; Olivier, A.; Dubeau, F.; Gotman, J. High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type. Brain, 2009, 132(Pt 4), 1022-1037.
[http://dx.doi.org/10.1093/brain/awn351] [PMID: 19297507]
[143]
Kerber, K.; LeVan, P.; Dümpelmann, M.; Fauser, S.; Korinthenberg, R.; Schulze-Bonhage, A.; Jacobs, J. High frequency oscillations mirror disease activity in patients with focal cortical dysplasia. Epilepsia, 2013, 54(8), 1428-1436.
[http://dx.doi.org/10.1111/epi.12262] [PMID: 23899121]
[144]
Mathern, G.W.; Babb, T.L.; Vickrey, B.G.; Melendez, M.; Pretorius, J.K. The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain, 1995, 118(Pt 1), 105-118.
[http://dx.doi.org/10.1093/brain/118.1.105] [PMID: 7894997]
[145]
Jacobs, J.; Zijlmans, M. HFO to measure seizure propensity and improve prognostication in patients with epilepsy. Epilepsy Curr., 2020, 20(6), 338-347.
[http://dx.doi.org/10.1177/1535759720957308] [PMID: 33081501]
[146]
Vossler, D.G.; Weingarten, M.; Gidal, B.E. Summary of antiepileptic drugs available in the United States of America: Working toward a world without epilepsy. Epilepsy Curr., 2018, 18(4)(Suppl. 1), 1-26.
[http://dx.doi.org/10.5698/1535-7597.18.4s1.1] [PMID: 30233275]
[147]
Meldrum, B.S.; Rogawski, M.A. Molecular targets for antiepileptic drug development. Neurotherapeutics, 2007, 4(1), 18-61.
[http://dx.doi.org/10.1016/j.nurt.2006.11.010] [PMID: 17199015]
[148]
Kaminski, R.M.; Gillard, M.; Klitgaard, H. Targeting SV2A for Discovery of Antiepileptic Drugs. In: Jasper's Basic Mechanisms of the Epilepsies, 2012.
[http://dx.doi.org/10.1093/med/9780199746545.003.0076]
[149]
French, J.A.; Krauss, G.L.; Biton, V.; Squillacote, D.; Yang, H.; Laurenza, A.; Kumar, D.; Rogawski, M.A. Adjunctive perampanel for refractory partial-onset seizures: randomized phase III study 304. Neurology, 2012, 79(6), 589-596.
[http://dx.doi.org/10.1212/WNL.0b013e3182635735] [PMID: 22843280]
[150]
Chen, Z.; Brodie, M.J.; Liew, D.; Kwan, P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: A 30-year longitudinal cohort study. JAMA Neurol., 2018, 75(3), 279-286.
[http://dx.doi.org/10.1001/jamaneurol.2017.3949] [PMID: 29279892]
[151]
Kwan, P.; Brodie, M.J. Early identification of refractory epilepsy. N. Engl. J. Med., 2000, 342(5), 314-319.
[http://dx.doi.org/10.1056/NEJM200002033420503] [PMID: 10660394]
[152]
Kobow, K.; Auvin, S.; Jensen, F.; Löscher, W.; Mody, I.; Potschka, H.; Prince, D.; Sierra, A.; Simonato, M.; Pitkänen, A.; Nehlig, A.; Rho, J.M. Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia, 2012, 53(11), 1868-1876.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03716.x] [PMID: 23061663]
[153]
Keezer, M.R.; Sisodiya, S.M.; Sander, J.W. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol., 2016, 15(1), 106-115.
[http://dx.doi.org/10.1016/S1474-4422(15)00225-2] [PMID: 26549780]
[154]
Wang, Y.; Chen, Z. An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol. Ther., 2019, 201, 77-93.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.010] [PMID: 31128154]
[155]
Johnson, M.R.; Kaminski, R.M. A systems-level framework for anti-epilepsy drug discovery. Neuropharmacology, 2020, 170, 107868.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107868] [PMID: 31785261]
[156]
Wykes, R.C.; Lignani, G. Gene therapy and editing: Novel potential treatments for neuronal channelopathies. Neuropharmacology, 2018, 132, 108-117.
[http://dx.doi.org/10.1016/j.neuropharm.2017.05.029] [PMID: 28564577]
[157]
Krook-Magnuson, E.; Soltesz, I. Beyond the hammer and the scalpel: selective circuit control for the epilepsies. Nat. Neurosci., 2015, 18(3), 331-338.
[http://dx.doi.org/10.1038/nn.3943] [PMID: 25710834]
[158]
Pardo-Peña, K.; Medina-Ceja, L.; Morales-Villagrán, A. Serotonin modulates fast ripple activity in rats with spontaneous recurrent seizures. Brain Res., 2014, 1583, 211-219.
[http://dx.doi.org/10.1016/j.brainres.2014.07.049] [PMID: 25108043]
[159]
Ventura-Mejía, C.; Medina-Ceja, L. Decreased fast ripples in the hippocampus of rats with spontaneous recurrent seizures treated with carbenoxolone and quinine. BioMed Res. Int., 2014, 2014, 282490.
[http://dx.doi.org/10.1155/2014/282490] [PMID: 25276773]
[160]
Bernardo, D.; Nariai, H.; Hussain, S.A.; Sankar, R.; Wu, J.Y. Interictal scalp fast ripple occurrence and high frequency oscillation slow wave coupling in epileptic spasms. Clin. Neurophysiol., 2020, 131(7), 1433-1443.
[http://dx.doi.org/10.1016/j.clinph.2020.03.025] [PMID: 32387963]
[161]
Kobayashi, K.; Watanabe, Y.; Inoue, T.; Oka, M.; Yoshinaga, H.; Ohtsuka, Y. Scalp-recorded high-frequency oscillations in childhood sleep-induced electrical status epilepticus. Epilepsia, 2010, 51(10), 2190-2194.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02565.x] [PMID: 20384717]
[162]
Boran, E.; Sarnthein, J.; Krayenbühl, N.; Ramantani, G.; Fedele, T. High-frequency oscillations in scalp EEG mirror seizure frequency in pediatric focal epilepsy. Sci. Rep., 2019, 9(1), 16560.
[http://dx.doi.org/10.1038/s41598-019-52700-w] [PMID: 31719543]
[163]
Crépon, B.; Navarro, V.; Hasboun, D.; Clemenceau, S.; Martinerie, J.; Baulac, M.; Adam, C.; Le Van Quyen, M. Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain, 2010, 133(Pt 1), 33-45.
[http://dx.doi.org/10.1093/brain/awp277] [PMID: 19920064]
[164]
Höller, P.; Trinka, E.; Höller, Y. High-frequency oscillations in the scalp electroencephalogram: mission impossible without computational intelligence. Comput. Intell. Neurosci., 2018, 2018, 1638097.
[http://dx.doi.org/10.1155/2018/1638097] [PMID: 30158959]
[165]
Jetté, N.; Sander, J.W.; Keezer, M.R. Surgical treatment for epilepsy: the potential gap between evidence and practice. Lancet Neurol., 2016, 15(9), 982-994.
[http://dx.doi.org/10.1016/S1474-4422(16)30127-2] [PMID: 27478955]
[166]
Cossu, M.; Fuschillo, D.; Casaceli, G.; Pelliccia, V.; Castana, L.; Mai, R.; Francione, S.; Sartori, I.; Gozzo, F.; Nobili, L.; Tassi, L.; Cardinale, F.; Lo Russo, G. Stereoelectroencephalography-guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases. J. Neurosurg., 2015, 123(6), 1358-1367.
[http://dx.doi.org/10.3171/2014.12.JNS141968] [PMID: 26090841]
[167]
Catenoix, H.; Mauguière, F.; Guénot, M.; Ryvlin, P.; Bissery, A.; Sindou, M.; Isnard, J. SEEG-guided thermocoagulations: a palliative treatment of nonoperable partial epilepsies. Neurology, 2008, 71(21), 1719-1726.
[http://dx.doi.org/10.1212/01.wnl.0000335166.20451.88] [PMID: 19015488]
[168]
Tenney, J.R.; Fujiwara, H.; Horn, P.S.; Vannest, J.; Xiang, J.; Glauser, T.A.; Rose, D.F. Low- and high-frequency oscillations reveal distinct absence seizure networks. Ann. Neurol., 2014, 76(4), 558-567.
[http://dx.doi.org/10.1002/ana.24231] [PMID: 25042348]
[169]
Fujiwara, H.; Greiner, H.M.; Lee, K.H.; Holland-Bouley, K.D.; Seo, J.H.; Arthur, T.; Mangano, F.T.; Leach, J.L.; Rose, D.F. Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy. Epilepsia, 2012, 53(9), 1607-1617.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03629.x] [PMID: 22905734]
[170]
Wu, J.Y.; Sankar, R.; Lerner, J.T.; Matsumoto, J.H.; Vinters, H.V.; Mathern, G.W. Removing interictal fast ripples on electrocorticography linked with seizure freedom in children. Neurology, 2010, 75(19), 1686-1694.
[http://dx.doi.org/10.1212/WNL.0b013e3181fc27d0] [PMID: 20926787]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy