Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Bacterial Proteomics and its Application in Pathogenesis Studies

Author(s): Mahdi Asghari Ozma, Ehsaneh Khodadadi, Mohammad Ahangarzadeh Rezaee, Mohammad Asgharzadeh, Mohammad Aghazadeh, Elham Zeinalzadeh, Khudaverdi Ganbarov and Hossein Samadi Kafil*

Volume 23, Issue 10, 2022

Published on: 07 January, 2022

Page: [1245 - 1256] Pages: 12

DOI: 10.2174/1389201022666210908153234

Price: $65

Abstract

Bacteria build their structures by implementing several macromolecules such as proteins, polysaccharides, phospholipids, and nucleic acids, which preserve their lives and play an essential role in their pathogenesis. There are two genomic and proteomic methods to study various macromolecules of bacteria, which are complementary methods and provide comprehensive information. Proteomic approaches are used to identify proteins and their cell applications. Furthermore, macromolecules are utilized to study bacteria's structures and functions. These proteinbased methods provide comprehensive information about the cells, such as the external structures, internal compositions, post-translational modifications, and mechanisms of particular actions, including biofilm formation, antibiotic resistance, and adaptation to the environment, promoting bacterial pathogenesis. These methods use various devices such as MALDI-TOF MS, LC-MS, and two-dimensional electrophoresis, which are valuable tools for studying different structural and functional proteins of the bacteria and their mechanisms of pathogenesis, causing rapid, easy, and accurate diagnosis of the infections.

Keywords: Bacteria, infection, mass, pathogenesis, proteins, proteomics.

Graphical Abstract
[1]
Zilber-Rosenberg, I.; Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev., 2008, 32(5), 723-735.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00123.x] [PMID: 18549407]
[2]
Ozma, M.A.; Khodadadi, E.; Pakdel, F.; Kamounah, F.S.; Yousefi, M.; Yousefi, B. Baicalin, a natural antimicrobial and anti-biofilm agent. J. Herb. Med., 2021.100432
[http://dx.doi.org/10.1016/j.hermed.2021.100432]
[3]
Nielsen, H. Predicting secretory proteins with Signal P. In: Protein function prediction; Springer, 2017; pp. 59-73.
[http://dx.doi.org/10.1007/978-1-4939-7015-5_6]
[4]
Crosby, H.A.; Schlievert, P.M.; Merriman, J.A.; King, J.M.; Salgado-Pabón, W.; Horswill, A.R. The Staphylococcus aureus global regulator MgrA modulates clumping and virulence by controlling surface protein expression. PLoS Pathog., 2016, 12(5)e1005604
[http://dx.doi.org/10.1371/journal.ppat.1005604] [PMID: 27144398]
[5]
Rollauer, SE; Sooreshjani, MA; Noinaj, N; Buchanan, SK Outer membrane protein biogenesis in Gram-negative bacteria. Philosophical transactions of the toyal dociety B: biological sciences, 2015, 370(1679), 20150023.
[http://dx.doi.org/10.1098/rstb.2015.0023]
[6]
Hanske, J.; Schulze, J.; Aretz, J.; McBride, R.; Loll, B.; Schmidt, H.; Knirel, Y.; Rabsch, W.; Wahl, M.C.; Paulson, J.C.; Rademacher, C. Bacterial polysaccharide specificity of the pattern recognition receptor langerin is highly species-dependent. J. Biol. Chem., 2017, 292(3), 862-871.
[http://dx.doi.org/10.1074/jbc.M116.751750] [PMID: 27903635]
[7]
Mistou, M-Y.; Sutcliffe, I.C.; van Sorge, N.M. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol. Rev., 2016, 40(4), 464-479.
[http://dx.doi.org/10.1093/femsre/fuw006] [PMID: 26975195]
[8]
Dahroud, B.D.; Mokarram, R.R.; Khiabani, M.S.; Hamishehkar, H.; Bialvaei, A.Z.; Yousefi, M.; Kafil, H.S. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp. casei ATTC 39392. Int. J. Biol. Macromol., 2016, 86, 462-467.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.103] [PMID: 26836618]
[9]
Slavetinsky, C.; Kuhn, S.; Peschel, A. Bacterial aminoacyl phospholipids - Biosynthesis and role in basic cellular processes and pathogenicity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(11), 1310-1318.
[http://dx.doi.org/10.1016/j.bbalip.2016.11.013] [PMID: 27940309]
[10]
Lin, T-Y.; Weibel, D.B. Organization and function of anionic phospholipids in bacteria. Appl. Microbiol. Biotechnol., 2016, 100(10), 4255-4267.
[http://dx.doi.org/10.1007/s00253-016-7468-x] [PMID: 27026177]
[11]
Alizadeh, N.; Memar, M.Y.; Moaddab, S.R.; Kafil, H.S. Aptamer-assisted novel technologies for detecting bacterial pathogens. Biomed. Pharmacother., 2017, 93, 737-745.
[http://dx.doi.org/10.1016/j.biopha.2017.07.011] [PMID: 28700978]
[12]
Narenji, H.; Gholizadeh, P.; Aghazadeh, M.; Rezaee, M.A.; Asgharzadeh, M.; Kafil, H.S. Peptide nucleic acids (PNAs): currently potential bactericidal agents. Biomed. Pharmacother., 2017, 93, 580-588.
[http://dx.doi.org/10.1016/j.biopha.2017.06.092] [PMID: 28686972]
[13]
van Baarlen, P.; van Belkum, A.; Summerbell, R.C.; Crous, P.W.; Thomma, B.P. Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol. Rev., 2007, 31(3), 239-277.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00065.x] [PMID: 17326816]
[14]
Gomis-Cebolla, J.; Scaramal Ricietto, A.P.; Ferré, J. A genomic and proteomic approach to identify and quantify the expressed Bacillus thuringiensis proteins in the supernatant and parasporal crystal. Toxins (Basel), 2018, 10(5), 193.
[http://dx.doi.org/10.3390/toxins10050193] [PMID: 29748494]
[15]
Bialvaei, A.Z.; Kafil, H.S.; Asgharzadeh, M.; Yousef Memar, M.; Yousefi, M. Current methods for the identification of carbapenemases. J. Chemother., 2016, 28(1), 1-19.
[http://dx.doi.org/10.1179/1973947815Y.0000000063] [PMID: 26256147]
[16]
Grünenfelder, B.; Rummel, G.; Vohradsky, J.; Röder, D.; Langen, H.; Jenal, U. Proteomic analysis of the bacterial cell cycle. Proc. Natl. Acad. Sci. USA, 2001, 98(8), 4681-4686.
[http://dx.doi.org/10.1073/pnas.071538098] [PMID: 11287652]
[17]
Yu, L-R.; Stewart, N.A.; Veenstra, T.D. Proteomics: the deciphering of the functional genome.Essentials of Genomic and Personalized Medicine; Elsevier, 2010, pp. 89-96.
[http://dx.doi.org/10.1016/B978-0-12-374934-5.00008-8]
[18]
Hanash, S. Disease proteomics. Nature, 2003, 422(6928), 226-232.
[http://dx.doi.org/10.1038/nature01514] [PMID: 12634796]
[19]
Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev., 2012, 36(2), 380-407.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00298.x] [PMID: 22092265]
[20]
Veloo, A.C.; Welling, G.W.; Degener, J.E. The identification of anaerobic bacteria using MALDI-TOF MS. Anaerobe, 2011, 17(4), 211-212.
[http://dx.doi.org/10.1016/j.anaerobe.2011.03.026] [PMID: 21515395]
[21]
Fernández-Olmos, A.; García-Castillo, M.; Morosini, M-I.; Lamas, A.; Máiz, L.; Cantón, R. MALDI-TOF MS improves routine identification of non-fermenting Gram negative isolates from cystic fibrosis patients. J. Cyst. Fibros., 2012, 11(1), 59-62.
[http://dx.doi.org/10.1016/j.jcf.2011.09.001] [PMID: 21968086]
[22]
Olaya-Abril, A.; Gómez-Gascón, L.; Jiménez-Munguía, I.; Obando, I.; Rodríguez-Ortega, M.J. Another turn of the screw in shaving Gram-positive bacteria: Optimization of proteomics surface protein identification in Streptococcus pneumoniae. J. Proteomics, 2012, 75(12), 3733-3746.
[http://dx.doi.org/10.1016/j.jprot.2012.04.037] [PMID: 22575384]
[23]
Skaar, E.P.; Gaspar, A.H.; Schneewind, O. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J. Biol. Chem., 2004, 279(1), 436-443.
[http://dx.doi.org/10.1074/jbc.M307952200] [PMID: 14570922]
[24]
Gupta, N.; Tanner, S.; Jaitly, N.; Adkins, J.N.; Lipton, M.; Edwards, R.; Romine, M.; Osterman, A.; Bafna, V.; Smith, R.D.; Pevzner, P.A. Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res., 2007, 17(9), 1362-1377.
[http://dx.doi.org/10.1101/gr.6427907] [PMID: 17690205]
[25]
Ozma, M.A.; Khodadadi, E.; Rezaee, M.A.; Kamounah, F.S.; Asgharzadeh, M.; Ganbarov, K.; Aghazadeh, M.; Yousefi, M.; Pirzadeh, T.; Kafil, H.S. Induction of proteome changes involved in biofilm formation of Enterococcus faecalis in response to gentamicin. Microb. Pathog., 2021, 157105003
[http://dx.doi.org/10.1016/j.micpath.2021.105003] [PMID: 34087388]
[26]
Vranakis, I.; Goniotakis, I.; Psaroulaki, A.; Sandalakis, V.; Tselentis, Y.; Gevaert, K.; Tsiotis, G. Proteome studies of bacterial antibiotic resistance mechanisms. J. Proteomics, 2014, 97, 88-99.
[http://dx.doi.org/10.1016/j.jprot.2013.10.027] [PMID: 24184230]
[27]
Guo, M.S.; Gross, C.A. Stress-induced remodeling of the bacterial proteome. Curr. Biol., 2014, 24(10), R424-R434.
[http://dx.doi.org/10.1016/j.cub.2014.03.023] [PMID: 24845675]
[28]
Wu, R.; Zhang, W.; Sun, T.; Wu, J.; Yue, X.; Meng, H.; Zhang, H. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int. J. Food Microbiol., 2011, 147(3), 181-187.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.04.003] [PMID: 21561676]
[29]
Sára, M.; Sleytr, U.B. S-Layer proteins. J. Bacteriol., 2000, 182(4), 859-868.
[http://dx.doi.org/10.1128/JB.182.4.859-868.2000] [PMID: 10648507]
[30]
Connolly, J.P.; Comerci, D.; Alefantis, T.G.; Walz, A.; Quan, M.; Chafin, R.; Grewal, P.; Mujer, C.V.; Ugalde, R.A.; DelVecchio, V.G. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics, 2006, 6(13), 3767-3780.
[http://dx.doi.org/10.1002/pmic.200500730] [PMID: 16739129]
[31]
Macnab, R.M. Type III flagellar protein export and flagellar assembly. Biochimica et biophysica acta (BBA)-. Molecular Cell Research., 2004, 1694(1-3), 207-217.
[32]
Gerbino, E.; Carasi, P.; Mobili, P.; Serradell, M.A.; Gómez-Zavaglia, A. Role of S-layer proteins in bacteria. World J. Microbiol. Biotechnol., 2015, 31(12), 1877-1887.
[http://dx.doi.org/10.1007/s11274-015-1952-9] [PMID: 26410425]
[33]
Khodadadi, E.; Zeinalzadeh, E.; Taghizadeh, S.; Mehramouz, B.; Kamounah, F.S.; Khodadadi, E.; Ganbarov, K.; Yousefi, B.; Bastami, M.; Kafil, H.S. Proteomic applications in antimicrobial resistance and clinical microbiology studies. Infect. Drug Resist., 2020, 13, 1785-1806.
[http://dx.doi.org/10.2147/IDR.S238446] [PMID: 32606829]
[34]
Wright, A.; Wait, R.; Begum, S.; Crossett, B.; Nagy, J.; Brown, K.; Fairweather, N. Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics, 2005, 5(9), 2443-2452.
[http://dx.doi.org/10.1002/pmic.200401179] [PMID: 15887182]
[35]
Hong, H.J.; Kim, T.H.; Song, W.S.; Ko, H-J.; Lee, G-S.; Kang, S.G.; Kim, P.H.; Yoon, S.I. Crystal structure of FlgL and its implications for flagellar assembly. Sci. Rep., 2018, 8(1), 14307.
[http://dx.doi.org/10.1038/s41598-018-32460-9] [PMID: 30250171]
[36]
Kao, C-Y.; Sheu, B-S.; Wu, J-J. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed. J., 2016, 39(1), 14-23.
[http://dx.doi.org/10.1016/j.bj.2015.06.002] [PMID: 27105595]
[37]
Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol., 2010, 2(5)a000414
[http://dx.doi.org/10.1101/cshperspect.a000414] [PMID: 20452953]
[38]
Puech, V.; Chami, M.; Lemassu, A.; Lanéelle, M-A.; Schiffler, B.; Gounon, P.; Bayan, N.; Benz, R.; Daffé, M. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology, 2001, 147(Pt 5), 1365-1382.
[http://dx.doi.org/10.1099/00221287-147-5-1365] [PMID: 11320139]
[39]
He, Z.; De Buck, J. Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155. BMC Microbiol., 2010, 10(1), 121.
[http://dx.doi.org/10.1186/1471-2180-10-121] [PMID: 20412585]
[40]
Laaberki, M-H.; Dworkin, J. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J. Bacteriol., 2008, 190(18), 6197-6203.
[http://dx.doi.org/10.1128/JB.00623-08] [PMID: 18586932]
[41]
Lai, E-M.; Phadke, N.D.; Kachman, M.T.; Giorno, R.; Vazquez, S.; Vazquez, J.A.; Maddock, J.R.; Driks, A. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J. Bacteriol., 2003, 185(4), 1443-1454.
[http://dx.doi.org/10.1128/JB.185.4.1443-1454.2003] [PMID: 12562816]
[42]
Bos, M.P.; Tommassen, J. Biogenesis of the Gram-negative bacterial outer membrane. Curr. Opin. Microbiol., 2004, 7(6), 610-616.
[http://dx.doi.org/10.1016/j.mib.2004.10.011] [PMID: 15556033]
[43]
Fairman, J.W.; Noinaj, N.; Buchanan, S.K. The structural biology of β-barrel membrane proteins: a summary of recent reports. Curr. Opin. Struct. Biol., 2011, 21(4), 523-531.
[http://dx.doi.org/10.1016/j.sbi.2011.05.005] [PMID: 21719274]
[44]
Ellis, T.N.; Kuehn, M.J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev., 2010, 74(1), 81-94.
[http://dx.doi.org/10.1128/MMBR.00031-09] [PMID: 20197500]
[45]
Kulp, A.; Kuehn, M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol., 2010, 64, 163-184.
[http://dx.doi.org/10.1146/annurev.micro.091208.073413] [PMID: 20825345]
[46]
Aguilera, L.; Toloza, L.; Giménez, R.; Odena, A.; Oliveira, E.; Aguilar, J.; Badia, J.; Baldomà, L. Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917. Proteomics, 2014, 14(2-3), 222-229.
[http://dx.doi.org/10.1002/pmic.201300328] [PMID: 24307187]
[47]
Rodríguez-Ortega, M.J.; Norais, N.; Bensi, G.; Liberatori, S.; Capo, S.; Mora, M.; Scarselli, M.; Doro, F.; Ferrari, G.; Garaguso, I.; Maggi, T.; Neumann, A.; Covre, A.; Telford, J.L.; Grandi, G. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat. Biotechnol., 2006, 24(2), 191-197.
[http://dx.doi.org/10.1038/nbt1179] [PMID: 16415855]
[48]
Vytvytska, O.; Nagy, E.; Blüggel, M.; Meyer, H.E.; Kurzbauer, R.; Huber, L.A.; Klade, C.S. Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics, 2002, 2(5), 580-590.
[http://dx.doi.org/10.1002/1615-9861(200205)2:5<580:AID-PROT580>3.0.CO;2-G] [PMID: 11987132]
[49]
Mariappan, V.; Vellasamy, K.M.; Thimma, J.S.; Hashim, O.H.; Vadivelu, J. Identification of immunogenic proteins from Burkholderia cepacia secretome using proteomic analysis. Vaccine, 2010, 28(5), 1318-1324.
[http://dx.doi.org/10.1016/j.vaccine.2009.11.027] [PMID: 19944788]
[50]
Glowalla, E.; Tosetti, B.; Krönke, M.; Krut, O. Proteomics-based identification of anchorless cell wall proteins as vaccine candidates against Staphylococcus aureus. Infect. Immun., 2009, 77(7), 2719-2729.
[http://dx.doi.org/10.1128/IAI.00617-08] [PMID: 19364833]
[51]
Kowalczewska, M.; Fenollar, F.; Lafitte, D.; Raoult, D. Identification of candidate antigen in Whipple’s disease using a serological proteomic approach. Proteomics, 2006, 6(11), 3294-3305.
[http://dx.doi.org/10.1002/pmic.200500171] [PMID: 16637011]
[52]
Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 2018, 9(1), 522-554.
[http://dx.doi.org/10.1080/21505594.2017.1313372] [PMID: 28362216]
[53]
Gualdi, L.; Tagliabue, L.; Landini, P. Biofilm formation-gene expression relay system in Escherichia coli: modulation of sigmaS-dependent gene expression by the CsgD regulatory protein via sigmaS protein stabilization. J. Bacteriol., 2007, 189(22), 8034-8043.
[http://dx.doi.org/10.1128/JB.00900-07] [PMID: 17873038]
[54]
Sauer, K. The genomics and proteomics of biofilm formation. Genome Biol., 2003, 4(6), 219.
[http://dx.doi.org/10.1186/gb-2003-4-6-219] [PMID: 12801407]
[55]
Kalmokoff, M.; Lanthier, P.; Tremblay, T-L.; Foss, M.; Lau, P.C.; Sanders, G.; Austin, J.; Kelly, J.; Szymanski, C.M. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol., 2006, 188(12), 4312-4320.
[http://dx.doi.org/10.1128/JB.01975-05] [PMID: 16740937]
[56]
Oosthuizen, M.C.; Steyn, B.; Theron, J.; Cosette, P.; Lindsay, D.; Von Holy, A.; Brözel, V.S. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl. Environ. Microbiol., 2002, 68(6), 2770-2780.
[http://dx.doi.org/10.1128/AEM.68.6.2770-2780.2002] [PMID: 12039732]
[57]
Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol., 2001, 55(1), 165-199.
[http://dx.doi.org/10.1146/annurev.micro.55.1.165] [PMID: 11544353]
[58]
Di Cagno, R.; De Angelis, M.; Calasso, M.; Gobbetti, M. Proteomics of the bacterial cross-talk by quorum sensing. J. Proteomics, 2011, 74(1), 19-34.
[http://dx.doi.org/10.1016/j.jprot.2010.09.003] [PMID: 20940064]
[59]
Dong, Y-H.; Wang, L.Y.; Zhang, L-H. Quorum-quenching microbial infections: mechanisms and implications. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2007, 362(1483), 1201-1211.
[http://dx.doi.org/10.1098/rstb.2007.2045] [PMID: 17360274]
[60]
Gurcel, L.; Abrami, L.; Girardin, S.; Tschopp, J.; van der Goot, F.G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell, 2006, 126(6), 1135-1145.
[http://dx.doi.org/10.1016/j.cell.2006.07.033] [PMID: 16990137]
[61]
do Vale, A.; Cabanes, D.; Sousa, S. Bacterial toxins as pathogen weapons against phagocytes. Front. Microbiol., 2016, 7, 42.
[http://dx.doi.org/10.3389/fmicb.2016.00042] [PMID: 26870008]
[62]
Natale, P.; Brüser, T.; Driessen, A.J. Sec-and Tat-mediated protein secretion across the bacterial cytoplasmic membrane-distinct translocases and mechanisms. Biochim. et Biophy. Acta (BBA)-. Biomem., 2008, 1778(9), 1735-1756.
[http://dx.doi.org/10.1016/j.bbamem.2007.07.015] [PMID: 17935691]
[63]
Green, E.R.; Mecsas, J. Bacterial secretion systems–an overview. Microbiol. Spectr., 2016, 4(1)
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0012-2015] [PMID: 26999395]
[64]
Young, J.; Duong, F. Investigating the stability of the SecA-SecYEG complex during protein translocation across the bacterial membrane. J. Biol. Chem., 2019, 294(10), 3577-3587.
[http://dx.doi.org/10.1074/jbc.RA118.006447] [PMID: 30602566]
[65]
Najafi, K.; Maroufi, P.; Khodadadi, E.; Zeinalzadeh, E.; Ganbarov, K.; Asgharzadeh, M. SARS-CoV-2 receptor ACE2 and molecular pathway to enter target cells during infection. Rev. Med. Microbiol., 2020.
[http://dx.doi.org/10.1097/MRM.0000000000000237]
[66]
Bolhuis, A.; Mathers, J.E.; Thomas, J.D.; Barrett, C.M.; Robinson, C. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J. Biol. Chem., 2001, 276(23), 20213-20219.
[http://dx.doi.org/10.1074/jbc.M100682200] [PMID: 11279240]
[67]
Lavander, M.; Ericsson, S.K.; Bröms, J.E.; Forsberg, A. The twin arginine translocation system is essential for virulence of Yersinia pseudotuberculosis. Infect. Immun., 2006, 74(3), 1768-1776.
[http://dx.doi.org/10.1128/IAI.74.3.1768-1776.2006] [PMID: 16495550]
[68]
Ma, Q.; Zhai, Y.; Schneider, J.C.; Ramseier, T.M.; Saier, M.H. Jr Protein secretion systems of Pseudomonas aeruginosa and P fluorescens. Biochim. Biophys. Acta, 2003, 1611(1-2), 223-233.
[http://dx.doi.org/10.1016/S0005-2736(03)00059-2] [PMID: 12659964]
[69]
Rossier, O.; Cianciotto, N.P. The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. Infect. Immun., 2005, 73(4), 2020-2032.
[http://dx.doi.org/10.1128/IAI.73.4.2020-2032.2005] [PMID: 15784543]
[70]
McDonough, J.A.; McCann, J.R.; Tekippe, E.M.; Silverman, J.S.; Rigel, N.W.; Braunstein, M. Identification of functional Tat signal sequences in Mycobacterium tuberculosis proteins. J. Bacteriol., 2008, 190(19), 6428-6438.
[http://dx.doi.org/10.1128/JB.00749-08] [PMID: 18658266]
[71]
Ozma, M. A.; Rashedi, J.; Poor, B. M.; Vegari, A.; Asgharzadeh, V.; Kafil, H. S. Tuberculosis and diabetes mellitus in northwest of iran. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders)., 2020, 20(5), 667-71.
[72]
Barker, A.P.; Vasil, A.I.; Filloux, A.; Ball, G.; Wilderman, P.J.; Vasil, M.L. A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol. Microbiol., 2004, 53(4), 1089-1098.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04189.x] [PMID: 15306013]
[73]
Abby, S.S.; Cury, J.; Guglielmini, J.; Néron, B.; Touchon, M.; Rocha, E.P. Identification of protein secretion systems in bacterial genomes. Sci. Rep., 2016, 6, 23080.
[http://dx.doi.org/10.1038/srep23080] [PMID: 26979785]
[74]
Kim, J-S.; Song, S.; Lee, M.; Lee, S.; Lee, K.; Ha, N-C. Crystal structure of a soluble fragment of the membrane fusion protein HlyD in a type I secretion system of Gram-negative bacteria. Structure, 2016, 24(3), 477-485.
[http://dx.doi.org/10.1016/j.str.2015.12.012] [PMID: 26833388]
[75]
Thomas, S.; Holland, I.B.; Schmitt, L. The type 1 secretion pathway-the hemolysin system and beyond. Biochim. et biophy. acta (BBA)-. Molec. Cell Resea., 2014, 1843(8), 1629-1641.
[76]
Dolores, J.S.; Agarwal, S.; Egerer, M.; Satchell, K.J. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol. Microbiol., 2015, 95(4), 590-604.
[http://dx.doi.org/10.1111/mmi.12879] [PMID: 25427654]
[77]
Shen, A.; Lupardus, P.J.; Albrow, V.E.; Guzzetta, A.; Powers, J.C.; Garcia, K.C.; Bogyo, M. Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat. Chem. Biol., 2009, 5(7), 469-478.
[http://dx.doi.org/10.1038/nchembio.178] [PMID: 19465933]
[78]
Satchell, K.J.F. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect. Immun., 2007, 75(11), 5079-5084.
[http://dx.doi.org/10.1128/IAI.00525-07] [PMID: 17646359]
[79]
McLaughlin, L.S.; Haft, R.J.; Forest, K.T. Structural insights into the Type II secretion nanomachine. Curr. Opin. Struct. Biol., 2012, 22(2), 208-216.
[http://dx.doi.org/10.1016/j.sbi.2012.02.005] [PMID: 22425326]
[80]
Korotkov, K.V.; Sandkvist, M.; Hol, W.G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol., 2012, 10(5), 336-351.
[http://dx.doi.org/10.1038/nrmicro2762] [PMID: 22466878]
[81]
Michalska, M.; Wolf, P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front. Microbiol., 2015, 6, 963.
[http://dx.doi.org/10.3389/fmicb.2015.00963] [PMID: 26441897]
[82]
Worrall, L.J.; Lameignere, E.; Strynadka, N.C. Structural overview of the bacterial injectisome. Curr. Opin. Microbiol., 2011, 14(1), 3-8.
[http://dx.doi.org/10.1016/j.mib.2010.10.009] [PMID: 21112241]
[83]
Mattoo, S.; Lee, Y.M.; Dixon, J.E. Interactions of bacterial effector proteins with host proteins. Curr. Opin. Immunol., 2007, 19(4), 392-401.
[http://dx.doi.org/10.1016/j.coi.2007.06.005] [PMID: 17662586]
[84]
Perrett, C.A.; Zhou, D. Type three secretion system effector translocation: one step or two? Front. Microbiol., 2011, 2, 50.
[PMID: 21833307]
[85]
Burkinshaw, B.J.; Strynadka, N.C. Assembly and structure of the T3SS. Biochi. et Biophy. Acta (BBA)-. Mole. Cell Rese., 2014, 1843(8), 1649-1663.
[86]
Grosdent, N.; Maridonneau-Parini, I.; Sory, M-P.; Cornelis, G.R. Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect. Immun., 2002, 70(8), 4165-4176.
[http://dx.doi.org/10.1128/IAI.70.8.4165-4176.2002] [PMID: 12117925]
[87]
Cascales, E.; Christie, P.J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol., 2003, 1(2), 137-149.
[http://dx.doi.org/10.1038/nrmicro753] [PMID: 15035043]
[88]
Fronzes, R.; Christie, P.J.; Waksman, G. The structural biology of type IV secretion systems. Nat. Rev. Microbiol., 2009, 7(10), 703-714.
[http://dx.doi.org/10.1038/nrmicro2218] [PMID: 19756009]
[89]
Hamilton, H.L.; Dillard, J.P. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol. Microbiol., 2006, 59(2), 376-385.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04964.x] [PMID: 16390436]
[90]
Grijpstra, J.; Arenas, J.; Rutten, L.; Tommassen, J. Autotransporter secretion: varying on a theme. Res. Microbiol., 2013, 164(6), 562-582.
[http://dx.doi.org/10.1016/j.resmic.2013.03.010] [PMID: 23567321]
[91]
Leo, J.C.; Grin, I.; Linke, D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1592), 1088-1101.
[http://dx.doi.org/10.1098/rstb.2011.0208] [PMID: 22411980]
[92]
Knowles, T.J.; Scott-Tucker, A.; Overduin, M.; Henderson, I.R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat. Rev. Microbiol., 2009, 7(3), 206-214.
[http://dx.doi.org/10.1038/nrmicro2069] [PMID: 19182809]
[93]
Lehr, U.; Schütz, M.; Oberhettinger, P.; Ruiz-Perez, F.; Donald, J.W.; Palmer, T.; Linke, D.; Henderson, I.R.; Autenrieth, I.B. C-terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are decisive for its recognition and assembly by BamA. Mol. Microbiol., 2010, 78(4), 932-946.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07377.x] [PMID: 20815824]
[94]
Ruiz-Perez, F.; Henderson, I.R.; Nataro, J.P. Interaction of FkpA, a peptidyl-prolyl cis/trans isomerase with EspP autotransporter protein. Gut Microbes, 2010, 1(5), 339-344.
[http://dx.doi.org/10.4161/gmic.1.5.13436] [PMID: 21327044]
[95]
Eicher, S.C.; Dehio, C. Bartonella entry mechanisms into mammalian host cells. Cell. Microbiol., 2012, 14(8), 1166-1173.
[http://dx.doi.org/10.1111/j.1462-5822.2012.01806.x] [PMID: 22519749]
[96]
Lin, L.; Lezan, E.; Schmidt, A.; Basler, M. Abundance of bacterial Type VI secretion system components measured by targeted proteomics. Nat. Commun., 2019, 10(1), 2584.
[http://dx.doi.org/10.1038/s41467-019-10466-9] [PMID: 31197144]
[97]
Fritsch, M.J.; Trunk, K.; Diniz, J.A.; Guo, M.; Trost, M.; Coulthurst, S.J. Proteomic identification of novel secreted antibacterial toxins of the Serratia marcescens type VI secretion system. Mol. Cell. Proteomics, 2013, 12(10), 2735-2749.
[http://dx.doi.org/10.1074/mcp.M113.030502] [PMID: 23842002]
[98]
Clemens, D.L.; Ge, P.; Lee, B-Y.; Horwitz, M.A.; Zhou, Z.H. Atomic structure of T6SS reveals interlaced array essential to function. Cell, 2015, 160(5), 940-951.
[http://dx.doi.org/10.1016/j.cell.2015.02.005] [PMID: 25723168]
[99]
Brunet, Y.R.; Hénin, J.; Celia, H.; Cascales, E. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep., 2014, 15(3), 315-321.
[http://dx.doi.org/10.1002/embr.201337936] [PMID: 24488256]
[100]
Chen, L.; Zou, Y.; She, P.; Wu, Y. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol. Res., 2015, 172, 19-25.
[http://dx.doi.org/10.1016/j.micres.2015.01.004] [PMID: 25721475]
[101]
Brennan, P.J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2003, 83(1-3), 91-97.
[http://dx.doi.org/10.1016/S1472-9792(02)00089-6] [PMID: 12758196]
[102]
Asgharzadeh, M.; Ozma, M.A.; Rashedi, J.; Poor, B.M.; Agharzadeh, V.; Vegari, A.; Shokouhi, B.; Ganbarov, K.; Ghalehlou, N.N.; Leylabadlo, H.E.; Kafil, H.S. False-positive mycobacterium tuberculosis detection: ways to prevent cross-contamination. Tuberc. Respir. Dis. (Seoul), 2020, 83(3), 211-217.
[http://dx.doi.org/10.4046/trd.2019.0087] [PMID: 32578410]
[103]
Serafini, A.; Boldrin, F.; Palù, G.; Manganelli, R. Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J. Bacteriol., 2009, 191(20), 6340-6344.
[http://dx.doi.org/10.1128/JB.00756-09] [PMID: 19684129]
[104]
Houben, E.N.; Bestebroer, J.; Ummels, R.; Wilson, L.; Piersma, S.R.; Jiménez, C.R.; Ottenhoff, T.H.; Luirink, J.; Bitter, W. Composition of the type VII secretion system membrane complex. Mol. Microbiol., 2012, 86(2), 472-484.
[http://dx.doi.org/10.1111/j.1365-2958.2012.08206.x] [PMID: 22925462]
[105]
Tseng, T-T.; Tyler, B.M.; Setubal, J.C. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol., 2009, 9(S1)(Suppl. 1), S2.
[http://dx.doi.org/10.1186/1471-2180-9-S1-S2] [PMID: 19278550]
[106]
Fan, Y.; Tan, K.; Chhor, G.; Butler, E.K.; Jedrzejczak, R.P.; Missiakas, D.; Joachimiak, A. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles. Protein Sci., 2015, 24(9), 1389-1400.
[http://dx.doi.org/10.1002/pro.2715] [PMID: 26032645]
[107]
Abdallah, A.M.; Bestebroer, J.; Savage, N.D.; de Punder, K.; van Zon, M.; Wilson, L.; Korbee, C.J.; van der Sar, A.M.; Ottenhoff, T.H.; van der Wel, N.N.; Bitter, W.; Peters, P.J. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J. Immunol., 2011, 187(9), 4744-4753.
[http://dx.doi.org/10.4049/jimmunol.1101457] [PMID: 21957139]
[108]
Charro, N.; Mota, L.J. Approaches targeting the type III secretion system to treat or prevent bacterial infections. Expert Opin. Drug Discov., 2015, 10(4), 373-387.
[http://dx.doi.org/10.1517/17460441.2015.1019860] [PMID: 25727140]
[109]
Andreeva, I.; Belardinelli, R.; Rodnina, M.V. Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA. Proc. Natl. Acad. Sci. USA, 2018, 115(17), 4411-4416.
[http://dx.doi.org/10.1073/pnas.1718029115] [PMID: 29632209]
[110]
Khodadadi, E.; Maroufi, P.; Khodadadi, E.; Esposito, I.; Ganbarov, K.; Espsoito, S.; Yousefi, M.; Zeinalzadeh, E.; Kafil, H.S. Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microb. Pathog., 2020, 146104241
[http://dx.doi.org/10.1016/j.micpath.2020.104241] [PMID: 32387389]
[111]
Macek, B.; Forchhammer, K.; Hardouin, J.; Weber-Ban, E.; Grangeasse, C.; Mijakovic, I. Protein post-translational modifications in bacteria. Nat. Rev. Microbiol., 2019, 17(11), 651-664.
[http://dx.doi.org/10.1038/s41579-019-0243-0] [PMID: 31485032]
[112]
Brown, C.W.; Sridhara, V.; Boutz, D.R.; Person, M.D.; Marcotte, E.M.; Barrick, J.E.; Wilke, C.O. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genomics, 2017, 18(1), 301.
[http://dx.doi.org/10.1186/s12864-017-3676-8] [PMID: 28412930]
[113]
Clatterbuck Soper, S.F.; Dator, R.P.; Limbach, P.A.; Woodson, S.A. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol. Cell, 2013, 52(4), 506-516.
[http://dx.doi.org/10.1016/j.molcel.2013.09.020] [PMID: 24207057]
[114]
Nesterchuk, M.V.; Sergiev, P.V.; Dontsova, O.A. Posttranslational modifications of ribosomal proteins in Escherichia coli. Acta Nat. (Engl. Ed.), 2011, 3(2), 22-33.
[http://dx.doi.org/10.32607/20758251-2011-3-2-22-33] [PMID: 22649682]
[115]
Kade, B.; Dabbs, E.R.; Wittmann-Liebold, B. Protein—chemical studies on Escherichia coli mutants with altered ribosomal proteins S6 and S7. FEBS Lett., 1980, 121(2), 313-316.
[http://dx.doi.org/10.1016/0014-5793(80)80371-1]
[116]
Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; Lerner, S.A.; Levy, S.; Lewis, K.; Lomovskaya, O.; Miller, J.H.; Mobashery, S.; Piddock, L.J.; Projan, S.; Thomas, C.M.; Tomasz, A.; Tulkens, P.M.; Walsh, T.R.; Watson, J.D.; Witkowski, J.; Witte, W.; Wright, G.; Yeh, P.; Zgurskaya, H.I. Tackling antibiotic resistance. Nat. Rev. Microbiol., 2011, 9(12), 894-896.
[http://dx.doi.org/10.1038/nrmicro2693] [PMID: 22048738]
[117]
McDermott, P.F.; Walker, R.D.; White, D.G. Antimicrobials: modes of action and mechanisms of resistance. Int. J. Toxicol., 2003, 22(2), 135-143.
[http://dx.doi.org/10.1080/10915810305089] [PMID: 12745995]
[118]
Zango, U.; Ibrahim, M.; Shawai, S. A review on β-lactam antibiotic drug resistance. MOJ Drug Des Develop Ther., 2019, 3(2), 52-58.
[119]
Cho, H.; Uehara, T.; Bernhardt, T.G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 2014, 159(6), 1300-1311.
[http://dx.doi.org/10.1016/j.cell.2014.11.017] [PMID: 25480295]
[120]
Bush, K. Proliferation and significance of clinically relevant β-lactamases. Ann. N. Y. Acad. Sci., 2013, 1277(1), 84-90.
[http://dx.doi.org/10.1111/nyas.12023] [PMID: 23346859]
[121]
Poole, K. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med., 2007, 39(3), 162-176.
[http://dx.doi.org/10.1080/07853890701195262] [PMID: 17457715]
[122]
Nakae, T.; Nakajima, A.; Ono, T.; Saito, K.; Yoneyama, H. Resistance to β-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and β-lactamase. Antimicrob. Agents Chemother., 1999, 43(5), 1301-1303.
[http://dx.doi.org/10.1128/AAC.43.5.1301] [PMID: 10223959]
[123]
Zapun, A.; Contreras-Martel, C.; Vernet, T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol. Rev., 2008, 32(2), 361-385.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00095.x] [PMID: 18248419]
[124]
Pieper, R.; Gatlin-Bunai, C.L.; Mongodin, E.F.; Parmar, P.P.; Huang, S.T.; Clark, D.J.; Fleischmann, R.D.; Gill, S.R.; Peterson, S.N. Comparative proteomic analysis of Staphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin. Proteomics, 2006, 6(15), 4246-4258.
[http://dx.doi.org/10.1002/pmic.200500764] [PMID: 16826566]
[125]
Roberts, M.C.; Eliopoulos, G.M.; Roberts, M.C. Tetracycline therapy: update. Clin. Infect. Dis., 2003, 36(4), 462-467.
[http://dx.doi.org/10.1086/367622] [PMID: 12567304]
[126]
Aminov, R.I.; Garrigues-Jeanjean, N.; Mackie, R.I. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol., 2001, 67(1), 22-32.
[http://dx.doi.org/10.1128/AEM.67.1.22-32.2001] [PMID: 11133424]
[127]
Zhang, D.F.; Jiang, B.; Xiang, Z.M.; Wang, S.Y. Functional characterisation of altered outer membrane proteins for tetracycline resistance in Escherichia coli. Int. J. Antimicrob. Agents, 2008, 32(4), 315-319.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.04.015] [PMID: 18620846]
[128]
Lin, X.M.; Li, H.; Wang, C.; Peng, X.X. Proteomic analysis of nalidixic acid resistance in Escherichia coli: identification and functional characterization of OM proteins. J. Proteome Res., 2008, 7(6), 2399-2405.
[http://dx.doi.org/10.1021/pr800073c] [PMID: 18438992]
[129]
Coldham, N.G.; Randall, L.P.; Piddock, L.J.; Woodward, M.J. Effect of fluoroquinolone exposure on the proteome of Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother., 2006, 58(6), 1145-1153.
[http://dx.doi.org/10.1093/jac/dkl413] [PMID: 17062612]
[130]
Geny, B.; Popoff, M.R. Bacterial protein toxins and lipids: pore formation or toxin entry into cells. Biol. Cell, 2006, 98(11), 667-678.
[http://dx.doi.org/10.1042/BC20050082] [PMID: 17042742]
[131]
Verreault, D.; Ennis, J.; Whaley, K.; Killeen, S.Z.; Karauzum, H.; Aman, M.J.; Holtsberg, R.; Doyle-Meyers, L.; Didier, P.J.; Zeitlin, L.; Roy, C.J. Effective treatment of staphylococcal enterotoxin b aerosol intoxication in rhesus macaques by using two parenterally administered high-affinity monoclonal antibodies. Antimicrob. Agents Chemother., 2019, 63(5), e02049-e18.
[http://dx.doi.org/10.1128/AAC.02049-18] [PMID: 30782986]
[132]
Lacy, D.B.; Tepp, W.; Cohen, A.C.; DasGupta, B.R.; Stevens, R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol., 1998, 5(10), 898-902.
[http://dx.doi.org/10.1038/2338] [PMID: 9783750]
[133]
Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.E.; Etienne, J. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg. Infect. Dis., 2003, 9(8), 978-984.
[http://dx.doi.org/10.3201/eid0908.030089] [PMID: 12967497]
[134]
Suzuki, H.; Ataka, K.; Asakawa, A.; Cheng, K-C.; Ushikai, M.; Iwai, H.; Yagi, T.; Arai, T.; Yahiro, K.; Yamamoto, K.; Yokoyama, Y.; Kojima, M.; Yada, T.; Hirayama, T.; Nakamura, N.; Inui, A. Helicobacter pylori vacuolating cytotoxin a causes anorexia and anxiety via hypothalamic urocortin 1 in mice. Sci. Rep., 2019, 9(1), 6011.
[http://dx.doi.org/10.1038/s41598-019-42163-4] [PMID: 30979915]
[135]
Tsuiji, M.; Shiohara, K.; Takei, Y.; Shinohara, Y.; Nemoto, S.; Yamaguchi, S.; Kanto, M.; Itoh, S.; Oku, T.; Miyashita, M.; Seyama, Y.; Kurihara, M.; Tsuji, T. Selective cytotoxicity of staphylococcal α-hemolysin (α-Toxin) against human leukocyte populations. Biol. Pharm. Bull., 2019, 42(6), 982-988.
[http://dx.doi.org/10.1248/bpb.b18-01024] [PMID: 31155595]
[136]
Duracova, M.; Klimentova, J.; Fucikova, A.; Dresler, J. Proteomic methods of detection and quantification of protein toxins. Toxins (Basel), 2018, 10(3), 99.
[http://dx.doi.org/10.3390/toxins10030099] [PMID: 29495560]
[137]
Odumosu, O.; Nicholas, D.; Yano, H.; Langridge, W. AB toxins: a paradigm switch from deadly to desirable. Toxins (Basel), 2010, 2(7), 1612-1645.
[http://dx.doi.org/10.3390/toxins2071612] [PMID: 22069653]
[138]
Pinchuk, I.V.; Beswick, E.J.; Reyes, V.E. Staphylococcal enterotoxins. Toxins (Basel), 2010, 2(8), 2177-2197.
[http://dx.doi.org/10.3390/toxins2082177] [PMID: 22069679]
[139]
Kalb, S.R.; Boyer, A.E.; Barr, J.R. Mass spectrometric detection of bacterial protein toxins and their enzymatic activity. Toxins (Basel), 2015, 7(9), 3497-3511.
[http://dx.doi.org/10.3390/toxins7093497] [PMID: 26404376]
[140]
Collier, R.J.; Young, J.A. Anthrax toxin. Annu. Rev. Cell Dev. Biol., 2003, 19(1), 45-70.
[http://dx.doi.org/10.1146/annurev.cellbio.19.111301.140655] [PMID: 14570563]
[141]
Mock, M.; Mignot, T. Anthrax toxins and the host: a story of intimacy. Cell. Microbiol., 2003, 5(1), 15-23.
[http://dx.doi.org/10.1046/j.1462-5822.2003.00253.x] [PMID: 12542467]
[142]
Tournier, J.N.; Quesnel-Hellmann, A.; Cleret, A.; Vidal, D.R. Contribution of toxins to the pathogenesis of inhalational anthrax. Cell. Microbiol., 2007, 9(3), 555-565.
[http://dx.doi.org/10.1111/j.1462-5822.2006.00866.x] [PMID: 17223930]
[143]
Möller, J.; Kraner, M.E.; Burkovski, A. More than a toxin: protein inventory of Clostridium tetani toxoid vaccines. Proteomes, 2019, 7(2), 15.
[http://dx.doi.org/10.3390/proteomes7020015] [PMID: 30988272]
[144]
Munir, A.; Malik, S.I.; Malik, K.A. Proteome mining for the identification of putative drug targets for human pathogen clostridium tetani. Curr. Bioinform., 2019, 14(6), 532-540.
[http://dx.doi.org/10.2174/1574893613666181114095736]
[145]
Guan, N.; Shin, H.D.; Chen, R.R.; Li, J.; Liu, L.; Du, G.; Chen, J. Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Sci. Rep., 2014, 4, 6951.
[http://dx.doi.org/10.1038/srep06951] [PMID: 25377721]
[146]
La Carbona, S.; Sauvageot, N.; Giard, J.C.; Benachour, A.; Posteraro, B.; Auffray, Y.; Sanguinetti, M.; Hartke, A. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, Alkyl hydroperoxide reductase and Thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol. Microbiol., 2007, 66(5), 1148-1163.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05987.x] [PMID: 17971082]
[147]
Kovács, J; Felső, P; Horváth, G; Schmidt, J; Dorn, Á; Ábrahám, H. stress response and virulence potential modulating effect of peppermint essential oil in campylobacter jejuni. BioMed research international. 2019.
[http://dx.doi.org/10.1155/2019/2971741]
[147]
Kilstrup, M; Jacobsen, S; Hammer, K; Vogensen, F.K Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microbiol 1997, 63(5), 1826-1837.
[http://dx.doi.org/10.1128/aem.63.5.1826-1837.1997] [PMID: 9143115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy