Review Article

Polymer-dendrimer Hybrids as Carriers of Anticancer Agents

Author(s): Guillermo Leobardo Rodríguez-Acosta, Carlos Hernández-Montalbán, María Fernanda Sabrina Vega-Razo, Irving Osiel Castillo-Rodríguez and Marcos Martínez-García*

Volume 23, Issue 4, 2022

Published on: 06 September, 2021

Page: [373 - 392] Pages: 20

DOI: 10.2174/1389450122666210906121803

Price: $65

Abstract

In recent years, polymeric materials with the ability to self-assemble into micelles have been increasingly investigated for application in various fields, mainly in biomedicine. Micellar morphology is important and interesting in the field of drug transport and delivery since micelles can encapsulate hydrophobic molecules in their nucleus, improve the solubility of drugs, have active molecules in their outer layer, and, due to their nanometric size, they can take advantage of the EPR effect, prolong circulation time and avoid renal clearance. Furthermore, bioactive molecules (could be joined covalently or by host-host interaction), such as drugs, bioimaging molecules, proteins, targeting ligands, “cross-linkable” molecules, or linkages sensitive to internal or external stimuli, can be incorporated into them. The confined multivalent cooperativity and the ability to modify the dendritic structure provide versatility to create and improve the amphiphiles used in the micellar supramolecular field. As discussed in this review, the most studied structures are hybrid copolymers, which are formed by the combination of linear polymers and dendrons. Amphiphilic dendrimer micelles have achieved efficient and promising results in both in vitro and in vivo tests, and this encourages research for their future application in nanotherapies.

Keywords: Anticancer activity, drug delivery, polymer, dendrimer, micelles, nanostructures.

Graphical Abstract
[1]
Steed JW, Atwood JL, Gale PA. Definition and emergence of supramolecular chemistry adapted in part from supramolecular chemistry. Chichester: Wiley 2012; pp. 1-5.
[2]
Busseron E, Ruff Y, Moulin E, Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 2013; 5(16): 7098-140.
[http://dx.doi.org/10.1039/c3nr02176a] [PMID: 23832165]
[3]
Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc 1976; 2: 1525-68.
[http://dx.doi.org/10.1039/f29767201525]
[4]
Stack M, Parikh D, Wang H, et al. Electrospinning: Nanofabrication and Applications Elsevier Science 2019; 735-60.
[5]
Discher DE, Eisenberg A. Polymer vesicles. Science 2002; 297(5583): 967-73.
[http://dx.doi.org/10.1126/science.1074972] [PMID: 12169723]
[6]
Berlepsch HV, Thota BNS, Wyszogrodzka M, de Carlo S, Haag R, Böttcher C. Controlled self-assembly of stomatosomes by use of single-component fluorinated dendritic amphiphiles. Soft Matter 2018; 14(25): 5256-69.
[http://dx.doi.org/10.1039/C8SM00243F] [PMID: 29888366]
[7]
Liu X, Zhou J, Yu T, et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew Chem Int Ed Engl 2014; 53(44): 11822-7.
[http://dx.doi.org/10.1002/anie.201406764] [PMID: 25219970]
[8]
Ebnesajjad S. Fluoroplastics Elsevier 2015.
[9]
Lee KS, Lee JH. Hybrid Chemical EOR Using Low-Salinity and Smart Waterflood. In: Hybrid Enhanced Oil Recovery Using Smart Waterflooding. Elsevier 2019.
[http://dx.doi.org/10.1016/B978-0-12-816776-2.00004-0]
[10]
Raghupathi KR, Guo J, Munkhbat O, Rangadurai P, Thayumanavan S. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli. Acc Chem Res 2014; 47(7): 2200-11.
[http://dx.doi.org/10.1021/ar500143u] [PMID: 24937682]
[11]
Bharathi P, Zhao H, Thayumanavan S. Toward globular macromolecules with functionalized interiors: design and synthesis of dendrons with an interesting twist. Org Lett 2001; 3(12): 1961-4.
[http://dx.doi.org/10.1021/ol016064b] [PMID: 11405755]
[12]
Gillies ER, Fréchet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005; 10(1): 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[13]
Álvarez FG, García MM. Dendrimer porphyrins: Applications in nanomedicine. Curr Org Chem 2020; 24: 2801-22.
[http://dx.doi.org/10.2174/1385272824999201026203527]
[14]
Kretzmann JA, Evans CW, Norret M, Swaminathan Iyer K. Supramolecular assemblies of dendrimers and dendritic polymers in nanomedicine. 2017.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12639-3]
[15]
Thota BN, Urner LH, Haag R. Supramolecular architectures of dendritic amphiphilies in water. Chem Rev 2016; 116(4): 2079-102.
[http://dx.doi.org/10.1021/acs.chemrev.5b00417] [PMID: 26669418]
[16]
Chen C, Posocco P, Liu X, et al. Mastering dendrimer self-assembly for efficient siRNA delivery: from conceptual design to In Vivo efficient gene silencing. Small 2016; 12(27): 3667-76.
[http://dx.doi.org/10.1002/smll.201503866] [PMID: 27244195]
[17]
Dong R, Zhou Y, Huang X, Zhu X, Lu Y, Shen J. Functional supramolecular polymers for biomedical applications. Adv Mater 2015; 27(3): 498-526.
[http://dx.doi.org/10.1002/adma.201402975] [PMID: 25393728]
[18]
Percec V, Wilson DA, Leowanawat P, et al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 2010; 328(5981): 1009-14.
[http://dx.doi.org/10.1126/science.1185547] [PMID: 20489021]
[19]
Sherman SE, Xiao Q, Percec V. Mimicking complex biological membranes and their programmable glycan ligands with dendrimersomes and glycodendrimersomes. Chem Rev 2017; 117(9): 6538-631.
[http://dx.doi.org/10.1021/acs.chemrev.7b00097] [PMID: 28417638]
[20]
Liu M, Kono K, Fréchet JMJ. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Release 2000; 65(1-2): 121-31.
[http://dx.doi.org/10.1016/S0168-3659(99)00245-X] [PMID: 10699276]
[21]
Tomalia DA, Nixon LS, Hedstrand DM. The role of branch cell symmetry and other critical nanoscale design parameters in the determination of dendrimer encapsulation properties. Biomolecules 2020; 10(4): 642.
[http://dx.doi.org/10.3390/biom10040642] [PMID: 32326311]
[22]
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J Control Release 2019; 299: 64-89.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.026] [PMID: 30797002]
[23]
Wang J, Lei L, Voets IK, Cohen Stuart MA, Velders AH. Dendrimicelles with pH-controlled aggregation number of core-dendrimers and stability. Soft Matter 2020; 16(34): 7893-7.
[http://dx.doi.org/10.1039/D0SM00458H] [PMID: 32832954]
[24]
Sikwal DR, Kalhapure RS, Govender T. An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: Janus amphiphilic dendrimers. Eur J Pharm Sci 2017; 97: 113-34.
[http://dx.doi.org/10.1016/j.ejps.2016.11.013] [PMID: 27864064]
[25]
Data Obtained Using SciFinder Scholar. Grand Total Hits on Telodendrimers from 2010–2021 Were 77 references were found containing "telodendrimers" as entered. 124 references were found containing the concept "telodendrimers". Available online: https://www.kb.dkhttps://scifinder.cas.org (Accessed on 19 July 2021)
[26]
Wang D, Zhao T, Zhu X, Yan D, Wang W. Bioapplications of hyperbranched polymers. Chem Soc Rev 2015; 44(12): 4023-71.
[http://dx.doi.org/10.1039/C4CS00229F] [PMID: 25176339]
[27]
Sk UH, Kojima C. Dendrimers for theranostic applications. Biomol Concepts 2015; 6(3): 205-17.
[http://dx.doi.org/10.1515/bmc-2015-0012] [PMID: 26136305]
[28]
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv 2018; 15(11): 1085-104.
[http://dx.doi.org/10.1080/17425247.2018.1529756] [PMID: 30259762]
[29]
Wurm F, Frey H. Linear–dendritic block copolymers: The state of the art and exciting perspectives. Prog Polym Sci 2011; 36: 1-52.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.07.009]
[30]
Gitsov I, Wooley KL, Hawker CJ, Ivanova PT, Frechet MJ. Synthesis and properties of novel linear-dendritic block copolymers. Reactivity of dendritic macromolecules toward linear polymers. Macromolecules 1993; 26: 5621-927.
[http://dx.doi.org/10.1021/ma00073a014]
[31]
Fan X, Zhao Y, Xu W, Li L. Linear-dendritic block copolymer for drug and gene delivery. Mater Sci Eng C 2016; 62: 943-59.
[http://dx.doi.org/10.1016/j.msec.2016.01.044] [PMID: 26952501]
[32]
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Deliv Rev 2012; 64: 37-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.013] [PMID: 11251249]
[33]
Chiappisi L, Keiderling U, Gutierrez-Ulloa CE, Gómez R, Valiente M, Gradzielski M. Aggregation behavior of surfactants with cationic and anionic dendronic head groups. J Colloid Interface Sci 2019; 534: 430-9.
[http://dx.doi.org/10.1016/j.jcis.2018.09.005] [PMID: 30245340]
[34]
Mejlsøe S, Kakkar A. Telodendrimers: Promising architectural polymers for drug delivery. Molecules 2020; 25(17): 3995-4027.
[http://dx.doi.org/10.3390/molecules25173995] [PMID: 32887285]
[35]
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater 2018; 30: e1705328.
[http://dx.doi.org/10.1002/adma.201705328] [PMID: 29736981]
[36]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[37]
Bolu BS, Sanyal R, Sanyal A. Drug delivery systems from self- assembly of dendron-polymer conjugates. Molecules 2018; 23(7): 1570-96.
[http://dx.doi.org/10.3390/molecules23071570] [PMID: 29958437]
[38]
Miura Y, Takenaka T, Toh K, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano 2013; 7(10): 8583-92.
[http://dx.doi.org/10.1021/nn402662d] [PMID: 24028526]
[39]
Shao S, Zhou Q, Si J, et al. A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat Biomed Eng 2017; 1(9): 745-57.
[http://dx.doi.org/10.1038/s41551-017-0130-9] [PMID: 31015667]
[40]
Eetezadi S, Ekdawi SN, Allen C. The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Adv Drug Deliv Rev 2015; 91: 7-22.
[http://dx.doi.org/10.1016/j.addr.2014.10.001] [PMID: 25308250]
[41]
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005; 57(15): 2215-37.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[42]
Perry JL, Reuter KG, Kai MP, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 2012; 12(10): 5304-10.
[http://dx.doi.org/10.1021/nl302638g] [PMID: 22920324]
[43]
Mozar FS, Chowdhury EH. Impact of PEGylated nanoparticles on tumor targeted drug delivery. Curr Pharm Des 2018; 24(28): 3283-96.
[http://dx.doi.org/10.2174/1381612824666180730161721] [PMID: 30062957]
[44]
Xiao K, Li Y, Lee JS, et al. “OA02” peptide facilitates the precise targeting of paclitaxel-loaded micellar nanoparticles to ovarian cancer in vivo. Cancer Res 2012; 72(8): 2100-10.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3883] [PMID: 22396491]
[45]
Zhang H, Li Y, Lin T-Y, et al. Nanomicelle formulation modifies the pharmacokinetic profiles and cardiac toxicity of daunorubicin. Nanomedicine (Lond) 2014; 9(12): 1807-20.http://dx.doi
[http://dx.doi.org/10.2217/nnm.14.44] [PMID: 24628688]
[46]
Gajbhiye V, Kumar PV, Sharma A, Agarwal A, Asthana A, Jain NK. Dendrimeric nanoarchitectures mediated transdermal and oral delivery of bioactives. Indian J Pharm Sci 2008; 70(4): 431-9.https://dx.doi
[http://dx.doi.org/10.4103/0250-474X.44589] [PMID: 20046766]
[47]
Chen H, Kim S, He W, et al. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir 2008; 24(10): 5213-7.
[http://dx.doi.org/10.1021/la703570m] [PMID: 18257595]
[48]
Zhou Z, Liu X, Zhu D, et al. Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv Drug Deliver rev 2017; 115: 115-54.
[http://dx.doi.org/10.1016/j.addr.2017.07.021] [PMID: 28778715]
[49]
Ma XP, Zhou ZX, Jin EL, et al. Facile synthesis of polyester dendrimers as drug delivery carriers. Macromolecules 2013; 46: 37-42.
[http://dx.doi.org/10.1021/ma301849a]
[50]
Bhadra D, Bhadra S, Jain P, Jain NK. Pegnology: a review of PEG-ylated systems. Pharmazie 2002; 57(1): 5-29.
[PMID: 11836932]
[51]
Lazniewska J, Milowska K, Gabryelak T. Dendrimers-Revolutionary drugs for infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4: 469-91.
[http://dx.doi.org/10.1002/wnan.1181] [PMID: 22761054]
[52]
Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011; 7(10): 1322-37.
[http://dx.doi.org/10.1002/smll.201100001] [PMID: 21520409]
[53]
Pearson RM, Patra N, Hsu HJ, Uddin S, Král P, Hong S. Positively charged dendron micelles display negligible cellular interactions. ACS Macro Lett 2013; 2(1): 77-81.
[http://dx.doi.org/10.1021/mz300533w] [PMID: 23355959]
[54]
Hong S, Rattan R, Majoros IJ, et al. The role of ganglioside GM1 in cellular internalization mechanisms of poly(amidoamine) dendrimers. Bioconjug Chem 2009; 20(8): 1503-13.
[http://dx.doi.org/10.1021/bc900029k] [PMID: 19583240]
[55]
Vuković L, Khatib FA, Drake SP, et al. Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc 2011; 133(34): 13481-8.
[http://dx.doi.org/10.1021/ja204043b] [PMID: 21780810]
[56]
Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60(15): 1615-26.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[57]
Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000; 41(2): 147-62.
[http://dx.doi.org/10.1016/S0169-409X(99)00062-9] [PMID: 10699311]
[58]
Pearson RM, Sen S, Hsu HJ, et al. Tuning the selectivity of dendron micelles through variations of the poly(ethylene glycol) corona. ACS Nano 2016; 10(7): 6905-14.
[http://dx.doi.org/10.1021/acsnano.6b02708] [PMID: 27267700]
[59]
Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV. Enzyme responsive materials: design strategies and future developments. Biomater Sci 2013; 1(1): 11-39.
[http://dx.doi.org/10.1039/C2BM00041E] [PMID: 32481995]
[60]
Harnoy AJ, Rosenbaum I, Tirosh E, et al. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers. J Am Chem Soc 2014; 136(21): 7531-4.
[http://dx.doi.org/10.1021/ja413036q] [PMID: 24568366]
[61]
Yesilyurt V, Ramireddy R, Thayumanavan S. Photoregulated release of noncovalent guests from dendritic amphiphilic nanocontainers. Angew Chem Int Ed Engl 2011; 50(13): 3038-42.
[http://dx.doi.org/10.1002/anie.201006193] [PMID: 21404394]
[62]
Raghupathi KR, Azagarsamy MA, Thayumanavan S. Guest-release control in enzyme-sensitive, amphiphilic-dendrimer-based nanoparticles through photochemical crosslinking. Chemistry 2011; 17(42): 11752-60.
[http://dx.doi.org/10.1002/chem.201101066] [PMID: 21887830]
[63]
Rosenbaum I, Harnoy AJ, Tirosh E, et al. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers. J Am Chem Soc 2015; 137(6): 2276-84.
[http://dx.doi.org/10.1021/ja510085s] [PMID: 25607219]
[64]
Bawa KK, Jazani AM, Ye Z, Oh JK. Synthesis of degradable PLA-based diblock copolymers with dual acid/reduction-cleavable junction. Polymer (Guildf) 2020; 194: 122391.
[http://dx.doi.org/10.1016/j.polymer.2020.122391]
[65]
Kalva N, Parekh N, Ambade AV. Controlled micellar disassembly of photo- and pH- cleavable linear-dendritic block copolymers. Polym Chem 2015; 6: 6826-35.
[http://dx.doi.org/10.1039/C5PY00792E]
[66]
Kang Y, Zhang XM, Zhang S, Ding LS, Li BJ. pH-responsive dendritic polyrotaxane drug-polymer conjugates forming nanoparticles as efficient drug delivery system for cancer therapy. Polym Chem 2015; 6: 2098-107.
[http://dx.doi.org/10.1039/C4PY01431F]
[67]
Kang H, Rho S, Stiles WR, et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv Healthc Mater 2020; 9(1): e1901223.
[http://dx.doi.org/10.1002/adhm.201901223] [PMID: 31794153]
[68]
Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011; 6(12): 815-23.
[http://dx.doi.org/10.1038/nnano.2011.166] [PMID: 22020122]
[69]
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19: 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.02.002] [PMID: 25791797]
[70]
Li J, Yang H, Zhang Y, et al. Choline derivate-modified doxorubicin loaded micelle for glioma therapy. ACS Appl Mater Interfaces 2015; 7(38): 21589-601.
[http://dx.doi.org/10.1021/acsami.5b07045] [PMID: 26356793]
[71]
Li J, Guo Y, Kuang Y, An S, Ma H, Jiang C. Choline transporter-targeting and co-delivery system for glioma therapy. Biomaterials 2013; 34(36): 9142-8.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.030] [PMID: 23993342]
[72]
Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel) 2020; 12(2): 298-319.
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[73]
Li L, Guan Y, Liu H, et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 2011; 5(9): 7462-70.
[http://dx.doi.org/10.1021/nn202399w] [PMID: 21854047]
[74]
Moquin A, Sturn J, Zhang I, et al. Unraveling aqueous self-assembly of telodendrimers to shed light on their efficacy in drug encapsulation. ACS Appl Bio Mater 2019; 2: 4515-26.
[http://dx.doi.org/10.1021/acsabm.9b00643]
[75]
Yazdani H, Kaul E, Bazgir A, Maysinger D, Kakkar A. Telodendrimer-based macromolecular drug design using 1,3-dipolar cycloaddition for applications in biology. Molecules 2020; 25(4): 1-12.
[http://dx.doi.org/10.3390/molecules25040857] [PMID: 32075239]
[76]
Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer systematic review: combination therapy in combating cancer background. Oncotarget 2017; 8: 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723]
[77]
Wang M, Alberti K, Sun S, Arellano CL, Xu Q. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew Chem Int Ed Engl 2014; 53(11): 2893-8.
[http://dx.doi.org/10.1002/anie.201311245] [PMID: 24519972]
[78]
Wang X, Shi C, Zhang L, et al. Affinity-controlled protein encapsulation into sub-30 nm telodendrimer nanocarriers by multivalent and synergistic interactions. Biomaterials 2016; 101: 258-71.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.006] [PMID: 27294543]
[79]
Rowinsky EK, Gilbert MR, McGuire WP, et al. Sequences of taxol and cisplatin: a phase I and pharmacologic study. J Clin Oncol 1991; 9(9): 1692-703.
[http://dx.doi.org/10.1200/JCO.1991.9.9.1692] [PMID: 1678780]
[80]
Coleman RL, Monk BJ, Sood AK, Herzog TJ. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat Rev Clin Oncol 2013; 10(4): 211-24.
[http://dx.doi.org/10.1038/nrclinonc.2013.5] [PMID: 23381004]
[81]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[82]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3: 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[83]
Cai L, Xu G, Shi C, Guo D, Wang X, Luo J. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 2015; 37: 456-68.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.044] [PMID: 25453973]
[84]
Wang L, Shi C, Wright FA, et al. Multifunctional telodendrimer nanocarriers restore synergy of bortezomib and doxorubicin in ovarian cancer treatment. Cancer Res 2017; 77(12): 3293-305.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3119] [PMID: 28396359]
[85]
Kobsa S, Saltzman WM. Bioengineering approaches to controlled protein delivery. Pediatr Res 2008; 63(5): 513-9.
[http://dx.doi.org/10.1203/PDR.0b013e318165f14d] [PMID: 18427296]
[86]
Tao A, Huang GL, Igarashi K, et al. Polymeric micelles loading proteins through concurrent ion complexation and pH-cleavable covalent bonding for in vivo delivery. Macromol Biosci 2020; 20(1): e1900161.
[http://dx.doi.org/10.1002/mabi.201900161] [PMID: 31310454]
[87]
Guo D, Shi C, Wang X, Wang L, Zhang S, Luo J. Riboflavin-containing telodendrimer nanocarriers for efficient doxorubicin delivery: High loading capacity, increased stability, and improved anticancer efficacy. Biomaterials 2017; 141: 161-75.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.041] [PMID: 28688287]
[88]
Guo D, Shi C, Wang L, Ji X, Zhang S, Luo J. Rationally designed micellar nanocarriers for the delivery of hydrophilic methotrexate in psoriasis treatment. ACS Appl Bio Mater 2020; 3(8): 4832-46.
[http://dx.doi.org/10.1021/acsabm.0c00342] [PMID: 34136761]
[89]
Shi C, Wang X, Wang L, et al. A nanotrap improves survival in severe sepsis by attenuating hyperinflammation. Nat Commun 2020; 11(1): 3384.
[http://dx.doi.org/10.1038/s41467-020-17153-0] [PMID: 32636379]
[90]
Wu X, Hawse JR, Subramaniam M, Goetz MP, Ingle JN, Spelsberg TC. The tamoxifen metabolite, endoxifen, is a potent antiestrogen that targets estrogen receptor α for degradation in breast cancer cells. Cancer Res 2009; 69(5): 1722-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3933] [PMID: 19244106]
[91]
Lee O, Ivancic D, Chatterton RT Jr, Rademaker AW, Khan SA. In vitro human skin permeation of endoxifen: potential for local transdermal therapy for primary prevention and carcinoma in situ of the breast. Breast Cancer (Dove Med Press) 2011; 3: 61-70.
[http://dx.doi.org/10.2147/BCTT.S20821] [PMID: 24367176]
[92]
Lazzeroni M, Serrano D, Dunn BK, et al. Oral low dose and topical tamoxifen for breast cancer prevention: modern approaches for an old drug. Breast Cancer Res 2012; 14(5): 214.
[http://dx.doi.org/10.1186/bcr3233] [PMID: 23106852]
[93]
Yang Y, Pearson RM, Lee O, et al. Dendron-based micelles for topical delivery of endoxifen: a potential chemo- preventive medicine for breast cancer. Adv Funct Mater 2014; 24: 2442-9.
[http://dx.doi.org/10.1002/adfm.201303253]
[94]
Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc Natl Acad Sci USA 2005; 102(13): 4688-93.
[http://dx.doi.org/10.1073/pnas.0501176102] [PMID: 15774584]
[95]
Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 2011; 44(10): 1094-104.
[http://dx.doi.org/10.1021/ar200105p] [PMID: 21812415]
[96]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[97]
Turco Liveri ML, Licciardi M, Sciascia L, Giammona G, Cavallaro G. Peculiar mechanism of solubilization of a sparingly water soluble drug into polymeric micelles. Kinetic and equilibrium studies. J Phys Chem B 2012; 116(16): 5037-46.
[http://dx.doi.org/10.1021/jp211973s] [PMID: 22462632]
[98]
Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 2010; 49(36): 6288-308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[99]
Dernedde J, Rausch A, Weinhart M, et al. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc Natl Acad Sci USA 2010; 107(46): 19679-84.
[http://dx.doi.org/10.1073/pnas.1003103107] [PMID: 21041668]
[100]
Zhong Y, Dimde M, Stöbener D, et al. Micelles with sheddable dendritic polyglycerol sulfate shells show extraordinary tumor targetability and chemotherapy in vivo. ACS Appl Mater Interfaces 2016; 8(41): 27530-8.
[http://dx.doi.org/10.1021/acsami.6b09204] [PMID: 27669888]
[101]
Bolu BS, Golba B, Boke N, Sanyal A, Sanyal R. Designing dendron-polymer conjugate based targeted drug delivery platforms with a “mix-and-match” modularity. Bioconjug Chem 2017; 28(12): 2962-75.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00595] [PMID: 29136371]
[102]
Calik F, Degirmenci A, Eceoglu M, Sanyal A, Sanyal R. Dendron-polymer conjugate based cross-linked micelles: A robust and versatile nanosystem for targeted delivery. Bioconjug Chem 2019; 30(4): 1087-97.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00027] [PMID: 30789707]
[103]
Sumer Bolu B, Golba B, Sanyal A, Sanyal R. Trastuzumab targeted micellar delivery of docetaxel using dendron-polymer conjugates. Biomater Sci 2020; 8(9): 2600-10.
[http://dx.doi.org/10.1039/C9BM01764J] [PMID: 32239010]
[104]
Pilkington-Miksa M, Arosio D, Battistini L, et al. Design, synthesis, and biological evaluation of novel cRGD-paclitaxel conjugates for integrin-assisted drug delivery. Bioconjug Chem 2012; 23(8): 1610-22.
[http://dx.doi.org/10.1021/bc300164t] [PMID: 22770429]
[105]
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res 2018; 11(10): 4985-98.
[http://dx.doi.org/10.1007/s12274-018-2152-3] [PMID: 30370014]
[106]
Talelli M, Barz M, Rijcken CJF, Kiessling F, Hennink WE, Lammers T. Core- crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today 2015; 10(1): 93-117.
[http://dx.doi.org/10.1016/j.nantod.2015.01.005] [PMID: 25893004]
[107]
Espelin CW, Leonard SC, Geretti E, Wickham TJ, Hendriks BS. Dual HER2 targeting with trastuzumab and liposomal-encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer. Cancer Res 2016; 76(6): 1517-27.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1518] [PMID: 26759238]
[108]
Viswanathan G, Hsu YH, Voon SH, et al. A comparative study of cellular uptake and subcellular localization of doxorubicin loaded in self-assemblies of amphiphilic copolymers with pendant dendron by MDA-MB-231 human breast cancer cells. Macromol Biosci 2016; 16(6): 882-95.
[http://dx.doi.org/10.1002/mabi.201500435] [PMID: 26900760]
[109]
Lee AS, Bütün V, Vamvakaki M, Armes SP, Pople JA, Gast AP. Structure of pH- dependent block copolymer micelles: Charge and ionic strength dependence. Macromolecules 2002; 35: 8540-51.
[http://dx.doi.org/10.1021/ma0114842]
[110]
Voon SH, Kue CS, Imae T, et al. Doxorubicin-loaded micelles of amphiphilic diblock copolymer with pendant dendron improve antitumor efficacy: In vitro and in vivo studies. Int J Pharm 2017; 534(1-2): 136-43.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.023] [PMID: 29031979]
[111]
Kwa YC, Tan YF, Foo YY, et al. Improved delivery and antimetastatic effects of Stattic by self-assembled amphiphilic pendant- dendron copolymer micelles in breast cancer cell lines. J Drug Deliv Sci Technol 2020; 59: 101905.
[http://dx.doi.org/10.1016/j.jddst.2020.101905]
[112]
Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small- molecule inhibitor of STAT3 activation and dimerization. Chem Biol 2006; 13(11): 1235-42.
[http://dx.doi.org/10.1016/j.chembiol.2006.09.018] [PMID: 17114005]
[113]
Du X, Yin S, Wang Y, Gu X, Wang G, Li J. Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility. Carbohydr Polym 2018; 202: 513-22.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.015] [PMID: 30287030]
[114]
Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: Let’s meet the challenge. Int J Pharm 2010; 394(1-2): 122-42.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.027] [PMID: 20433913]
[115]
Chandrasiri I, Abebe DG, Gupta S, et al. “Janus-type” linear-dendritic hybrids. J Polym Sci A Polym Chem 2019; 57: 1448-59.
[http://dx.doi.org/10.1002/pola.29409]
[116]
Zeng Z, Qi D, Yang L, et al. Stimuli-responsive self-assembled dendrimers for oral protein delivery. J Control Release 2019; 315: 206-13.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.049] [PMID: 31672623]
[117]
Liu CT, Tomsho JW, Benkovic SJ. The unique chemistry of benzoxaboroles: current and emerging applications in biotechnology and therapeutic treatments. Bioorg Med Chem 2014; 22(16): 4462-73.
[http://dx.doi.org/10.1016/j.bmc.2014.04.065] [PMID: 24864040]
[118]
Alonso PL, Tanner M. Public health challenges and prospects for malaria control and elimination. Nat Med 2013; 19(2): 150-5.
[http://dx.doi.org/10.1038/nm.3077] [PMID: 23389615]
[119]
Martí Coma-Cros E, Lancelot A, San Anselmo M, et al. Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery. Biomater Sci 2019; 7(4): 1661-74.
[http://dx.doi.org/10.1039/C8BM01600C] [PMID: 30741274]
[120]
Sumer Bolu B, Manavoglu Gecici E, Sanyal R. Combretastatin A-4 conjugated antiangiogenic micellar drug delivery systems using dendron-polymer conjugates. Mol Pharm 2016; 13(5): 1482-90.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00931] [PMID: 27019335]
[121]
Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007; 25(10): 1165-70.
[http://dx.doi.org/10.1038/nbt1340] [PMID: 17891134]
[122]
Iversen TG, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011; 6: 176-85.
[http://dx.doi.org/10.1016/j.nantod.2011.02.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy