Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Thermal Energy Storage Property and Temperature Control Performance of Phase Change Materials Eutectic Mixture Nanocomposite

Author(s): Seyed Mostapha Musavi, Ghodratollah Roudini*, Farahnaz Barahuie and Siti Ujila Binti Masuri

Volume 14, Issue 3, 2022

Published on: 03 September, 2021

Page: [272 - 280] Pages: 9

DOI: 10.2174/1876402913666210903162938

Price: $65

Abstract

Background: The utilization of high-performance Phase Change Materials (PCMs) that can reversibly store thermal energy is of immense interest and strategy for effective energy conservation and management.

Methods: In this work, a new PCM nanocomposite, consisting of a eutectic mixture of stearic acid and n-nonadecane as core and SiO2 as shell, was prepared by direct impregnation method. Additionally, a laboratory scaled test room was designed to investigate the intelligent temperature control function of the nanocomposite in building materials.

Results: The optimized nanocomposite was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques. The DSC data demonstrated that the PCMs eutectic mixture content in the stearic acid- n-nonadecane–SiO2 nanocomposite was 52.8 wt.% and the melting temperatures and latent heats of stearic acid - n-nonadecane eutectic mixture and optimized nanocomposite were 45.1 and 44.0 °C, and 163.7 and 86.5 J/g, respectively. Furthermore, the accelerated thermal cycling test confirmed the excellent thermal cycling stability of the nanocomposite after 500 heating-cooling cycles. Moreover, the laboratory scaled test room results showed that the incorporation of the resulting nanocomposite in the gypsum could reduce indoor temperature fluctuation, and the performance was improved with the increase in the mass percentage of the nanocomposite in the gypsum composite.

Conclusion: The obtained nanocomposite had good thermal reliability and temperature control performance and thus can be a promising candidate for hi-tech applications in intelligent temperature control and precise thermal management.

Keywords: Nanocomposite, thermal energy storage, stearic acid, n-nonadecane, smart temperature control, thermal cycle.

« Previous
Graphical Abstract
[1]
Yang, H.; Chao, W.; Di, X.; Yang, Z.; Yang, T.; Yu, Q.; Liu, F.; Li, J.; Li, G.; Wang, C. Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage. Energy Convers. Manage., 2019, 200 ,112029.
[http://dx.doi.org/10.1016/j.enconman.2019.112029]
[2]
Uzar, U. Political economy of renewable energy: Does institutional quality make a difference in renewable energy consumption. Renew. Energy, 2020, 155, 591-603.
[http://dx.doi.org/10.1016/j.renene.2020.03.172]
[3]
Zhang, G.; Yu, Z.; Cui, G.; Dou, B.; Lu, W.; Yan, X. Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity. Renew. Energy, 2020, 151, 542-550.
[http://dx.doi.org/10.1016/j.renene.2019.11.044]
[4]
Li, W.Q.; Guo, S.J.; Tan, L.; Liu, L.L.; Ao, W. Heat transfer enhancement of nano-encapsulated phase change material (NEPCM) using metal foam for thermal energy storage. Int. J. Heat Mass Transf., 2021, 166 ,120737.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120737]
[5]
Wu, Y.; Zhang, X.; Xu, X.; Lin, X.; Liu, L. A review on the effect of external fields on solidification, melting and heat transfer enhancement of phase change materials. J. Energy Storage, 2020, 31 ,101567.
[http://dx.doi.org/10.1016/j.est.2020.101567]
[6]
Singh, P.; Sharma, R.K.; Ansu, A.K.; Goya, R. organic phase change materials for energy storage. Mater. Today Proc., 2020, 28, 2353-2357.
[http://dx.doi.org/10.1016/j.matpr.2020.04.640]
[7]
Sarabandi, D.; Roudini, G.; Barahuie, F. Activated carbon derived from pine cone as a framework for the preparation of n-heptadecane nanocomposite for thermal energy storage. J. Energy Storage, 2019, 24 ,100795.
[http://dx.doi.org/10.1016/j.est.2019.100795]
[8]
Zhang, J.; Narh, C.; Lv, P.; Cai, Y.; Zhou, H.; Hou, X.; Wei, Q. Preparation of novel form–stable composite phase change materials with porous silica nanofibrous mats for thermal storage/retrieval. Colloids Surf. A Physicochem. Eng. Asp., 2019, 570, 1-10.
[http://dx.doi.org/10.1016/j.colsurfa.2019.03.009]
[9]
Umair, M.M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review. Appl. Energy, 2019, 235, 846-873.
[http://dx.doi.org/10.1016/j.apenergy.2018.11.017]
[10]
Zuo, X.; Zhao, X.; Li, J.; Hu, Y.; Yang, H.; Chen, D. Enhanced thermal conductivity of form-stable composite phase-change materials with graphite hybridizing expanded perlite/paraffin. Sol. Energy, 2020, 209, 85-95.
[http://dx.doi.org/10.1016/j.solener.2020.08.082]
[11]
Li, C.; Wang, M.; Xie, B.; Ma, H.; Chen, J. Enhanced properties of diatomite-based composite phase change materials for thermal energy storage. Renew. Energy, 2020, 147, 265-274.
[http://dx.doi.org/10.1016/j.renene.2019.09.001]
[12]
Han, S.; Chen, Y.; Lyu, S.; Chen, Z.; Wang, S.; Fu, F. Effects of processing conditions on the properties of paraffin/melamine-urea-formaldehyde microcapsules prepared by in situ polymerization. Colloids Surf. A Physicochem. Eng. Asp., 2020, 585 ,124046.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124046]
[13]
Ma, Y.; Xie, Q.; Wang, X.; Lu, J. Synthesis and characterization of microencapsulated phase change materials with comb-like acrylic co-polymer shell as thermal energy storage materials. Sol. Energy, 2019, 179, 410-423.
[http://dx.doi.org/10.1016/j.solener.2019.01.012]
[14]
Li, C.; Yu, H.; Song, Y.; Wang, M.; Liu, Z.Z. A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage. Renew. Energy, 2020, 145, 1465-1473.
[http://dx.doi.org/10.1016/j.renene.2019.06.070]
[15]
Pradeep, N.; Paramasivam, K.; Rajesh, T.; Subash, P.V.; Iyahraja, S. Silver nanoparticles for enhanced thermal energy storage of phase change materials. Mater. Today Proc., 2020, 17, 671.
[http://dx.doi.org/10.1016/j.matpr.2020.02.671]
[16]
Ji, R.; Wei, S.; Xia, C.; Huang, C.; Huang, Y.; Zhang, H.; Xu, F.; Sun, L.; Lin, X. Enhanced thermal performance of form-stable composite phase-change materials supported by novel porous carbon spheres for thermal energy storage. J. Energy Storage, 2020, 27 ,101134.
[http://dx.doi.org/10.1016/j.est.2019.101134]
[17]
Liang, G.; Zhang, J.; An, S.; Tang, J.; Ju, S.; Bai, S.; Jiang, D. Phase change material filled hybrid 2D/ 3D graphene structure with ultra-high thermal effusivity for effective thermal management. Carbon, 2021, 176, 11-20.
[http://dx.doi.org/10.1016/j.carbon.2020.12.046]
[18]
Lavi, A.O.; Lavi, A.; Alatawna, A.; Ruse, E.; Ziskind, G.; Regev, O. Graphite-based shape-stabilized composites for phase change material applications. Renew. Energy, 2021, 167, 580-590.
[http://dx.doi.org/10.1016/j.renene.2020.11.117]
[19]
Luo, R.; Wang, S.; Wang, T.; Zhu, C.; Nomura, T.; Akiyama, T. Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation. Energy Build., 2015, 108, 373-380.
[http://dx.doi.org/10.1016/j.enbuild.2015.09.043]
[20]
Zhang, Y.; Zhang, J. Li, Wu, X.; X. Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage. J. Energy Storage, 2019, 21, 611-617.
[http://dx.doi.org/10.1016/j.est.2018.12.022]
[21]
Wang, Y.; Gao, X.; Chen, P.; Huang, Z.; Xu, T.; Fang, Y.; Zhang, Z. Preparation and thermal performance of paraffin/Nano-SiO2 nanocomposite for passive thermal protection of electronic device. Appl. Therm. Eng., 2016, 96, 699-707.
[http://dx.doi.org/10.1016/j.applthermaleng.2015.11.106]
[22]
Liu, Z.; Chen, Z.; Yu, F. Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage. Sol. Energy Mater. Sol. Cells, 2019, 200 ,110004.
[http://dx.doi.org/10.1016/j.solmat.2019.110004]
[23]
Li, H.; Liu, X.; Fan, G. Preparation and characteristics of n-nonadecane/cement composites as thermal energy storage materials in buildings. Energy Build., 2010, 42, 1661-1665.
[http://dx.doi.org/10.1016/j.enbuild.2010.04.009]
[24]
Khadiran, T.; Hussein, M.Z.; Zainal, Z.; Rusli, R. Nano-encapsulated n-nonadecane using vinyl copolymer shell for thermal energy storage medium. Macromol. Res., 2015, 23, 658-669.
[http://dx.doi.org/10.1007/s13233-015-3088-z]
[25]
Yuan, H.; Bai, H.; Zhang, X.; Zhang, J.; Zhang, Z.; Yang, L. Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage. Sol. Energy, 2018, 173, 42-52.
[http://dx.doi.org/10.1016/j.solener.2018.07.049]
[26]
Li, C.; He, G.; Yan, H.; Yu, H.; Song, Y. Synthesis of microencapsulated stearic acid with amorphous TiO2 as shape stabilized PCMs for thermal energy storage. Energy Procedia, 2018, 152, 390-394.
[http://dx.doi.org/10.1016/j.egypro.2018.09.162]
[27]
Li, B.; Liu, T.; Hu, L.; Wang, Y.; Ga, L. Fabrication and Properties of Microencapsulated Paraffin@SiO2 Phase Change Composite for Thermal Energy Storage. ACS Sustain. Chem.& Eng., 2013, 1, 374-380.
[http://dx.doi.org/10.1021/sc300082m]
[28]
Sari, A.; Alkan, C.; Bicer, A.; Altuntas, A.; Bilgin, C. Micro/nanoencapsulated n-nonadecane with poly (methyl methacrylate) shell for thermal energy storage. Energy Convers. Manage., 2014, 86, 614-621.
[http://dx.doi.org/10.1016/j.enconman.2014.05.092]
[29]
Sahan, N.; Paksoy, H. Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials. Sol. Energy Mater. Sol. Cells, 2017, 159, 1-7.
[http://dx.doi.org/10.1016/j.solmat.2016.08.030]
[30]
Ranjbar, S.G.; Roudini, G.; Barahuie, F. Fabrication and characterization of phase change material-SiO2 nanocomposite for thermal energy storage in buildings. J. Energy Storage, 2020, 27 ,101168.
[http://dx.doi.org/10.1016/j.est.2019.101168]
[31]
Chen, T.; Liu, C.; Mu, P.; Sun, H.; Zhu, Z.; Liang, W.; Li, A. Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage. Chem. Eng. J., 2020, 382 ,122831.
[http://dx.doi.org/10.1016/j.cej.2019.122831]
[32]
Sun, K.; Kou, Y.; Zhang, Y.; Liu, T.; Shi, Q. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity. ACS Sustain. Chem.& Eng., 2020, 8, 3445-3453.
[http://dx.doi.org/10.1021/acssuschemeng.9b07659]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy