Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

A General Method for the Synthesis of 11H-Indeno[1,2-B]Quinoxalin- 11-Ones and 6H-Indeno[1,2-B]Pyrido[3,2-E]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-catalyst at Room Temperature

Author(s): Aditi Sharma, Gurpreet Kaur, Diksha Singh, Vivek Kumar Gupta and Bubun Banerjee*

Volume 9, Issue 1, 2022

Published on: 25 August, 2021

Page: [53 - 61] Pages: 9

DOI: 10.2174/2213337208666210825112301

Price: $65

Abstract

Aims: Synthesis of 11H-indeno[1,2-b]quinoxalin-11-ones as well as 6H-indeno[ 1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives under greener conditions.

Background: Quinoxaline and related skeletons are very common in naturally occurring bioactive compounds.

Objective: Design a facile, green and organo-catalyzed method for the synthesis of 11H-indeno[ 1,2-b]quinoxalin-11-ones as well as 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives.

Methods: Both the scaffolds were synthesized via the condensation of ninhydrin and o-phenylenediamines or pyridine-2,3-diamines respectively by using a catalytic amount of mandelic acid as an efficient, commercially available, low cost, organo-catalyst in aqueous ethanol at room temperature.

Results: Mild reaction conditions, use of metal-free organocatalyst, non-toxic solvent, ambient temperature, and no column chromatographic separation are some of the notable advantages of our developed protocol.

Conclusion: In conclusion, we have developed a simple, mild, facile and efficient method for the synthesis of structurally diverse 11H-indeno[1,2-b]quinoxalin-11-one derivatives via the condensation reactions of ninhydrin and various substituted benzene-1,2-diamines using a catalytic amount of mandelic acid as a commercially available metal-free organo-catalyst in aqueous ethanol at room temperature. Under the same optimized reaction conditions, synthesis of 6H-indeno[ 1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives was also accomplished with excellent yields by using pyridine-2,3-diamines instead of o-phenylenediamine.

Keywords: Mandelic acid, 11H-indeno[1, 2-b]quinoxalin-11-ones, 6H-indeno[1, 2-b]pyrido[3, 2-e]pyrazin-6-ones, sustainable organocatalyst, ninhydrin, organocatalysis.

Graphical Abstract
[1]
Watanabe, K. Exploring the biosynthesis of natural products and their inherent suitability for the rational design of desirable compounds through genetic engineering. Biosci. Biotechnol. Biochem., 2008, 72(10), 2491-2506.
[http://dx.doi.org/10.1271/bbb.80323] [PMID: 18838806]
[2]
Pedersen, O.S.; Pedersen, E.B. Non-nucleoside reverse transcriptase inhibitors: the NNRTI boom. Antivir. Chem. Chemother., 1999, 10(6), 285-314.
[http://dx.doi.org/10.1177/095632029901000601] [PMID: 10628805]
[3]
Seeler, A.O.; Mushett, C.W.; Graessle, O.; Silber, R.H. Pharmacological studies on sulfaquinoxaline. J. Pharmacol. Exp. Ther., 1944, 82, 357-363.
[4]
Kakodkar, N.C.; Peddinti, R.; Kletzel, M.; Tian, Y.; Guerrero, L.J.; Undevia, S.D.; Geary, D.; Chlenski, A.; Yang, Q.; Salwen, H.R.; Cohn, S.L. The quinoxaline anti-tumor agent (R+)XK469 inhibits neuroblastoma tumor growth. Pediatr. Blood Cancer, 2011, 56(1), 164-167.
[http://dx.doi.org/10.1002/pbc.22639] [PMID: 20860039]
[5]
Gao, H.; Yamasaki, E.F.; Chan, K.K.; Shen, L.L.; Snapka, R.M. Chloroquinoxaline sulfonamide (NSC 339004) is a topoisomerase IIalpha/β poison. Cancer Res., 2000, 60(21), 5937-5940.
[PMID: 11085507]
[6]
Richards, H.C.; Housley, J.R.; Spooner, D.F. Quinacillin: A new penicillin with unusual properties. Nature, 1963, 199, 354-356.
[http://dx.doi.org/10.1038/199354a0] [PMID: 14058567]
[7]
Barber, R.S.; Braude, R.; Hosking, Z.D.; Mitchell, K.G. Olaquindox as performance-promoting feed additive for growing pigs. Anim. Feed Sci. Technol., 1979, 4, 117-123.
[http://dx.doi.org/10.1016/0377-8401(79)90036-1]
[8]
Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Ancizu, S.; Villar, R.; Solano, B.; Moreno, E.; Torres, E.; Pérez, S.; Aldana, I.; Monge, A. Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chem. Biol. Drug Des., 2011, 77(4), 255-267.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01076.x] [PMID: 21244639]
[9]
Geethavani, M.; Reddy, J.R.; Sathyanarayana, S.V. Synthesis, antimicrobial and wound healing activities of diphenyl quinoxaline derivatives. Int. J. Pharm. Technol., 2012, 4, 4700-4710.
[10]
Morales-Castellanos, J.J.; Ramírez-Hernández, K.; Gómez-Flores, N.S.; Rodas-Suárez, O.R.; Peralta-Cruz, J. Microwave-assisted solvent-free synthesis and in vitro antibacterial screening of quinoxalines and pyrido[2, 3b]pyrazines. Molecules, 2012, 17(5), 5164-5176.
[http://dx.doi.org/10.3390/molecules17055164] [PMID: 22628038]
[11]
Tseng, C.H.; Han, C.R.; Tang, K.W. Discovery of 3-arylquinoxaline derivatives as potential anti-dengue virus agents. Int. J. Mol. Sci., 2019, 20(19), 4786.
[http://dx.doi.org/10.3390/ijms20194786] [PMID: 31561542]
[12]
Karki, S.S.; Hazare, R.; Kumar, S.; Bhadauria, V.S.; Balzarini, J.; De Clercq, E. Synthesis, anticancer and cytostatic activity of some 6H-indolo[2,3-b]quinoxalines. Acta Pharm., 2009, 59(4), 431-440.
[http://dx.doi.org/10.2478/v10007-009-0040-9] [PMID: 19919932]
[13]
Keinan, S.; Paquette, W.D.; Skoko, J.J.; Beratan, D.N.; Yang, W.; Shinde, S.; Johnston, P.A.; Lazo, J.S.; Wipf, P. Computational design, synthesis and biological evaluation of para-quinone-based inhibitors for redox regulation of the dual-specificity phosphatase Cdc25B. Org. Biomol. Chem., 2008, 6(18), 3256-3263.
[http://dx.doi.org/10.1039/b806712k] [PMID: 18802630]
[14]
Alinezhad, H.; Tajbakhsh, M.; Salehian, F.; Biparva, P. Synthesis of quinoxaline derivatives using TiO2 nanoparticles as an efficient and recyclable catalyst. Bull. Korean Chem. Soc., 2011, 32, 3720-3725.
[http://dx.doi.org/10.5012/bkcs.2011.32.10.3720]
[15]
Khaksar, S.; Rostamnezhad, F. A novel one-pot synthesis of quinoxaline derivatives in fluorinated alcohols. Bull. Korean Chem. Soc., 2012, 33, 2581-2584.
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2581]
[16]
Krishnakumar, B.; Swaminathan, M. A recyclable solid acid catalyst sulfated titania for easy synthesis of quinoxaline and dipyridophenazine derivatives under microwave irradiation. Bull. Chem. Soc. Jpn., 2011, 84, 1261-1266.
[http://dx.doi.org/10.1246/bcsj.20110152]
[17]
Huang, T.K.; Wang, R.; Shi, L.; Lu, X.X. Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water. Catal. Commun., 2008, 9, 1143-1147.
[http://dx.doi.org/10.1016/j.catcom.2007.10.024]
[18]
Katkar, S.; Mohite, P.; Gadekar, L.; Arbad, B.; Lande, M. ZnO-beta zeolite mediated simple and efficient method for the one-pot synthesis of quinoxaline derivatives at room temperature. Cent. Eur. J. Chem., 2010, 8, 320-325.
[19]
Huang, T.K.; Shi, L.; Wang, R.; Guo, X.Z.; Lu, X.X. Keggin type heteropolyacids-catalyzed synthesis of quinoxaline derivatives in water. Chin. Chem. Lett., 2009, 20, 161-164.
[http://dx.doi.org/10.1016/j.cclet.2008.10.048]
[20]
Lü, H.Y.; Yang, S.H.; Deng, J.; Zhang, Z.H. Magnetic Fe3O4 nanoparticles as new, efficient, and reusable catalysts for the synthesis of quinoxalines in water. Aust. J. Chem., 2010, 63, 1290-1296.
[http://dx.doi.org/10.1071/CH09532]
[21]
Mirjalili, B.B.F.; Akbari, A. Nano-TiO2: An eco-friendly alternative for the synthesis of quinoxalines. Chin. Chem. Lett., 2011, 22, 753-756.
[http://dx.doi.org/10.1016/j.cclet.2010.12.016]
[22]
Khaksar, S.; Tajbakhsh, M.; Gholami, M.; Rostamnezhad, F. A highly efficient procedure for the synthesis of quinoxaline derivatives using poly-vinylpolypyrrolidone supported triflic acid catalyst (PVPP.OTf). Chin. Chem. Lett., 2014, 25, 1287-1290.
[http://dx.doi.org/10.1016/j.cclet.2014.04.008]
[23]
Hakimi, F.; Mirjalili, B.B.F. Synthesis of quinoxalines in the presence of heteropoly acids. Curr. Chem. Lett., 2013, 2, 105-108.
[http://dx.doi.org/10.5267/j.ccl.2013.01.001]
[24]
Rekha, M.; Kathyayini, H.; Nagaraju, N. Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines. Front. Chem. Sci. Eng., 2013, 7, 415-421.
[http://dx.doi.org/10.1007/s11705-013-1360-3]
[25]
Kolvari, E.; Zolfigol, M.A.; Peiravi, M. Green synthesis of quinoxaline derivatives using p-dodecylbenzensulfonic acid as a surfactant-type Bronsted acid catalyst in water. Green Chem. Lett. Rev., 2012, 5, 155-159.
[http://dx.doi.org/10.1080/17518253.2011.606849]
[26]
Esmaeilpour, M.; Sardariana, A.R. Fe3O4@SiO2/Schiff base complex of metal ions as an efficient and recyclable nanocatalyst for the green synthesis of quinoxaline derivatives. Green Chem. Lett. Rev., 2014, 7, 301-308.
[http://dx.doi.org/10.1080/17518253.2014.948078]
[27]
Heravi, M.M.; Bakhtiari, K.; Oskooie, H.A.; Taheri, S. MnCl2-promoted synthesis of quinoxaline derivatives at room temperature. Heteroatom Chem., 2008, 19, 218-220.
[http://dx.doi.org/10.1002/hc.20401]
[28]
Dandia, A.; Singh, R.; Joshi, J.; Maheshwari, S. Magnetically separable CuFe2O4 nanoparticles: An efficient catalyst for the synthesis of quinoxaline derivatives in tap-water under sonication. Eur. Chem. Bull., 2013, 2, 825-829.
[29]
Karami, B. Khodabakhshi, A novel and simple synthesis of some new and known dibenzo phenazine and quinoxaline derivatives using lead dichloride. J. Chil. Chem. Soc., 2013, 58, 1655-1658.
[http://dx.doi.org/10.4067/S0717-97072013000200002]
[30]
Khan, M.U.; Siddiqui, S.; Siddiqui, Z.N. Novel ionic liquid-functionalized chitosan [DSIM][AlCl3]x−@CS: synthesis, characterization, and catalytic application for preparation of substituted pyrazine derivatives. ACS Omega, 2019, 4(4), 7586-7595.
[http://dx.doi.org/10.1021/acsomega.9b00301] [PMID: 31459852]
[31]
Hasaninejad, A.; Shekouhy, M.; Zare, A. Silicananoparticles efficiently catalyzed synthesis of quinolines and quinoxalines. Catal. Sci. Technol., 2012, 2, 201-214.
[http://dx.doi.org/10.1039/C1CY00332A]
[32]
Khazaei, A.; Massoudi, A.; Chegeni, M. Synthesis of bisindolylindeno[1,2-b]quinoxaline and bisindolylindeno[3,4-b]pyrazine with poly(N,N′-dibromo-N-ethylnaphthyl-2,7-disulfonamide). Synth. Commun., 2014, 44, 633-639.
[http://dx.doi.org/10.1080/00397911.2013.829237]
[33]
Meshram, G.A.; Deshpande, S.S.; Vala, V.A.; Wagh, P.A. Indion 190 resin: Reusable catalyst for the synthesis of quinoxalines and pyrido-pyrazines at ambient temperature. Eur. J. Chem., 2013, 4, 422-424.
[http://dx.doi.org/10.5155/eurjchem.4.4.422-424.857]
[34]
Tantawy, E.S.; Amer, A.M.; Mohamed, E.K.; Alla, M.M.A.; Nafie, M.S. Synthesis, characterization of some pyrazine derivatives as anti-cancer agents: In vitro and in silico approaches. J. Mol. Struct., 2020, 1210, 128013.
[http://dx.doi.org/10.1016/j.molstruc.2020.128013]
[35]
Rashid, Z.; Naeimi, H.; Ghahremanzadeh, R. Highly efficient one-pot four-component Kabachnik–Fields synthesis of novel α-amino phosphonates under solvent-free and catalyst-free conditions. RSC Advances, 2015, 5, 99148-99152.
[http://dx.doi.org/10.1039/C5RA18311A]
[36]
Baghbanian, S.S. Propylsulfonic acid functionalized nanozeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives. Chin. Chem. Lett., 2015, 26, 1113-1116.
[http://dx.doi.org/10.1016/j.cclet.2015.04.037]
[37]
Yadav, J.S.; Reddy, B.V.S.; Premalatha, K.; Shankar, K.S. Bismuth(III)-catalyzed rapid synthesis of 2,3-disubstituted quinoxalines in water. Synthesis, 2008, 2008, 3787-3792.
[http://dx.doi.org/10.1055/s-0028-1083230]
[38]
Wu, X.; Li, X.; Li, Z.; Yu, Y.; You, Q.; Zhang, X. Discovery of nonquinone substrates for NAD(P)H: Quinone oxidoreductase 1 (NQO1) as effective intracellular ROS generators for the treatment of drug-resistant non-small-cell lung cancer. J. Med. Chem., 2018, 61(24), 11280-11297.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01424] [PMID: 30508483]
[39]
Bakthadoss, M.; Selvakumar, R.; Srinivasan, J. An efficient protocol for the synthesis of benzoheterocyclic compounds via solid-state melt reaction (SSMR). Tetrahedron Lett., 2014, 55, 5808-5812.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.084]
[40]
Alizadeh, A.; Roosta, A. An efficient regioselective access to (11Z)-11-(3-aryl-5,6-dihydropyrazin-2(1H)-ylidene)-11H-indeno[1,2-b]quinoxaline derivatives via one-pot three-component reaction. ChemistrySelect, 2019, 4, 13503-13505.
[http://dx.doi.org/10.1002/slct.201903949]
[41]
Alizadeh, A.; Mohammadi, R.; Bayat, F.; Zhu, L-G. Metal-free regioselective construction of diazabenzo[e]acephenanthrylene-1,2-dicarboxylates via a phosphine-mediated cycloadditon. Tetrahedron, 2017, 73, 4433-4438.
[http://dx.doi.org/10.1016/j.tet.2017.06.010]
[42]
Ren, W.; Zhao, Q.; Yu, M.; Guo, L.; Chang, H.; Jiang, X.; Luo, Y.; Huang, W.; He, G. Design and synthesis of novel spirooxindole-indenoquinoxaline derivatives as novel tryptophanyl-tRNA synthetase inhibitors. Mol. Divers., 2020, 24(4), 1043-1063.
[http://dx.doi.org/10.1007/s11030-019-10011-2] [PMID: 31834547]
[43]
Mani, K.S.; Kaminsky, W.; Rajendran, S.P. A facile atom economic one pot multicomponent synthesis of bioactive spiroindenoquinoxaline pyrrolizines as potent antioxidant and anti cancer agents. New J. Chem., 2018, 42, 301-310.
[http://dx.doi.org/10.1039/C7NJ02993D]
[44]
Khan, M.S.; Munawar, M.A.; Ashraf, M.; Alam, U.; Ata, A.; Asiri, A.M.; Kousar, S.; Khan, M.A. Synthesis of novel indenoquinoxaline derivatives as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2014, 22(3), 1195-1200.
[http://dx.doi.org/10.1016/j.bmc.2013.12.024] [PMID: 24398385]
[45]
Azizian, J.; Mohammadizadeh, M.R.; Zomorodbakhsh, S.; Mohammadi, A.A.; Karimi, A.R. Microwave-assisted one-pot synthesis of some dicyano- methylene derivatives of indenoquinoxaline and tryptanthrin under solvent free conditions. ARKIVOC, 2007, xv, 24-30.
[http://dx.doi.org/10.3998/ark.5550190.0008.f04]
[46]
Fayed, E.A.; Ammar, Y.A.; Ragab, A.; Gohar, N.A.; Mehany, A.B.M.; Farrag, A.M. In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorg. Chem., 2020, 100, 103951.
[http://dx.doi.org/10.1016/j.bioorg.2020.103951] [PMID: 32450392]
[47]
Rajasekaran, A. Synthesis, antinociceptive, antiinflammatory and antiepileptic evaluation of some novel indeno[1,2-b] quinoxalin-11-ylidenamines. Iran. J. Pharm. Sci., 2007, 3, 251-262.
[48]
Pearson, B.D.; Mitsch, R.A.; Cromwel, N.H. Indenoquinolines. JII. Derivatives of 11H-iIndeno[1,2-b]quinoxaline and related indenoquinolines. J. Org. Chem., 1962, 27, 1674-1678.
[http://dx.doi.org/10.1021/jo01052a046]
[49]
Etman, H.A.; Metwally, H.M.; Elkasaby, M.M.; Khalil, A.M.; Metwally, M.A. Green, two component highly efficient reaction of ninhydrin with aromatic amines, and malononitrile using ball-milling technique. Am. J. Org. Chem., 2011, 1, 10-13.
[http://dx.doi.org/10.5923/j.ajoc.20110101.03]
[50]
Chen, F.; Zheng, J.; Huang, M.; Li, Y. One-pot three-component synthesis of novel spiroindenoquinoxalines. Res. Chem. Intermed., 2014, 41, 5545-5554.
[http://dx.doi.org/10.1007/s11164-014-1680-z]
[51]
Soleimani, E.; Hariri, M.; Saei, P. A one-pot three-component reactions for the synthesis of fully substituted spiro indeno[1,2-b]quinoxaline derivatives. C. R. Chim., 2013, 16, 773-777.
[http://dx.doi.org/10.1016/j.crci.2013.04.007]
[52]
Yazdani-Elah-Abadia, A.; Maghsoodlou, M.T.; Mohebat, R.; Heydari, R. An efficient domino one-pot synthesis of novel spirofuran-indenoquinoxalines by vinyltriphenylphosphonium salts. J. Chem. Sci., 2017, 129, 691-698.
[http://dx.doi.org/10.1007/s12039-017-1292-4]
[53]
Ghalib, R.M.; Hashim, R.; Sulaiman, O.; Hemamalini, M.; Fun, H.K. 11H-Indeno-[1,2-b]quinoxalin-11-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2010, 66(Pt 6), o1494.
[http://dx.doi.org/10.1107/S1600536810019252] [PMID: 21579556]
[54]
Kaur, G.; Moudgil, R.; Shamim, M.; Gupta, V.K.; Banerjee, B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3H-spiro[benzo[d]thiazole-2,3′-indolin]-2′-ones at room temperature. Synth. Commun., 2021, 51, 1100-1120.
[http://dx.doi.org/10.1080/00397911.2020.1870043]
[55]
Kaur, G.; Singh, A.; Kaur, N.; Banerjee, B. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature. Synth. Commun., 2021, 51, 1121-1131.
[http://dx.doi.org/10.1080/00397911.2021.1873383]
[56]
Brahmachari, G.; Banerjee, B. Sulfamic acid-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: An overview. Curr. Organocatal., 2016, 3, 93-124.
[http://dx.doi.org/10.2174/2213337202666150812230830]
[57]
Kaur, G.; Singh, D.; Singh, A.; Banerjee, B. Camphor sulfonic acid catalyzed facile and general method for the synthesis of 3,3′-(arylmethylene) bis(4-hydroxy-2H -chromen-2-ones), 3,3′-(arylmethylene)bis(2-hydroxynaphthalene-1,4-diones) and 3,3′-(2-oxoindoline-3,3-diyl)bis(2-hydroxynaphthalene-1,4-dione) derivatives at room temperature. Synth. Commun., 2021, 51, 1045-1057.
[http://dx.doi.org/10.1080/00397911.2020.1856877]
[58]
Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic applications of saccharin and its derivatives in organic synthesis. Curr. Org. Chem., 2019, 23, 3191-3205.
[http://dx.doi.org/10.2174/1385272823666191121144758]
[59]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22, 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[60]
Kaur, G.; Bala, K.; Devi, S.; Baneree, B. Camphorsulfonic Acid (CSA): an efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5, 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[61]
Banik, B.K.; Banerjee, B.; Kaur, G.; Saroch, S.; Kumar, R. Tetrabutylammonium Bromide (TBAB) catalyzed synthesis of bioactive heterocycles. Molecules, 2020, 25(24), 5918.
[http://dx.doi.org/10.3390/molecules25245918] [PMID: 33327504]
[62]
Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature. Curr. Org. Chem., 2019, 23, 1778-1788.
[http://dx.doi.org/10.2174/1385272822666190924182538]
[63]
Singh, A.; Kaur, G.; Kaur, A.; Gupta, V.K.; Banerjee, B. A general method for the synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes using naturally occurring mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature. Curr. Green Chem., 2020, 7, 128-140.
[http://dx.doi.org/10.2174/2213346107666200228125715]
[64]
Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V.K.; Banerjee, B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. Synth. Commun., 2020, 50, 1545-1560.
[http://dx.doi.org/10.1080/00397911.2020.1745844]
[65]
Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V.K.; Banerjee, B. Mandelic acid: An efficient organo-catalyst for the synthesis of 3-substituted- 3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr. Organocatal., 2020, 8, 147-159.
[http://dx.doi.org/10.2174/2213337207999200713145440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy