Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Degradation Mode of PBAT Mulching Film and Control Methods During its Degradation Induction Period

Author(s): Runmeng Qiao, Xin Wang, Guangjiong Qin, Jialei Liu*, Aocheng Cao, Canbin Ouyang* and Wenqing He*

Volume 19, Issue 5, 2022

Published on: 17 January, 2022

Page: [608 - 616] Pages: 9

DOI: 10.2174/1570193X18666210813142022

Price: $65

Abstract

Plastic films play an important role in China's agricultural production. However, the large-scale use of plastic film has also caused very serious agricultural film pollution. Biodegradable polymers have received much attention because of the environmental pollution caused by the traditional plastic mulching film. The most typical copolymer is poly (butylene adipate co butylene terephthalate) (PBAT). Poly (Butylene Adipate-co-Terephthalate) (PBAT) is a kind of aliphaticaromatic polyester with excellent biodegradability and mechanical processing properties. Therefore, it has been rapidly developed and widely used in the industry. However, the degradation period of the agricultural film depends on certain requirements. Currently, the degradable materials available in the market do not meet the needs of all crops due to their degradation period. In this paper, the basic properties, degradation process and methods to delay the degradation of PBAT are reviewed for improving the degradation period of the plastic film that is prepared by using this kind of material. The degradation process includes photodegradation, biodegradation, and hydrolysis. The methods of delaying the degradation process include adding a chain extender, light stabilizer, antihydrolysis agent and antibacterial agent, providing a theoretical basis for the research and development of biodegradable film with a controllable degradation cycle. The future research and development of biodegradable polymers will mainly focus on controllable degradation rate, stable degradation cycle, new materials, and reducing research and development costs.

Keywords: Polymers, poly (butylene adipate-co-terephthalate), degradation, biodegradable plastic film, hydrolysis, photodegredation.

Graphical Abstract
[1]
Yan, C.R.; He, W.Q.; Xue, Y.H. Application of biodegradable plastic film and prevention and control of residual pollution of plastic film. Chin. J. Biotechnol., 2016, 32(06), 748-760.
[PMID: 29019184]
[2]
Yan, C.R.; He, W.Q.; Mei, X.R. Application of agricultural plastic film and pollution control; Science Press: Beijing, 2010, pp. 76-86.
[3]
Yan, C.R.; Liu, Q. Existing problems and application analysis of biodegradable plastic film technology. Seed Technol., 2016, 34(09), 66-67.
[4]
Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’-agricultural plastic film mulch in China. Environ. Res. Lett., 2014, 9(9) ,091001
[http://dx.doi.org/10.1088/1748-9326/9/9/091001]]
[5]
Yan, J.A.; Hu, Z.P.; Chen, J.Q. Research progress of degradable functional polyurethane materials. New Chem. Mater., 2018, 46(5), 218-221.
[6]
Zhang, H.P.; Xie, D.; Li, F.Y. Research progress of biodegradable plastic film and its application.Sugarcane Canesugar 2018, (03), 60-64.,
[7]
Ma, H.; Mei, X.R.; Yan, C.R. Study on the characteristics of plastic film residue in cotton field soil in typical agricultural areas of North China. J. Agro- Environm. Sci., 2008, 27(2), 570-573.
[8]
Yan, C.R.; Mei, X.R.; He, W.Q. Status quo and prevention of agricultural plastic film residue pollution. Trans. Chinese Soc. Agricul. Eng., 2006, 22(11), 269-272.
[9]
Shi, K.; Zhang, J.; Su, T.T. Research progress in modification of biodegradable plastics. New Chem. Mater., 2019, 47(4), 29-33.
[10]
Wang, W.; Zhang, H.; Jia, R. High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocoll., 2018, (79), 534-543.
[http://dx.doi.org/10.1016/j.foodhyd.2017.12.013]
[11]
Ren, J.; Zhang, W.; Lou, F. Characteristics of starch based films produced using glycerol and 1-butyl-3-methylimidazolium chloride as combined plasticizers. Starke, 2016, 69(1-2), 923-928.
[12]
Zhang, Y.F.; Huang, A.P.; Zhang, W.W. Research progress of PLA/PBAT composites. Eng. Plast. Appl., 2019, 47(1), 154-158.
[13]
Luo, S.L. Study on polyadipic acid/butylene terephthalate nanocomposite food packaging film and its application in fresh meat preservation; Zhejiang University: Hangzhou, 2019.
[14]
Pan, H.W. Preparation and properties of poly (butylene terephthalate co butylene adipate) (PBAT) biodegradable membrane. Changchun: ; Changchun University of Technology, 2016.
[15]
Zhang, S.S.; Li, R.H.; Gao, J. Research status of PBAT synthesis and application. Modern Plastics Proces. Appl., 2018, 30(5), 59-63.
[16]
Lin, M.M.; Sun, T.; Yin, J.Q. Effects of different biodegradable plastic films on Photosynthetic Characteristics and yield of peanut. China Agronomic Bull., 2015, 31(27), 190-197.
[17]
Shen, L.X.; Wang, P.; Zhang, L.L. Degradability of degradable plastic film and its effect on soil temperature, moisture and maize growth. Trans. Chinese Soc. Agricul. Eng., 2012, 28(4), 111-116.
[18]
Zhang, N.; Li, Q.; Hou, Z.A. Effects of poly (lactic acid) biodegradable film on soil temperature and cotton yield. Nongye Ziyuan Yu Huanjing Xuebao, 2016, 33(2), 114-119.
[19]
Cui, X.H.; Hu, Y.F. Study on the application effect of controllable biodegradable plastic film. Modern Agricul. Sci. Technol., 2014, 17, 238-239.
[20]
Dai, J.K.; Cui, X.H.; Tan, H.Y. Effects of controllable biodegradable plastic film on Maize Growth. J. Anhui Agricul. Sci., 2015, 43(21), 71-72.
[21]
Dai, J.K.; Ning, J.; Shi, K.J. Study on the applicability of controllable total biodegradable film in maize growth in eastern Yunnan. Bull. Agricul. Sci. Technol.,, 2016, (7), 98-102.
[22]
Maerdan, A.; Wang, J.C. Study on the application effect of controllable total biodegradable film. Agricul. Technol. Equip., 2020, (4), 14-15.,
[23]
Si, P.; Zou, J.; Zhang, Y.H. Photooxidation aging behavior of PLA/PBAT films. Funct. Mater., 2016, 47(7), 7114-7120.
[24]
Scott, G. Mechanisms of polymer degradation and stabilisation; Elsevier Applied Science, 1990.
[25]
Rychly, J.; Rychla, L.; Stloukal, P. UV initiated oxidation and chemiluminescence from aromatic-aliphatic co-polyesters and polylactic acid. Polym. Degrad. Stabil., 2013, 98(12), 2556-2563.
[http://dx.doi.org/10.1016/j.polymdegradstab.2013.09.016]
[26]
Shen, H.Y.; Liu, H.L.; Li, F.Y. Application of ultraviolet absorber in PLA / PBAT biodegradable films. China Plastics Indus., 2020, 48(02), 139-143.
[27]
Maldonado, L.F.; Munoz, P A R.; Fechine, G.J.M. Transfer of graphene CVD to surface of low density polyethylene (LDPE) and poly (butylene adipate-co-terephthalate) (PBAT) films: Effect on biodegradation process. J. Polym. Environ., 2018, 26(8), 1-10.
[http://dx.doi.org/10.1007/s10924-018-1202-y]
[28]
Rivaton, A. Photochemistry of poly (butyleneterephthalate): 2-Identification of the IR-absorbing photooxidation products. Polym. Degrad. Stabil., 1993, 41(3), 297-310.
[http://dx.doi.org/10.1016/0141-3910(93)90076-U]
[29]
Grossetête, T.; Rivaton, A.; Gardette, J.L. Photochemical degradation of poly(ethylene terephthalate)-modified copolymer. Polymer (Guildf.), 2000, 41(10), 3541-3554.
[http://dx.doi.org/10.1016/S0032-3861(99)00580-7]
[30]
And, K.A.; Hsu, S.L.; And, L.W.K. Roles of conformational and configurational defects on the physical aging of amorphous poly(lactic acid). J. Phys. Chem. B, 2007, 111(42), 12322-12327.
[http://dx.doi.org/10.1021/jp074509t]
[31]
Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of bioplastic packaging materials: an overview. Macromol. Biosci., 2007, 7(3), 255-277.
[http://dx.doi.org/10.1002/mabi.200600168] [PMID: 17370278]
[32]
Kijchavengkul, T.; Auras, R.; Rubino, M. Atmospheric and soil degradation of aliphatic-aromatic polyester films. Polym. Degrad. Stabil., 2010, 95(2), 99-107.
[http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.048]
[33]
Kijchavengkul, T.; Auras, R.; Rubino, M.; Ngouajio, M.; Fernandez, R.T. Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: laboratory simulated conditions. Chemosphere, 2008, 71(9), 1607-1616.
[http://dx.doi.org/10.1016/j.chemosphere.2008.01.037] [PMID: 18353427]
[34]
Gopferich, A. Mechanisms of polymer degradation and elimination.In: Handbook of biodegradable polymers; Domb, A.J.; Kost, J.; Wiseman, D., Eds.; CRC: Boca Raton, FL, 1998, pp. 451-471.
[http://dx.doi.org/10.1201/9781420049367.ch22]
[35]
Zumstein, M.T.; Schintlmeister, A.; Nelson, T.F.; Baumgartner, R.; Woebken, D.; Wagner, M.; Kohler, H.E.; McNeill, K.; Sander, M. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Sci. Adv., 2018, 4(7) ,eaas9024
[http://dx.doi.org/10.1126/sciadv.aas9024] [PMID: 30050987]
[36]
Mueller, R.J. Biological degradation of synthetic polyesters-Enzymes as potential catalysts for polyester recycling. Process Biochem., 2006, 41(10), 2124-2128.
[http://dx.doi.org/10.1016/j.procbio.2006.05.018]
[37]
Sinohara Souza, P.M.; Coelho, F.M.; Deroldo Sommaggio, L.R. Disintegration and biodegradation in soil of PBAT mulch films: influence of the stabilization systems based on carbon black/hindered amine light stabilizer and carbon black/vitamin E. J. Polym. Environ., 2019, 27(7), 1584-1594.
[http://dx.doi.org/10.1007/s10924-019-01455-6]
[38]
Kijchavengkul, T.; Auras, R.; Rubino, M. Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym. Degrad. Stabil., 2010, 95(12), 2641-2647.
[http://dx.doi.org/10.1016/j.polymdegradstab.2010.07.018]
[39]
Sangroniz, A.; Gonzalez, A.; Martin, L. Miscibility and degradation of polymer blends based on biodegradable poly(butylene adipate-co-terephthalate). Polym. Degrad. Stabil., 2018, 151(5), 25-35.
[http://dx.doi.org/10.1016/j.polymdegradstab.2018.01.023]
[40]
Touchaleaume, F.; Angellier-Coussy, H.; Cesar, G. How performance and fate of biodegradable mulch films are impacted by field ageing. J. Polym. Environ., 2018, 26(6), 2588-2600.
[http://dx.doi.org/10.1007/s10924-017-1154-7]
[41]
Souza, A.G.D.; Nunes, E.D.C.D.; Rosa, DDS. Understanding the effect of chain extender on poly (butylene adipate-co-terephthalate) structure. Iran. Polym. J., 2019, 28(12), 1035-1044.
[http://dx.doi.org/10.1007/s13726-019-00764-w]
[42]
Arruda, L.C.; Magaton, M.; Bretas, R.E.S. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT Blends. Polym. Test., 2015, 43, 27-37.
[http://dx.doi.org/10.1016/j.polymertesting.2015.02.005]
[43]
Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stabil., 2012, 97(10), 1898-1914.
[http://dx.doi.org/10.1016/j.polymdegradstab.2012.06.028]
[44]
Shu, M Y; Weng, Y X; Zhang, CL Effect of multiple epoxy chain extender (ADR) on chain extension modification and aging resistance of PBAT. China Plastics, 2020, 34(03), 33-39.
[45]
Palsikowski, P.A.; Kuchnier, C.N.; Pinheiro, I.F. Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. J. Polym. Environ., 2017, 26, 330-341.
[http://dx.doi.org/10.1007/s10924-017-0951-3]
[46]
Zhao, H.; Li, L.; Zhang, Q.; Xia, Z.; Yang, E.; Wang, Y.; Chen, W.; Meng, L.; Wang, D.; Li, L. Manipulation of chain entangle-ment and crystal networks of biodegradable poly butylene adipate-co-butylene terephthalate during film blowing through the addition of a chain extender: An in situ synchrotron radiation X-ray scattering study. Biomacromolecules, 2019, 20(10), 3895-3907.
[http://dx.doi.org/10.1021/acs.biomac.9b00975] [PMID: 31525027]
[47]
Gonçalves Bardi, M.A.; Leite Munhoz, M.D.M.; Oliveira, H.A.D. Behavior of UV-cured print inks on LDPE and PBAT/TPS blend substrates during curing, posturing, and accelerated degradation. J. Appl. Polym. Sci., 2015, 131(22), 547-557.
[48]
Wang, H.; Wang, Y.; Liu, D. Effects of additives on weather-resistance properties of polyurethane films exposed to ultraviolet radiation and ozone atmosphere. J. Nanomater., 2014, 2014(4), 1-7.
[http://dx.doi.org/10.1155/2014/487343]
[49]
Guo, Z.Y.; Ding, Z.M. Research progress of diphenylketone UV absorbers. Plastic Addit., 2018, (2), 1-5.,
[50]
Tang, W. Effect of organic additives on photooxidation aging resistance of aliphatic polyether polyurethane films; Yanshan University, 2015.
[51]
Xing, Q.; Ruch, D.; Dubois, P. Biodegradable and high-performance poly(butylene adipate-co-terephthalate)–lignin uv-blocking films. ACS Sustain. Chem.& Eng., 2017, 5(11), 10342-10351.
[http://dx.doi.org/10.1021/acssuschemeng.7b02370]
[52]
Xing, Q.; Buono, P.; Ruch, D. Biodegradable UV-blocking films through core–shell lignin–melanin nanoparticles in poly(butylene adipate- co -terephthalate). ACS Sustain. Chem.& Eng., 2019, 7(4), 4147-4157.
[http://dx.doi.org/10.1021/acssuschemeng.8b05755]
[53]
Tang, Y.H. Preparation of supported ultraviolet absorber and its application in PBAT; South China University of Technology, 2018.
[54]
Zhu, S.; Chen, Y.; Tang, Y. A novel nanosilica:Upported ultraviolet absorber for the preparation of robust biodegradable plastic film with high ultraviolet aging resistance. Polym. Compos., 2019, 40(10), 4154-4161.
[http://dx.doi.org/10.1002/pc.25276]
[55]
Sinohara Souza, P.M.; Morales, A.R.; Saraiva Sanchez, E.M. Study of PBAT photostabilization with ultraviolet absorber in combination with hindered amine light stabilizer and vitamin E, aiming mulching film application. J. Polym. Environ., 2018, 26(8), 1-15.
[56]
Zhang, S.; Lin, Z.; Li, J. Elevated ductility, optical, and air barrier properties of poly butyleneadipate‐co‐terephthalate bio‐based films via novel thermoplastic starch feature. Polym. Adv. Technol., 2019, 30(4), 852-862.
[http://dx.doi.org/10.1002/pat.4518]
[57]
Yao, J.W.; Chen, J.; Yin, Y. Research progress of carbodiimide anti hydrolysis agent. Fine Specialty Chem., 2011, 19(01), 8-11.
[58]
Tan, Z.H. Research progress of hydrolytic stabilizers for plastics.Plastic Addit., 2011, (03), 12-16.,
[59]
Zhang, J.J.; Li, X.G. Research progress in synthesis and application of carbodiimide. Plastic Addit., 2016, (03), 20-23.,
[60]
Dong, J.T.; Ding, Q.; Tang, X F Synthesis of alicyclic polymeric carbodiimide and its application in PBAT.Plastic Addit., 2018, (05), 35-41.,
[61]
Li, Y.; Li, J.D.; Chai, S.Y. Synthesis and characterization of polymeric carbodiimide anti hydrolytic agent and its hydrolysis resistance in PBAT materials. Plastics Ind., 2020, 48(07), 127-130.
[62]
Morro, A.; Catalina, F.; Sanchez-Leon, E. Photodegradation and biodegradation under thermophile conditions of mulching films based on poly(butylene adipate-co-terephthalate) and its blend with poly(lactic acid). J. Polym. Environ., 2019, 27(2), 352-363.
[http://dx.doi.org/10.1007/s10924-018-1350-0]
[63]
Zhang, M.; Jia, H.; Weng, Y. Biodegradable PLA/PBAT mulch on microbial community structure in different soils. Int. Biodeterior. Biodegradation, 2019, 145 ,104817
[http://dx.doi.org/10.1016/j.ibiod.2019.104817]
[64]
Muroi, F.; Tachibana, Y.; Soulenthone, P. Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus. Polym. Degrad. Stabil., 2017, 137(Mar), 11-22.
[http://dx.doi.org/10.1016/j.polymdegradstab.2017.01.006]
[65]
Muroi, F.; Tachibana, Y.; Kobayashi, Y. Influences of poly (butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polym. Degrad. Stabil., 2016, 129, 338-346.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.05.018]
[66]
Nikolić, M.A.L.; Gauthier, E.; Colwell, J.M. The challenges in lifetime prediction of oxodegradable polyolefin and biodegradable polymer films. Polym. Degrad. Stabil., 2017, 145, 102-119..
[http://dx.doi.org/10.1016/j.polymdegradstab.2017.07.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy