Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Review on the Development of Jute Polyethylene Nanocomposites as a Function of Fiber Chemical Treatments

Author(s): Md. Faruk Hossen*, Md. Ali Asraf, Md. Kudrat-E-Zahan and Choudhary M. Zakaria

Volume 14, Issue 2, 2022

Published on: 26 July, 2021

Page: [166 - 186] Pages: 21

DOI: 10.2174/1876402913666210726165017

Price: $65

Abstract

The research on jute fiber reinforced polymer composites is an emergent concern with the development of new materials due to their significant properties like economical, partially biodegradable, and environment friendly. It is wondered that the hydrophilic nature of jute fiber negatively affects the interfacial interaction with hydrophobic polymeric materials in the composite, which then affects the resultant mechanical, microstructural and physico-chemical absorption properties. In order to overcome this fact, researchers have carried out some techniques for fiber surface chemical treatments. On the other hand, due to the low processing costs and design flexibility, thermoplastics deal many benefits over thermoset polymers, and polyethylene shows excellent processing behaviors such as low density, low cost, considerable flex life, outstanding surface hardness, scratch resistance and good electrical insulator. Besides the traditional thermoplastic and thermosetting polymers, montmorillonite nanoclay is also receiving attention to manufacturing fiber polymer nanocomposites for industrial and household applications as well. This review is considered to highlight the progress of jute fiber reinforced polymer nanocomposites. The study also focuses on the several features of jute polymer composites and nanocomposites as a function of fiber chemical treatments.

Keywords: Polymer nanocomposites, jute fiber, hydrophilic nature, chemical treatments, jute polyethylene composites, clay as nanofiller, jute clay nanocomposites.

Graphical Abstract
[1]
Chattopadhyay, D.P. Introduction, chemistry and preparatory processes of jute. Colourage, 1998, 45(5), 23-36.
[2]
Siddika, S.; Mansura, F.; Hasan, M.; Hassan, A. Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers Polym., 2014, 15(5), 1023-1028.
[http://dx.doi.org/10.1007/s12221-014-1023-0]
[3]
Hossen, M.F.; Hamdan, S.; Rahman, M.R.; Rahman, M.M.; Liew, F.K.; Lai, J.C.H. Effect of fiber treatment and nanoclay on the tensile properties of jute fiber reinforced polyethylene/clay nanocomposites. Fibers Polym., 2015, 16(2), 479-485.
[http://dx.doi.org/10.1007/s12221-015-0479-x]
[4]
Shah, A.N.; Lakkad, S.C. Mechanical properties of jute-reinforced plastics. Fibre Sci. Technol., 1981, 15(1), 41-46.
[http://dx.doi.org/10.1016/0015-0568(81)90030-0]
[5]
Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ., 2007, 15(1), 25-33.
[http://dx.doi.org/10.1007/s10924-006-0042-3]
[6]
Khan, F.; Ahmad, S.R. Chemical modification and spectroscopic analysis of jute fiber. Polym. Degrad. Stabil., 1996, 52(3), 335-340.
[http://dx.doi.org/10.1016/0141-3910(95)00240-5]
[7]
Bledzki, K.; Reihmane, S.; Gassan, J. Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci., 1996, 59(8), 1329-1336.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329:AID-APP17>3.0.CO;2-0]
[8]
Herrera-Franco, P.J.; Valadez-Gonzalez, A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos., Part A Appl. Sci. Manuf., 2004, 35(3), 339-345.
[http://dx.doi.org/10.1016/j.compositesa.2003.09.012]
[9]
Seki, Y. Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater. Sci. Eng. A, 2009, 508(1-2), 247-252.
[http://dx.doi.org/10.1016/j.msea.2009.01.043]
[10]
Mohanty, S.; Nayak, S.K.; Verma, S.K.; Tripathy, S.S. Effect of MAPP as a coupling agent on the performance of jute-PP composites. J. Reinf. Plast. Compos., 2004, 23(6), 625-637.
[http://dx.doi.org/10.1177/0731684404032868]
[11]
Corrales, F.; Vilaseca, F.; Llop, M.; Gironès, J.; Méndez, J.A.; Mutjè, P. Chemical modification of jute fibers for the production of green-composites. J. Hazard. Mater., 2007, 144(3), 730-735.
[http://dx.doi.org/10.1016/j.jhazmat.2007.01.103] [PMID: 17320283]
[12]
Joseph, K.; Thomas, S.; Pavithran, C. Effect of chemical treatment on the tensile properties of short sisal fiber-reinforced polyethylene composites. Polymer (Guildf.), 1996, 37(23), 5139-5149.
[http://dx.doi.org/10.1016/0032-3861(96)00144-9]
[13]
Paul, A.; Joseph, K.; Thomas, S. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos. Sci. Technol., 1997, 57(1), 67-79.
[http://dx.doi.org/10.1016/S0266-3538(96)00109-1]
[14]
Nair, K.C.M.; Thomas, S.; Groeninckx, G. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibers. Compos. Sci. Technol., 2001, 61(16), 2519-2529.
[http://dx.doi.org/10.1016/S0266-3538(01)00170-1]
[15]
Rong, M.Z.; Zhang, M.Q.; Liu, Y.; Yang, G.C.; Zeng, H.M. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol., 2001, 61(10), 1437-1447.
[http://dx.doi.org/10.1016/S0266-3538(01)00046-X]
[16]
Mishra, S.; Misra, M.; Tripathy, S.S.; Nayak, S.K.; Mohanty, A.K. The influence of chemical surface modification on the performance of sisal-polyester biocomposites. Polym. Compos., 2002, 23(2), 164-170.
[http://dx.doi.org/10.1002/pc.10422]
[17]
Hong, C.K.; Hwang, I.; Kim, M.; Park, D.H.; Hwang, B.S.; Nah, C. Mechanical properties of silanized jute-polypropylene composites. J. Ind. Eng. Chem., 2008, 14, 71-76.
[http://dx.doi.org/10.1016/j.jiec.2007.07.002]
[18]
Wang, W.M.; Cai, Z.S.; Yu, J.Y.; Xia, Z.P. Changes in composition, structure, and properties of jute fibers after chemical treatments. Fibers Polym., 2009, 10(6), 776-780.
[http://dx.doi.org/10.1007/s12221-009-0776-3]
[19]
Kabir, M.A.; Huque, M.M.; Islam, M.R.; Bledzki, A.K. Mechanical properties of jute fiber reinforced polypropylene composite: Effect of chemical treatment by benzenediazonium salt in alkaline medium. BioResources, 2010, 5(3), 1618-1625.
[20]
Zaman, H.U.; Khan, M.A.; Khan, R.A.; Rahman, M.A.; Das, L.R.; Al-Mamun, M. Role of potassium permanganate and urea on the improvement of the mechanical properties of jute polypropylene composites. Fibers Polym., 2010, 11(3), 455-463.
[http://dx.doi.org/10.1007/s12221-010-0455-4]
[21]
Goriparthi, B.K.; Suman, K.N.S.; Rao, N.M. Effects of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos., Part A Appl. Sci. Manuf., 2012, 43(10), 1800-1808.
[http://dx.doi.org/10.1016/j.compositesa.2012.05.007]
[22]
Aggarwal, P.K.; Raghu, N.; Karmarkar, A.; Chuahan, S. Jute-polypropylene composites using m-TMI-grafted-polypropylene as a coupling agent. Mater. Des., 2013, 43, 112-117.
[http://dx.doi.org/10.1016/j.matdes.2012.06.026]
[23]
Singhal, P.; Tiwari, S.K. Effect of various chemical treatments on the damping property of jute fiber reinforced composite. Int. J. Adv. Mech. Engineer., 2014, 4(4), 413-424.
[24]
Hossen, M.F.; Hamdan, S.; Rahman, M.R.; Islam, M.S.; Liew, F.K.; Lai, J.C.H.; Rahman, M.M. Effect of clay content on the morphological, thermo-mechanical and chemical resistance properties of propionic anhydride treated jute fiber/polyethylene/nanoclay nanocomposites. Measurement, 2016, 90, 404-411.
[http://dx.doi.org/10.1016/j.measurement.2016.05.006]
[25]
Hossen, M.F.; Hamdan, S.; Rahman, M.R. Improved mechanical properties of silane treated jute/polyethylene/clay nanocomposites. Malays. Appl. Biol., 2018, 47(1), 209-2015.
[26]
Wang, H.; Memon, H.; Hassan, A.M. E.; Miah, M.S.; Ali, M.A. Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite. Materials (Basel), 2019, 12(8), 1226.
[http://dx.doi.org/10.3390/ma12081226] [PMID: 30991643]
[27]
Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol., 1999, 18(4), 351-363.
[http://dx.doi.org/10.1002/(SICI)1098-2329(199924)18:4<351:AID-ADV6>3.0.CO;2-X]
[28]
Brydson, J.A. Plastic materials. In: Newnes Butterworths, 3rd ed; London, 1975.
[29]
Miah, M.J.; Ahmed, F.; Hossain, A.; Khan, A.H.; Khan, M.A. Study on mechanical and dielectric properties of jute fiber reinforced low-density polyethylene (LDPE) composites. Polym. Plast. Technol. Eng., 2005, 44(8-9), 1443-1456.
[http://dx.doi.org/10.1081/200048718]
[30]
Hossen, M.F.; Asraf, M.A.; Kudrat-E-Zahan, M.; Zakaria, C.M. Potent application of jute polyethylene composites for storage tank as a function of fiber treatment. Egypt. J. Chem., 2020, 63(12), 4-7.
[31]
Sandler, J.; Werner, P.; Shaffer, M.S.P.; Denchuk, V.; Altstadt, V.; Windle, A.H. Carbon-nanofiber reinforced poly(ether ether ketone) composites. Compos., Part A Appl. Sci. Manuf., 2002, 33(8), 1033-1039.
[http://dx.doi.org/10.1016/S1359-835X(02)00084-2]
[32]
Deka, B.K.; Maji, T.K. Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite. Compos. Sci. Technol., 2010, 70(12), 1755-1761.
[http://dx.doi.org/10.1016/j.compscitech.2010.07.010]
[33]
Dewan, M.W.; Hossain, M.K.; Hosur, M.; Jeelani, S. Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. J. Appl. Polym. Sci., 2013, 128, 4110-4123.
[http://dx.doi.org/10.1002/app.38641]
[34]
Ma, J.; Xu, J.; Ren, J.H.; Yu, Z.Z.; Mai, Y.W. A new approach to polymer/montmorillonite nanocomposites. Polymer (Guildf.), 2003, 44(16), 4619-4624.
[http://dx.doi.org/10.1016/S0032-3861(03)00362-8]
[35]
Hossen, M.F.; Hamdan, S.; Rahman, M.R.; Islam, M.S.; Liew, F.K.; Lai, J.C.H.; Rahman, M.M. Improved thermal properties of jute fiber-reinforced polyethylene nanocomposites. Polym. Compos., 2017, 38(7), 1266-1272.
[http://dx.doi.org/10.1002/pc.23691]
[36]
Yoonessi, M.; Toghiani, H.; Kingery, W.L.; Pittman, C.U. Preparation, characterization, and properties of exfoliated/delaminated organically modified clay/dicyclopentadiene resin nanocomposites. Macromolecules, 2004, 37(7), 2511-2518.
[http://dx.doi.org/10.1021/ma0359483]
[37]
Lu, C.; Mai, Y.W. Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Phys. Rev. Lett., 2005, 95(8)088303
[http://dx.doi.org/10.1103/PhysRevLett.95.088303] [PMID: 16196908]
[38]
Hull, D.; Clyne, T.W. An introduction to composite materials; Cambridge University Press: Cambridge, 1996.
[http://dx.doi.org/10.1017/CBO9781139170130]
[39]
Amar, K.M.; Manjusri, M.; Lawrence, T.D. Natural fibers, biopolymers, and biocomposites. CRC Press; Tailor & Francis, 2005.
[40]
Singha, S.; Thakur, V.K. Mechanical properties of natural fiber reinforced polymer composites. Bull. Mater. Sci., 2008, 31, 791-799.
[http://dx.doi.org/10.1007/s12034-008-0126-x]
[41]
Wahit, M.U.; Akos, N.I.; Laftah, W.A. Influence of natural fibers on the mechanical properties and biodegradation of poly(lactic acid) and poly(e-caprolactone) composites: A review. Polym. Compos., 2012, 33, 1045-1053.
[http://dx.doi.org/10.1002/pc.22249]
[42]
Booth, C.; Price, C. Fibre, vegetable. Comprehensive polymer science, 7, 22; Pergamon: Oxford, 1989.
[43]
Eichhorn, S.J.; Baillie, C.A.; Zafeiropoulos, N.; Mwaikambo, L.Y.; Ansell, M.P. Review current international research into cellulosic fibers and composites. J. Mater. Sci. Technol., 2001, 36, 2107-2131.
[44]
Hon, D.N.S.; Shiraishi, N. Wood and cellulosic chemistry, 2nd ed; Marcel Dekker: New York, 2001.
[45]
Olesen, P.O. Perspectives on the performance of natural plant fibers. The Royal Veterinary and Agricultural University, Taastrup Denmark. Conference, 1999, Copenhagen, Denmark.
[46]
Farabee, M.J. The Online Biology Book. Estrella Mountain Community College: Avondale, 2006.
[47]
Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibers. Prog. Polym. Sci., 1999, 24, 221-274.
[http://dx.doi.org/10.1016/S0079-6700(98)00018-5]
[48]
Mohanty, A.K.; Misra, M.; Drzal, L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces, 2001, 8(5), 313-343.
[http://dx.doi.org/10.1163/156855401753255422]
[49]
Wang, B. Pre-treatment of flax fibers for use in rotationally molded bio-composites. MSC thesis, Department of agriculture and Bioresource Engineering, University of Saskatchewan,. 2004.
[50]
Frederick, T.W.; Norman, W. Natural fibers plastics and composites; Kluwer Academic Publishers: New York, 2004.
[51]
John, M.J.; Anandjiwala, R.D. Recent developments in chemical modification and characterization of natural fiber‐reinforced composites. Polym. Compos., 2008, 29(2), 187-207.
[http://dx.doi.org/10.1002/pc.20461]
[52]
Rowell, R.M.; Young, R.A.; Rowell, J.K. Paper and composites from agro-based resources; CRC Lewis Publishers: Boca Raton, FL, 1997.
[53]
Sinha, E.; Rout, S.K. Influence of fiber-surface treatment on structural, thermal and mechanical properties of jute fiber and its composite. Bull. Mater. Sci., 2009, 32(1), 65-76.
[http://dx.doi.org/10.1007/s12034-009-0010-3]
[54]
Gassan, J.; Bledzki, A.K. Possibilities for improving the mechanical properties of jute-epoxy composites by alkali treatment of fibers. Compos. Sci. Technol., 1999, 59, 1303-1309.
[http://dx.doi.org/10.1016/S0266-3538(98)00169-9]
[55]
Agrawal, R.; Saxena, N.S.; Sharma, K.B.; Thomas, S.; Sreekala, M.S. Activation energy and crystallization kinetics of untreated and treated oil palm fiber reinforced phenol formaldehyde composites. Mater. Sci. Eng. A, 2000, 277(1-2), 77-82.
[http://dx.doi.org/10.1016/S0921-5093(99)00556-0]
[56]
Bismarck, A.; Springer, J.; Mohanty, A.K.; Hinrichsen, G.; Khan, M.A. Characterization of several modified jute fibers using zeta-potential measurements. Colloid Polym. Sci., 2000, 278, 229-235.
[http://dx.doi.org/10.1007/s003960050036]
[57]
Hossain, M.K.; Dewan, M.W.; Hosur, M.; Jeelani, S. Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Compos., Part B Eng., 2011, 42, 1701-1707.
[http://dx.doi.org/10.1016/j.compositesb.2011.03.010]
[58]
Ray, D.; Sarkar, B.K.; Rana, A.K.; Bose, N.R. Effect of alkali treated jute fibers on composite properties. Bull. Mater. Sci., 2001, 24(1), 129-135.
[http://dx.doi.org/10.1007/BF02710089]
[59]
Mishra, S.; Misra, M.; Tripathy, S.S.; Nayak, S.K.; Mohanty, A.K. Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol. Mater. Eng., 2001, 286(2), 107-113.
[http://dx.doi.org/10.1002/1439-2054(20010201)286:2<107:AID-MAME107>3.0.CO;2-0]
[60]
Morrison Iii, W.H.; Archibald, D.D.; Sharma, H.S.S.; Akin, D.E. Chemical and physical characterization of water- and dew-retted flax fibers. Ind. Crops Prod., 2000, 12(1), 39-46.
[http://dx.doi.org/10.1016/S0926-6690(99)00044-8]
[61]
Garcia-Jaldon, C.; Dupeyre, D.; Vignon, M.R. Fibers from semi-retted hemp bundles by steam explosion treatment. Biom. Bioener., 1998, 14(3), 251-260.
[62]
Alvarez, V.; Rodriguez, E.; Vazquez, A. Thermal degradation and decomposition of jute/vinylester composites. J. Therm. Anal. Calorim., 2006, 85(2), 383-389.
[http://dx.doi.org/10.1007/s10973-005-7102-0]
[63]
Vilaseca, F.; Mendez, J.A.; Pelach, A.; Llop, M.; Canigueral, N.; Girones, J.; Turon, X.; Mutje, P. Composite materials derived from biodegradable starch polymer and jute strands. Process Biochem., 2007, 42, 329-334.
[http://dx.doi.org/10.1016/j.procbio.2006.09.004]
[64]
Boopalan, M.; Umapathy, M.J.; Jenyfer, P. A comparative study on the mechanical properties of jute and sisal fiber reinforced polymer composites. Silicon, 2012, 4, 145-149.
[http://dx.doi.org/10.1007/s12633-012-9110-6]
[65]
Doan, T.T.L.; Brodowsky, H.; Mader, E. Jute fiber/epoxy composites: Surface properties and interfacial adhesion. Compos. Sci. Technol., 2012, 72, 1160-1166.
[http://dx.doi.org/10.1016/j.compscitech.2012.03.025]
[66]
Khan, J.A.; Khan, M.A.; Islam, R. Effect of mercerization on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composites. Fibers Polym., 2012, 13(10), 1300-1309.
[http://dx.doi.org/10.1007/s12221-012-1300-8]
[67]
Kabir, M.M.; Islam, M.M.; Wang, H. Mechanical and thermal properties of jute fiber reinforced composites. J. Multif. Compos., 2013, 1(1), 71-77.
[68]
Valadez-Gonzalez, A.; Cervantes-Uc, J.M.; Olayo, R.; Herrera-Franco, P.J. Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos., Part B Eng., 1999, 30(3), 309-320.
[http://dx.doi.org/10.1016/S1359-8368(98)00054-7]
[69]
Chanda, A.K.; Hazra, A.; Kumar, M.P.; Neogi, S.; Neogi, S. Chemical treatments of rice husk filler and jute fiber for the use in green composites. Fibers Polym., 2015, 16(4), 902-910.
[http://dx.doi.org/10.1007/s12221-015-0902-3]
[70]
Ali, M.E.; Yong, C.K.; Ching, Y.C.; Chiah, C.H.; Liou, N.S. Effect of single and double stagechemically treated kenaf fibers on mechanical properties of PVA film. BioResources, 2015, 10(1), 822-838.
[71]
Parida, C.; Dash, S.K.; Das, S.C. Effect of fiber treatment and fiber loading on mechanical properties of luffa-resorcinol composites. Ind. J. Mater. Sci, 2015, 2015, Article ID 658064.
[72]
Arulmurugan, S.; Venkateshwaran, N. Effect of nanoclay addition and chemical treatment on static and dynamic mechanical analysis of jute fibre composites. Polímeros, 2020, 29(4)e2019054
[http://dx.doi.org/10.1590/0104-1428.08619]
[73]
Hill, C.A.S.; Abdul-Khalil, H.P.S.; Hale, M.D. A study of the potential of acetylation to improve the properties of plant fibers. Ind. Crops Prod., 1998, 8(1), 53-63.
[http://dx.doi.org/10.1016/S0926-6690(97)10012-7]
[74]
Rana, A.K.; Basak, R.K.; Mitra, B.C.; Lawther, M.; Banerjee, A.N. Studies of acetylation of jute using simplified procedure and its characterization. J. Appl. Polym. Sci., 1997, 64, 1517-1523.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19970523)64:8<1517:AID-APP9>3.0.CO;2-K]
[75]
Sreekala, M.S.; Thomas, S. Effect of fiber surface modification on water-sorption characteristics of oil palm fibers. Compos. Sci. Technol., 2003, 63(6), 861-869.
[http://dx.doi.org/10.1016/S0266-3538(02)00270-1]
[76]
Mishra, S.; Mohanty, A.K.; Drzal, L.T.; Misra, M.; Parija, S.; Nayak, S.K.; Tipathy, S.S. Studies on mechanical performance of bio-fiber/glass reinforced polyester hybrid composites. Compos. Sci. Technol., 2003, 63(10), 1377-1385.
[http://dx.doi.org/10.1016/S0266-3538(03)00084-8]
[77]
Hill, C.A.S.; Jones, D. The dimensional stabilisation of corsican pine sapwood by reaction with carboxylic acid anhydrides. The effect of chain length. Holzforschung, 1996, 50(5), 457-462.
[http://dx.doi.org/10.1515/hfsg.1996.50.5.457]
[78]
Paul, S.; Puja, N.; Rajive, G. PhCOCl-Py/basic alumina as a versatile reagent for benzoylation in solvent-free conditions. Molecules, 2003, 8(4), 374-380.
[http://dx.doi.org/10.3390/80400374]
[79]
Joseph, K.; Mattoso, L.H.C.; Toledo, R.D.; Thomas, S.; de-Carvalho, L.H.; Pothen, S. Natural polymers and agro-fibers composites. In: Embrapa; USP-IQSC, UNESP: Brazil, 2000, pp. 159- 201.
[80]
Ismail, H.; Edyham, M.R.; Wirjosentono, B. Bamboo fiber filled natural rubber composites: the effects of filler loading and bonding agent. Polym. Test., 2002, 21(2), 139-144.
[http://dx.doi.org/10.1016/S0142-9418(01)00060-5]
[81]
Haque, M.M.; Hasan, M.; Islam, M.S.; Ali, M.E. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour. Technol., 2009, 100(20), 4903-4906.
[http://dx.doi.org/10.1016/j.biortech.2009.04.072] [PMID: 19477124]
[82]
Morrison, R.T.; Boyd, R.N. Organic Chemistry; Prentice Iternational Inc: London, 1989.
[83]
Weyenberg, I.V.; Ivens, J.; Coster, A.; Kino, B.; Baetens, E.; Verpoest, I. Influence of processing and chemical treatment of flax fibers on their composites. Compos. Sci. Technol., 2003, 63, 1241-1246.
[http://dx.doi.org/10.1016/S0266-3538(03)00093-9]
[84]
Wang, X.; Cui, Y.; Xu, Q.; Xie, B.; Li, W. Effect of alkali and silane treatment on the mechanical properties of jute-fiber-reinforced recycled polypropylene composites. J. Vinyl Addit. Technol., 2010, 16, 183-188.
[http://dx.doi.org/10.1002/vnl.20230]
[85]
Sever, K. The improvement of mechanical properties of jute fiber/LDPE composites by fiber surface treatment. J. Reinf. Plast. Compos., 2010, 29(13), 1921-1929.
[http://dx.doi.org/10.1177/0731684409339078]
[86]
Gaikwad, P.; Mahanwar, P.; Bambole, V. Surface Treated and Untreated Henequen Fiber Reinforced Polypropylene Composites. Int. J. Chem. Environ. Biol. Sci., 2014, 2(4), 181-186.
[87]
Mohammed, L.; Ansari, M.N.M.; Pua, F.L. Effect of chemical treatment on oil palm fiber/epoxy composites. Int. J. Sci. Eng. Technol., 2015, 3(1), 322-327.
[88]
Salam, M.A. Effect of hydrogen peroxide bleaching onto sulfonated jute fiber. J. Appl. Polym. Sci., 2006, 99, 3603-3607.
[http://dx.doi.org/10.1002/app.22954]
[89]
George, J.; Janardhan, R.; Anand, J.S.; Bhagawan, S.S.; Thomas, S. Melt rheological behaviour of short pineapple fiber reinforced low density polyethylene composites. Polymer (Guildf.), 1996, 37(24), 5421-5431.
[http://dx.doi.org/10.1016/S0032-3861(96)00386-2]
[90]
Karmarkar, A.; Chauhan, S.S.; Modak, J.M.; Chanda, M. Mechanical properties of wood-fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos., Part A Appl. Sci. Manuf., 2007, 38(2), 227-233.
[http://dx.doi.org/10.1016/j.compositesa.2006.05.005]
[91]
Zafeiropoulos, N.E.; Wiiliams, D.R.; Baillie, C.A.; Matthews, F.L. Engineering and characterisation of the interface in flax fiber/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos., Part A Appl. Sci. Manuf., 2002, 33(8), 1083-1093.
[http://dx.doi.org/10.1016/S1359-835X(02)00082-9]
[92]
Li, X.; Panigrahi, S.; Tabil, L.G.; Crerar, W.J. CSAE/ASAE Annual Intersectional Meeting., 2004, pp. 24-25.
[93]
Karmaker, A.C.; Hinrichsen, G. Processing and characterization of jute fiber reinforced thermoplastic polymers. Polym. Plast. Technol. Eng., 1991, 30(5-6), 609-629.
[http://dx.doi.org/10.1080/03602559108019223]
[94]
Miah, M.J.; Khan, M.A.; Khan, R.A. Fabrication and characterization of jute fiber reinforced low density polyethylene based composites: Effects of chemical treatment. J. Sci. Res., 2011, 3(2), 249-259.
[http://dx.doi.org/10.3329/jsr.v3i2.6763]
[95]
Mittal, V. Polymer layered silicate nanocomposites: A review. Materials (Basel), 2009, 2, 992-1057.
[http://dx.doi.org/10.3390/ma2030992]
[96]
Pavlidou, S.; Papaspyrides, C.D. A review on polymer-layered silicate nanocompopsites. Prog. Polym. Sci., 2008, 32, 1119-1198.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008]
[97]
Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Synthesis of nylon 6-clay hybrid. J. Mater. Res., 1993, 8(5), 1179-1184.
[http://dx.doi.org/10.1557/JMR.1993.1179]
[98]
Ye, Y.; Chen, H.; Wu, J. High impact strength epoxy nanocomposites with natural nanotubes. Polymer (Guildf.), 2007, 48, 6426-6433.
[http://dx.doi.org/10.1016/j.polymer.2007.08.035]
[99]
Alexandre, B.; Langevin, D.; Mederic, P.; Aubry, T.; Couderc, H. Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. J. Membr. Sci., 2009, 328(1-2), 186-204.
[http://dx.doi.org/10.1016/j.memsci.2008.12.004]
[100]
Zainuddin, S.; Hosur, M.V.; Zhou, Y.; Narteh, A.T.; Kumar, A.; Jeelani, S. Experimental and numerical investigations on flexural and thermal properties of nanoclay-epoxy nanocomposites. Mater. Sci. Eng. A, 2010, 527(29-30), 7920-7926.
[http://dx.doi.org/10.1016/j.msea.2010.08.078]
[101]
Bondeson, D.; Mathew, A.; Oksman, K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 2006, 13(2), 171-180.
[http://dx.doi.org/10.1007/s10570-006-9061-4]
[102]
Zhang, C.; Tjiu, W.W.; Fan, W.; Yang, Z.; Huang, S.; Liu, T. Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly. J. Mater. Chem., 2011, 21(44), 18011-18017.
[http://dx.doi.org/10.1039/c1jm13236a]
[103]
Mitsudome, T.; Matsuno, T.; Sueoka, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Direct synthesis of unsymmetrical ethers from alcohols catalysed by titanium cation-exchanged montmorillonite. Green Chem., 2012, 14(3), 610-613.
[http://dx.doi.org/10.1039/c2gc16135d]
[104]
Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci., 2003, 28(11), 1539-1641.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002]
[105]
Bruzaud, S.; Bourmaud, A. Thermal degradation and (nano) mechanical behaviour of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym. Test., 2007, 26, 652-659.
[http://dx.doi.org/10.1016/j.polymertesting.2007.04.001]
[106]
Das, K.; Ray, D.; Bandyopadhyay, N.R.; Sahoo, S.; Mohanty, A.K.; Misra, M. Physico-mechanical properties of the jute micro/nanofibril reinforced starch/polyvinyl alcohol biocomposite films. Compos., Part B Eng., 2011, 42(3), 376-381.
[http://dx.doi.org/10.1016/j.compositesb.2010.12.017]
[107]
Iman, M.; Maji, T.K. Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohydr. Polym., 2012, 89(1), 290-297.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.012] [PMID: 24750636]
[108]
Iman, M.; Bania, K.K.; Maji, T.K. Green jute-based cross-linked soy flour nanocomposites reinforced with cellulose whiskers and nanoclay. Ind. Eng. Chem. Res., 2013, 52(21), 6969-6983.
[http://dx.doi.org/10.1021/ie400609t]
[109]
Hossen, M.F.; Asraf, M.A.; Kudrat-E-Zahan, M.; Haque, M.M.; Zamir, R.; Zakaria, C.M. Optimization of nanoclay loading on the thermomechanical behavior of chemically treated jute polyethylene nanocomposites. J. Mater. Sci. Res. Rev., 2020, 5(3), 1-12.
[110]
Wang, K.H.; Choi, M.H.; Koo, C.M.; Choi, Y.S.; Chung, I.J. Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer (Guildf.), 2001, 42(24), 9819-9826.
[http://dx.doi.org/10.1016/S0032-3861(01)00509-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy