Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Micelles in Cancer Therapy: An Update on Preclinical and Clinical Status

Author(s): Rabia Aqeel, Nidhi Srivastava and Poonam Kushwaha*

Volume 16, Issue 4, 2022

Published on: 20 July, 2021

Page: [283 - 294] Pages: 12

DOI: 10.2174/1872210515666210720125717

Price: $65

Abstract

Background: In the recent years, Micelles represent a promising carrier for the treatment and diagnosis of cancer. Architecturally, micelles are self-assembled nanosized colloidal aggregates prepared from amphiphilic surfactant with a hydrophobic core and hydrophilic shell. Such a composition makes them a potential carrier for delivery of hydrophobic anticancer drugs with in their core.

Methods: Micelles have received increasing interest as an enhanced permeability and retention (EPR) targeted drug delivery systems for cancer treatment. Micelles can be modified to contribute various attractive properties, for instance, active targeting, stimuli-responsiveness. They have also proven their ability in drug targeting to tumor tissue, enhanced drug accumulation, drug stabilization, tissue penetration, prolong circulation, in vivo biocompatibility, biodegradability and reduced side effects. Micelles have displayed a vital role in multidrug delivery for cancer therapy.

Results and Discussion: The aim of the present review is to provide an overview on the status of micellar nanoformulations for anticancer agents, including their pre-clinical and clinical researches. Emphasis is placed on presenting the newer strategies to enhance the therapeutic efficacy of anticancer drug at the target site. The type of co-polymers used and methods for the preparation of micelles are also highlighted in the paper.

Keywords: Micelles, Critical Micelle Concentration (CMC), cancer therapy, co-polymers, multi-drug delivery, tumor targeted delivery.

Graphical Abstract
[1]
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019; 6(1): 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[2]
Fitzmaurice C, Dicker D, Pain A, et al. The global burden of cancer 2013. JAMA Oncol 2015; 1(4): 505-27.
[http://dx.doi.org/10.1001/jamaoncol.2015.0735] [PMID: 26181261]
[3]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011; 1(4): 295-302.
[http://dx.doi.org/10.1007/s10059-011-0051-5]
[5]
Talelli M, Rijcken CJ, Hennink WE, Lammers T. PMs for cancer therapy: 3 C’s to enhance efficacy. Curr Opin Solid State Mater Sci 2012; 16(6): 302-9.
[http://dx.doi.org/10.1016/j.cossms.2012.10.003]
[6]
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007; 9(2): E128-47.
[http://dx.doi.org/10.1208/aapsj0902015] [PMID: 17614355]
[7]
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine (Lond) 2010; 6(1): 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[8]
Gaucher G, Satturwar P, Jones MC, Furtos A, Leroux JC. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm 2010; 76(2): 147-58.
[http://dx.doi.org/10.1016/j.ejpb.2010.06.007] [PMID: 20600891]
[9]
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artif Cells Nanomed Biotechnol 2019; 47(1): 1476-87.
[http://dx.doi.org/10.1080/21691401.2019.1601104] [PMID: 31070063]
[10]
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull 2017; 7(3): 339-48.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[11]
Sant VP, Smith D, Leroux JC. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release 2005; 104(2): 289-300.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.010] [PMID: 15907580]
[12]
Wei T, Chen C, Liu J, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci USA 2015; 112(10): 2978-83.
[http://dx.doi.org/10.1073/pnas.1418494112] [PMID: 25713374]
[13]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[14]
Zhang X, Huang Y, Li S. Nanomicellar carriers for targeted delivery of anticancer agents. Ther Deliv 2014; 5(1): 53-68.
[http://dx.doi.org/10.4155/tde.13.135] [PMID: 24341817]
[15]
Al-Achi A, Lawrence J. Micelles: Chemotherapeutic drug delivery. Clin Pharmacol Biopharm 2013; 2(2)
[16]
Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007; 9: 257-88.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025] [PMID: 17439359]
[17]
Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett 2002; 2(9): 979-82.
[http://dx.doi.org/10.1021/nl025604a]
[18]
Rejinold NS, Muthunarayanan M, Chennazhi KP, Nair SV, Jayakumar R. Curcumin loaded fibrinogen nanoparticles for cancer drug delivery. J Biomed Nanotechnol 2011; 7(4): 521-34.
[http://dx.doi.org/10.1166/jbn.2011.1320] [PMID: 21870456]
[19]
Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 2008; 60(8): 899-914.
[http://dx.doi.org/10.1016/j.addr.2007.11.010] [PMID: 18406004]
[20]
Xu W, Ling P, Zhang T. PMs, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013; 1-15.
[http://dx.doi.org/10.1155/2013/340315]
[21]
Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm Res 2010; 27(12): 2569-89.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771]
[22]
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nanosci Tech 2010; pp. 239-50.
[23]
Deng C, Jiang Y, Cheng R, Meng F, Zhong Z. Biodegradable PMs for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today 2012; 7(5): 467-80.
[http://dx.doi.org/10.1016/j.nantod.2012.08.005]
[24]
Kwon GS, Okano T. PMs as new drug carriers. Adv Drug Deliv Rev 1996; 21(2): 107-16.
[http://dx.doi.org/10.1016/S0169-409X(96)00401-2]
[25]
Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2007; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[26]
Cho H, Lai TC, Tomoda K, Kwon GS. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech 2015; 16(1): 10-20.
[http://dx.doi.org/10.1208/s12249-014-0251-3] [PMID: 25501872]
[27]
Buggins TR, Dickinson PA, Taylor G. The effects of pharmaceutical excipients on drug disposition. Adv Drug Deliv Rev 2007; 59(15): 1482-503.
[http://dx.doi.org/10.1016/j.addr.2007.08.017] [PMID: 18198495]
[28]
Nezami-Alanagh E, Garoosi GA, Landín M, Gallego PP. Computer-based tools provide new insight into the key factors that cause physiological disorders of pistachio rootstocks cultured in vitro. Sci Rep 2019; 9(1): 9740.
[http://dx.doi.org/10.1038/s41598-019-46155-2] [PMID: 31278299]
[29]
Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: Preparation, characterization and application in drug delivery. J Control Release 2005; 109(1-3): 169-88.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.034] [PMID: 16289422]
[30]
Jeong K, Kang CS, Kim Y, Lee YD, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett 2016; 374(1): 31-43.
[http://dx.doi.org/10.1016/j.canlet.2016.01.050] [PMID: 26854717]
[31]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17-18): 812-8.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[32]
Nakayama M, Akimoto J, Okano T. Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. J Drug Target 2014; 22(7): 584-99.
[http://dx.doi.org/10.3109/1061186X.2014.936872] [PMID: 25012066]
[33]
Mourya VK, Inamdar N, Nawale RB, Kulthe SS. PMs: General considerations and their applications. Indian J Pharm Educ Res 2011; 45(2): 128-38.
[34]
Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. PMs: Authoritative aspects for drug delivery. Des Monomers Polym 2012; 15(5): 465-521.
[http://dx.doi.org/10.1080/1385772X.2012.688328]
[35]
Mohan A, Nair SV, Lakshmanan VK. Polymeric nanomicelles for cancer theragnostics. Int J Polym Mater 2018; 67(2): 119-30.
[http://dx.doi.org/10.1080/00914037.2017.1309540]
[36]
Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113: 211-28.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.019] [PMID: 28087380]
[37]
Sotoudegan F, Amini M, Faizi M, Aboofazeli R. Nimodipine-loaded Pluronic® block copolymer micelles: Preparation, characterization, in vitro and in vivo studies. Iran J Pharm Res 2016; 15(4): 641-61.
[PMID: 28243263]
[38]
Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine (Lond) 2010; 6(6): 714-29.
[http://dx.doi.org/10.1016/j.nano.2010.05.005] [PMID: 20542144]
[39]
Yokoyama M. PMs drug carriers for tumor targetingPolymeric drug delivery Particulate drug carriers, Series 924 Washington. DC: ACS Publications 2006; pp. 27-36.
[http://dx.doi.org/10.1021/bk-2006-0923.ch003]
[40]
Ulldemolins A, Seras-Franzoso J, Andrade F, et al. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist 2021; 4: 44-68.
[41]
Gener P, Montero S, Xandri-Monje H, et al. Zileuton™ loaded in polymer micelles effectively reduce breast cancer circulating tumor cells and intratumoral cancer stem cells. Nanomedicine (Lond) 2020; 24: 102106.
[http://dx.doi.org/10.1016/j.nano.2019.102106] [PMID: 31666201]
[42]
Park IH, Sohn JH, Kim SB, et al. An open-label, randomized, parallel, phase iii trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor el-based paclitaxel for recurrent or metastatic her2-negative breast cancer. Cancer Res Treat 2017; 49(3): 569-77.
[http://dx.doi.org/10.4143/crt.2016.289] [PMID: 27618821]
[43]
Le B, Powers GL, Tam YT, et al. Multi-drug loaded micelles delivering chemotherapy and targeted therapies directed against HSP90 and the PI3K/AKT/mTOR pathway in prostate cancer. PLoS One 2017; 12(3): e0174658.
[http://dx.doi.org/10.1371/journal.pone.0174658] [PMID: 28350865]
[44]
Yang R, Chen H, Guo D, et al. Polymeric micellar delivery of novel microtubule destabilizer and hedgehog signaling inhibitor for treating chemoresistant prostate cancer. J Pharmacol Exp Ther 2019; 370(3): 864-75.
[http://dx.doi.org/10.1124/jpet.119.256628] [PMID: 30996033]
[45]
Mirsafaei R, Varshosaz J. Polyacrylamide–punicic acid conjugatebased micelles for flutamide delivery in PC3 cells of prostate cancer: Synthesis, characterisation and cytotoxicity studies. 2020; 15(5): 417-22.
[46]
Barve A, Jain A, Liu H, Zhao Z, Cheng K. Enzyme-responsive PMs of cabazitaxel for prostate cancer targeted therapy. Acta Biomater In press
[47]
Mohammad YA. SeragEldin IE, Ali AS, Usama AF, Nabil AA, Shadab MD. Ellagic acid loaded tpgs micelles for enhanced anticancer activities in ovarian cancer. Int J Pharmacol 2020; 16: 63-71.
[48]
Gao X, Wang B, Wei X, et al. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 2012; 4(22): 7021-30.
[http://dx.doi.org/10.1039/c2nr32181e] [PMID: 23044718]
[49]
Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet 2009; 374(9698): 1371-82.
[http://dx.doi.org/10.1016/S0140-6736(09)61338-6] [PMID: 19793610]
[50]
Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 2012; 12(4): 237-51.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[51]
Dantzer R, Meagher MW, Cleeland CS. Translational approaches to treatment-induced symptoms in cancer patients. Nat Rev Clin Oncol 2012; 9(7): 414-26.
[http://dx.doi.org/10.1038/nrclinonc.2012.88] [PMID: 22641361]
[52]
Li J, Yao S, Wang K, et al. Hypocrellin B-loaded, folate-conjugated polymeric micelle for intraperitoneal targeting of ovarian cancer in vitro and in vivo. Cancer Sci 2018; 109(6): 1958-69.
[http://dx.doi.org/10.1111/cas.13605] [PMID: 29617063]
[53]
Narayanan BA, Geoffroy O, Willingham MC, Re GG, Nixon DW. p53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells. Cancer Lett 1999; 136(2): 215-21.
[http://dx.doi.org/10.1016/S0304-3835(98)00323-1] [PMID: 10355751]
[54]
Massagué J. G1 cell-cycle control and cancer. Nature 2004; 432(7015): 298-306.
[http://dx.doi.org/10.1038/nature03094] [PMID: 15549091]
[55]
Bahuguna A, Khan I, Bajpai VK, Kang SC. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol 2017; 12(2)
[http://dx.doi.org/10.3329/bjp.v12i2.30892]
[56]
Fan D, Yu J, Yan R, et al. Preparation and evaluation of doxorubicin-loaded micelles based on glycyrrhetinic acid modified gelatin conjugates for targeting hepatocellular carcinoma. J Nanomater 2018.
[http://dx.doi.org/10.1155/2018/8467169]
[57]
Petrick JL, Braunlin M, Laversanne M, Valery PC, Bray F, McGlynn KA. International trends in liver cancer incidence, overall and by histologic subtype, 1978-2007. Int J Cancer 2016; 139(7): 1534-45.
[http://dx.doi.org/10.1002/ijc.30211] [PMID: 27244487]
[58]
Zhang C, Wang W, Liu T, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials 2012; 33(7): 2187-96.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.045] [PMID: 22169820]
[59]
Zhang Z, Yang L, Hou J, et al. Promising positive liver targeting delivery system based on arabinogalactan-anchored PMs of norcantharidin. Artif Cells Nanomed Biotech 2018; 46(sup3): S630-40.
[60]
Pranatharthiharan S, Patel MD, Malshe VC, et al. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv 2017; 24(1): 20-9.
[http://dx.doi.org/10.1080/10717544.2016.1225856] [PMID: 28155331]
[61]
Han Z, Li B, Wang J, et al. Norcantharidin inhibits SK-N-SH neuroblastoma cell growth by induction of autophagy and apoptosis. Technol Cancer Res Treat 2017; 16(1): 33-44.
[http://dx.doi.org/10.1177/1533034615624583] [PMID: 26755751]
[62]
Su Y, Wang K, Li Y, et al. Sorafenib-loaded polymeric micelles as passive targeting therapeutic agents for hepatocellular carcinoma therapy. Nanomedicine (Lond) 2018; 13(9): 1009-23.
[http://dx.doi.org/10.2217/nnm-2018-0046] [PMID: 29630448]
[63]
Wu YL, Li Z. The perspectives of using unimolecular micelles in nanodrug formulation. Ther Deliv 2019; 10(6): 333-5.
[http://dx.doi.org/10.4155/tde-2019-0033] [PMID: 31140376]
[64]
Zhang J, Wang T, Mu S, Olerile LD, Yu X, Zhang N. Biomacromolecule/lipid hybrid nanoparticles for controlled delivery of sorafenib in targeting hepatocellular carcinoma therapy. Nanomedicine (Lond) 2017; 12(8): 911-25.
[http://dx.doi.org/10.2217/nnm-2016-0402] [PMID: 28339312]
[65]
Hadjichristidis N, Pispas S, Floudas G. Block copolymers: Synthetic strategies, physical properties, and applications. John Wiley & Sons 2003.
[66]
Patil S, Ujalambkar V, Rathore A, Rojatkar S, Pokharkar V. Galangin loaded galactosylated pluronic F68 polymeric micelles for liver targeting. Biomed Pharmacother 2019; 112: 108691.
[http://dx.doi.org/10.1016/j.biopha.2019.108691] [PMID: 30798131]
[67]
Zhang HT, Luo H, Wu J, et al. Galangin induces apoptosis of hepatocellular carcinoma cells via the mitochondrial pathway. World J Gastroenterol 2010; 16(27): 3377-84.
[http://dx.doi.org/10.3748/wjg.v16.i27.3377] [PMID: 20632439]
[68]
Wu DQ, Li ZY, Li C, et al. Porphyrin and galactosyl conjugated micelles for targeting photodynamic therapy. Pharm Res 2010; 27(1): 187-99.
[http://dx.doi.org/10.1007/s11095-009-9998-8] [PMID: 19888639]
[69]
Li XY, Wang JH, Gu LY, et al. Dual variable of drug loaded micelles in both particle and electrical charge on gastric cancer treatment. J Drug Target 2020; 28(10): 1071-84.
[http://dx.doi.org/10.1080/1061186X.2020.1777419] [PMID: 32484364]
[70]
Kumar PV, Lokesh BVS. Designing and in vitro characterization of micelle forming amphiphilic PEGylated rapamycin nanocarriers for the treatment of gastric cancer. Curr Drug Deliv 2014; 11(5): 613-20.
[http://dx.doi.org/10.2174/156720181105140922124759] [PMID: 25268676]
[71]
Guo W, Deng L, Chen Z, et al. Vitamin B12-conjugated sericin micelles for targeting CD320-overexpressed gastric cancer and reversing drug resistance. Nanomedicine (Lond) 2019; 14(3): 353-70.
[http://dx.doi.org/10.2217/nnm-2018-0321] [PMID: 30328369]
[72]
Shi J, Liu S, Yu Y, He C, Tan L, Shen YM. RGD peptide-decorated micelles assembled from polymer-paclitaxel conjugates towards gastric cancer therapy. Colloids Surf B Biointerfaces 2019; 180: 58-67.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.042] [PMID: 31028965]
[73]
Lu Y, Zhong L, Jiang Z, et al. Cationic micelle-based siRNA delivery for efficient colon cancer gene therapy. Nanoscale Res Lett 2019; 14(1): 193.
[http://dx.doi.org/10.1186/s11671-019-2985-z] [PMID: 31165329]
[74]
Gou M, Men K, Shi H, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 2011; 3(4): 1558-67.
[http://dx.doi.org/10.1039/c0nr00758g] [PMID: 21283869]
[75]
Valerii MC, Benaglia M, Caggiano C. Drug delivery by PMs: An in vitro and in vivo study to deliver lipophilic substances to colonocytes and selectively target inflamed colon. Nanomedicine (Lond) 2013; 9(5): 675-85.
[http://dx.doi.org/10.1016/j.nano.2012.11.007] [PMID: 23656261]
[76]
Yang X, Li Z, Wang N, et al. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci Rep 2015; 5: 10322.
[http://dx.doi.org/10.1038/srep10322] [PMID: 25980982]
[77]
Garg SM, Paiva IM, Vakili MR, et al. Traceable PEO-poly(ester) micelles for breast cancer targeting: The effect of core structure and targeting peptide on micellar tumor accumulation. Biomaterials 2017; 144: 17-29.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.001] [PMID: 28818703]
[78]
Xiang J, Wu B, Zhou Z, et al. Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Sci China Life Sci 2018; 61(4): 436-47.
[http://dx.doi.org/10.1007/s11427-017-9274-9] [PMID: 29572777]
[79]
Liu T, Romanova S, Wang S, et al. Alendronate-modified polymeric micelles for the treatment of breast cancer bone metastasis. Mol Pharm 2019; 16(7): 2872-83.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01343] [PMID: 31150251]
[80]
Cheng X, Zeng X, Zheng Y, et al. pH-sensitive pluronic micelles combined with oxidative stress amplification for enhancing multidrug resistance breast cancer therapy. J Colloid Interface Sci 2020; 565: 254-69.
[http://dx.doi.org/10.1016/j.jcis.2020.01.029] [PMID: 31978788]
[81]
Khaliq NU, Park DY, Yun BM, et al. Pluronics: Intelligent building units for targeted cancer therapy and molecular imaging. Int J Pharm 2019; 556: 30-44.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.064] [PMID: 30529667]
[82]
Wang Y, Hao J, Li Y, et al. Poly(caprolactone)-modified Pluronic P105 micelles for reversal of paclitaxcel-resistance in SKOV-3 tumors. Biomaterials 2012; 33(18): 4741-51.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.013] [PMID: 22445254]
[83]
Sun M, He L, Wang X, Tang R. Acid-breakable TPGS-functionalized and diallyl disulfide-crosslinked nanogels for enhanced inhibition of MCF-7/ADR solid tumours. J Mater Chem B Mater Biol Med 2019; 7(2): 240-50.
[http://dx.doi.org/10.1039/C8TB02742K] [PMID: 32254549]
[84]
Hu Y, He Y, Ji J, Zheng S, Cheng Y. Tumor targeted curcumin delivery by folate-modified mpeg-pcl self-assembly micelles for colorectal cancer therapy. Int J Nanomedicine 2020; 15: 1239-52.
[http://dx.doi.org/10.2147/IJN.S232777] [PMID: 32110020]
[85]
Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res 2018; 9(1): 2-8.
[http://dx.doi.org/10.4103/japtr.JAPTR_314_17] [PMID: 29441317]
[86]
Sandhu PS, Kumar R, Katare OP, Singh B. Surface-tailored nanomixed micelles containing quercetin-salicylic acid physical complex for enhanced cellular and in vivo activities: A quality by design perspective. Nanomedicine (Lond) 2017; 12(11): 1281-303.
[http://dx.doi.org/10.2217/nnm-2017-0040] [PMID: 28524720]
[87]
Xu H, Wen Y, Chen S, Zhu L, Feng R, Song Z. Paclitaxel skin delivery by micelles-embedded Carbopol 940 hydrogel for local therapy of melanoma. Int J Pharm 2020; 587: 119626.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119626] [PMID: 32659404]
[88]
Li AJ, Zheng YH, Liu GD, Liu WS, Cao PC, Bu ZF. Efficient delivery of docetaxel for the treatment of brain tumors by cyclic RGD-tagged polymeric micelles. Mol Med Rep 2015; 11(4): 3078-86.
[http://dx.doi.org/10.3892/mmr.2014.3017] [PMID: 25434368]
[89]
Ran D, Mao J, Zhan C, et al. d-Retroenantiomer of quorum-sensing peptide-modified PMs for brain tumor-targeted drug delivery. ACS Appl Mater Interfaces 2017; 9(31): 25672-82.
[http://dx.doi.org/10.1021/acsami.7b03518] [PMID: 28548480]
[90]
Shamul JG, Shah SR, Kim J, et al. Verteporfin-loaded anisotropic poly(beta-amino ester)-based micelles demonstrate brain cancer-selective cytotoxicity and enhanced pharmacokinetics. Int J Nanomedicine 2019; 14: 10047-60.
[http://dx.doi.org/10.2147/IJN.S231167] [PMID: 31920302]
[91]
Yin Y, Wang J, Yang M, et al. Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system. Nanoscale 2020; 12(5): 2946-60.
[http://dx.doi.org/10.1039/C9NR08741A] [PMID: 31994576]
[92]
Bahman F, Sara E, Greish K, Taurin S. PMs in management of lung cancer 2019.
[93]
Rezazadeh M, Davatsaz Z, Emami J, Hasanzadeh F, Jahanian-Najafabadi A. Preparation and characterization of spray-dried inhalable powders containing PMs for pulmonary delivery of paclitaxel in lung cancer. J Pharm Pharm Sci 2018; 21(1s): 200s-14s.
[http://dx.doi.org/10.18433/jpps30048] [PMID: 30321135]
[94]
Mei D, Zhao L, Chen B, et al. α-Conotoxin ImI-modified polymeric micelles as potential nanocarriers for targeted docetaxel delivery to α7-nAChR overexpressed non-small cell lung cancer. Drug Deliv 2018; 25(1): 493-503.
[http://dx.doi.org/10.1080/10717544.2018.1436097] [PMID: 29426250]
[95]
He W, Xiao W, Zhang X, et al. Pulmonary-affinity paclitaxel polymer micelles in response to biological functions of ambroxol enhance therapeutic effect on lung cancer. Int J Nanomedicine 2020; 15: 779-93.
[http://dx.doi.org/10.2147/IJN.S229576] [PMID: 32099365]
[96]
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004; 56(11): 1649-59.
[http://dx.doi.org/10.1016/j.addr.2004.02.014] [PMID: 15350294]
[97]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[98]
Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Control Release 2011; 153(3): 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[99]
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011; 63(3): 131-5.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[100]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[101]
Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004; 61(19-20): 2549-59.
[http://dx.doi.org/10.1007/s00018-004-4153-5] [PMID: 15526161]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy