Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Journey of MOSFET from Planar to Gate All Around: A Review

Author(s): Krutideepa Bhol, Biswajit Jena and Umakanta Nanda*

Volume 16, Issue 4, 2022

Published on: 19 July, 2021

Page: [326 - 332] Pages: 7

DOI: 10.2174/1872210515666210719102855

Price: $65

Abstract

With the continuous miniaturization in device dimension to reach the expectation raised by semiconductor users, the shape and size of the MOSFET are changing periodically. The journey started in the year 1960, reached the milestone, and still going on to create history. Due to continuous downscaling, the device dimensions have already reached the critical limit and further miniaturization is a challenge. As a result of which some unwanted effects were raised unknowingly to suppress the device performances while entering into nanoscale. To overcome these kinds of barriers, different device architectures were proposed to keep the journey on. This paper focused on those types of advanced structures in MOSFET, which kept Moore’s law alive.

Keywords: MOSFET, NANO, GAA, FinFET, SCE, quantum.

Graphical Abstract
[1]
Moore GE. Cramming more components onto integrated circuits. Proc IEEE 1998; 86(1): 82-5.
[http://dx.doi.org/10.1109/JPROC.1998.658762]
[2]
International technology roadmap for semiconductors (ITRS) SIA 2003. Available at: https://www.semiconductors.org/resour-ces/2003-international-technology-roadmap-for-semiconductors-itrs/
[3]
Thomas P, Ashokbabu A, Ernest Ravindran RS, Vaish R. Dielectric properties of nylon 11/CaCu3Ti4O12 (CCTO) nanocomposite films with high permittivity. IEEE Trans Dielectr Electr Insul 2019; 26(2): 568-75.
[http://dx.doi.org/10.1109/TDEI.2019.007578]
[4]
Cristoloveanu S. Future trends in SOI technologies. J Korean Phys Soc 2001; 39: S52-5.
[5]
Saini H, Suman S. Design and analysis of nanoscale double gate MOSFET based current mirrors. Int J Appl Eng Res 2018; 13: 112-6.
[6]
Park J-T, Colinge J-P. Multiple-gate SOI MOSFETs: Device design guidelines. IEEE Trans Electron Dev 2002; 49: 2222-8.
[http://dx.doi.org/10.1109/TED.2002.8056]
[7]
Das SK, Nanda U, Biswal SM, Lalat Indu Giri. Performance analysis of gate-stack dual-material dg mosfet using work-function modulation technique for lower technology nodes. Silicon 2021. Available at: https://link.springer.com/article/10.1007/s12633-021-01095-3
[8]
Breed A, Roenker K P. A small-signal, RF simulation study of multiple-gate MOSFET devices IEEE Topical Meeting on Silicon Monolithic ICs in RF Systems. Atlanta, GA. 2004. Available at: https://ieeexplore.ieee.org/document/1398227
[9]
Siddaiah N, Venkatesh D, Surendra PS, Vijitha N. Design and modelling of high sensitivity dual gate MOSFET integrated MEMS microphone. IJITEE 2019; 8(7): 393-7.
[10]
Yu Bin. Double-gate vertical MOSFET transistor and fabrication method. US Patent 6787402 B1, 2004.
[11]
Wu CC, Lin DW, Keshavarzi A, Huang C.H, Chan C.T, Tseng C.H et al. High performance 22/20nm FinFET CMOS devices with advanced high-K/metal gate scheme. International Electron Devices Meeting 2010; 21-7.
[http://dx.doi.org/10.1109/IEDM.2010.5703430]
[12]
Huang X, Lee WC, Kuo C, Hisamoto D, Chang L, Kedzierski J et al. Sub 50-nm FinFET: PMOS Int electron devices meeting technical dig. Washington. 1999; pp. 67-70.
[13]
Hisamoto D, Lee W-C, Kedzierski J, et al. FinFET -a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Dev 2000; 47: 2320-5.
[http://dx.doi.org/10.1109/16.887014]
[14]
Yu B, Chang L, Ahmed S, Wang H, Bell S, Yang C-Y et al. 8-11 Dec 2002 FinFET scaling to 10 nm gate length. San Francisco, CA, USA 2002.
[15]
Xie R, Montanini P, Akarvardar K, Tripathi N, Haran B, Johnson S et al. A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels. In2016 IEEE International Electron Devices Meeting (IEDM) 2016 Dec 3 (pp. 2-7).
[http://dx.doi.org/10.1109/IEDM.2016.7838334]
[16]
Robert S. TRI-Gate devices and methods of fabrication US Patent 0241916A1, 2004.
[17]
Yang F-L, Lee D-H, Chen H-Y, Chang C-Y, Liu S-D, Huang C-C et al. Digest technical paper, symposium VLSI technology 2004; 196-7. Available at: https://publons.com/journal/4289/digest-of-technical-papers-symposium-on-vlsi-techn/
[18]
Breed A, Roenker KP. Dual-gate (FinFET) and TriGate MOSFETs: Simulation and design Proceedings of the International Semiconductor Device Research Symposium (ISDRS). 150-1.
[19]
Murat KA, Jody A. FINFET with insulator under channel US Patent 0021663, 2015.
[20]
Mark S. Nanosheet FETs with stacked nanosheets having smaller horizontal spacing than vertical spacing for large effective width US Patent 9490323B2, 2016.
[21]
Singh A, Pandey CK. Improved DC performances of Gate-allaround Si-nanotube tunnel FETs using gate-source overlap. Silicon 2021.
[22]
Ramakrishna P, Hari Kishore K, Chandana G. Implementation of low power and area efficient 7-bit flash analog to digital converter. J Comput Theor Nanosci 2019; 16: 2213-7.
[http://dx.doi.org/10.1166/jctn.2019.7875]
[23]
Ishikawa F, Buyanova I. Novel compound semiconductor nanowires: Materials, devices, and applications. Boca Raton: CRC Press 2018.
[24]
Colinge J-P. Multiple-gate SOI MOSFETs. Solid-State Electron 2004; 48(6): 897-905.
[http://dx.doi.org/10.1016/j.sse.2003.12.020]
[25]
Assad F, Ren Z, Vasileska D, Datta S, Lundstrom M. On the performance limits for Si MOSFET’s: A theoretical study. IEEE Trans Electron Dev 2000; 47(1): 232-40.
[http://dx.doi.org/10.1109/16.817590]
[26]
Madhuri BD, Sunithamani S. Design of ternary d-latch using graphene nanoribbon field effect transistor
[http://dx.doi.org/10.1109/ViTECoN.2019.8899731]
[27]
Srivastava VM, Yadav KS, Singh G. Design and performance analysis of double-gate MOSFET over single-gate MOSFET for RF switch. Microelectronics J 2011; 42(3): 527-34.
[http://dx.doi.org/10.1016/j.mejo.2010.12.007]
[28]
Colinge JP. Multi-Gate SOI MOSFETs. Microelectron Eng 2007; 84(9–10): 2071-6.
[http://dx.doi.org/10.1016/j.mee.2007.04.038]
[29]
Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM. High performance silicon nanowire field effect transistors. Nano Lett 2003; 3: 149-52.
[http://dx.doi.org/10.1021/nl025875l]
[30]
Li C, Zhuang Y, Han R. Cylindrical surrounding-gate MOSFETs with electrically induced source/drain extension. Microelectronics J 2011; 42(2): 341-6.
[http://dx.doi.org/10.1016/j.mejo.2010.11.010]
[31]
Kim S-D, Guillorn M, Lauer I, Oldiges P, Hook T, Na M-H , et al. Performance trade-offs in FinFET and gate-all-around device architectures for 7 nm-node and beyond IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). Rohnert Park, CA, USA. 2015; pp. 1-3.
[32]
Lee H, Yu L-E, Ryu S-W, Han J-W, Jeon K, Jang D-Y, et al. Sub-5 nm all-around gate FinFET for ultimate scaling Symposium VLSI Technology, Digest Technical Paper 2006; 58-9.
[33]
Mendiratta N, Tripathi SL. A review on performance comparison of advanced MOSFET structures below 45 nm technology node. J Semicond 2020; 41(6): 061401.
[34]
Siva KM, Tulasi SK, Arunkanth R, Nandini M, Sudheeer KG. A third order sigma delta modulator in 45nm CMOS technology. J Theor Appl Inf Technol 2017; 95(10): 2139-46.
[35]
Anil KM, Sai YNS, Jagadeesh U. Design and simulation of Nanowire FET, Mechanics. Mater Sci Eng 9(1): 211-6.
[36]
Sridhar Ch, Srinivasu Ch, Hanumantha Y. View on transport and quantum confinement properties of nano-scale materials – applications. J Chem Pharm Sci 2019; 10(1): 568-9.
[37]
Ahmad S, Sai R, Tanmayee Y, Meenakshi B. Performance measures of different gate oxide materials in gate all around FET. Int J Rec Technol Eng 2020; 9(2)
[38]
Singh N, Agarwal A, Bera LK, Liow TY, Yang R, Rustagi SC, et al. High-performance fully depleted Silicon nanowire (diameter = 5 nm) gate-all-around cmos devices. IEEE Electron Device Lett 2006; 27: 383.
[http://dx.doi.org/10.1109/LED.2006.873381]
[39]
Li M, Yeo KH, Suk SD, Hong BH, Hwang SW, Ahn D, et al. Observation of three-dimensional shell filling in cylindrical silicon nanowire single electron transistors. Appl Phys Lett 2007; 90: 182102.
[http://dx.doi.org/10.1063/1.2734490]
[40]
Das UK, Bhattacharyya TK. The performances of FinFET, Gate- All-Around (GAA) nanowire/nanosheet, and U-shaped FETs (UFETs). 2020. Available at: https://ieeexplore.ieee.org/document/
[41]
Mertens H, Ritzenthaler R, Hikavyy A, , Kim M, Tao Z, Wostyn K, et al. Gate-all-around transistors based on vertically stacked si nanowires IEEE symposium VLSI technology. In: Proceedings of IEEE Symposium on VLSI Technology. Honolulu 2016. 1–2
[42]
Jena B, Dash S, Routray SR, Mishra GP. Inner-gate-engineered GAA MOSFET to enhance the electrostatic integrity. Nano 2019; 14: 1-8.
[http://dx.doi.org/10.1142/S1793292019501285]
[43]
Jena B, Dash S, Mishra GP. Electrostatic performance improvement of dual material cylindrical gate MOSFET using workfunction modulation technique. 2016. Available at:
[http://dx.doi.org/10.1016/j.spmi.2016.06.024]
[44]
Ramakrishna BS, Jena B, Dash S, Mishra GP. Investigation of electrostatic performanceforaconicalsurrounding gate MOSFET with linearly modulated work-function superlattices and microstructure 2017; 101: 152-9.
[45]
Garnett E, Mai L, Yang P. Introduction: Nanomaterials/Nanowires GAA. Chem Rev 2019; 119(15): 8955-7.
[http://dx.doi.org/10.1021/acs.chemrev.9b00423] [PMID: 31409075]
[46]
Bangsaruntip S, Chang JB, Guy M. Gate-all-around nanowire field effect transistors US Patent 0133162 A1, 2011.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy