Review Article

基于多价碳纳米形式的糖缀合物的最新进展

卷 29, 期 7, 2022

发表于: 14 July, 2021

页: [1232 - 1257] 页: 26

弟呕挨: 10.2174/0929867328666210714160954

价格: $65

摘要

多价碳水化合物介导的相互作用是许多生物过程的关键,包括疾病机制。 为了在分子水平上研究这些重要的聚糖介导的相互作用,碳纳米形式如富勒烯、碳纳米管或石墨烯及其衍生物已被确定为有前途的生物相容性支架,可以模拟生物相关聚糖的多价呈现。 在这篇小评论中,我们将总结过去几年中最相关的例子,并阐释它们的应用。

关键词: 多价、碳纳米形式、碳基探针、纳米材料、糖缀合物、纳米药物

[1]
Zhang, X.T.; Liu, G.J.; Ning, Z.W.; Xing, G.W. Boronic acid-based chemical sensors for saccharides. Carbohydr. Res., 2017, 452, 129-148.
[http://dx.doi.org/10.1016/j.carres.2017.10.010] [PMID: 29096186]
[2]
Varki, A. Biological roles of glycans. Glycobiology, 2017, 27(1), 3-49.
[http://dx.doi.org/10.1093/glycob/cww086] [PMID: 27558841]
[3]
Kaltner, H.; Abad-Rodriguez, J.; Corfield, A.P.; Kopitz, J.; Gabius, H.J. The sugar code: Letters and vocabulary, writers, editors and readers and biosignificance of functional glycan-lectin pairing.Biochem J; , 2019, 476, pp. 2623-2655.
[4]
Lundquist, J.J.; Toone, E.J. The cluster glycoside effect. Chem. Rev., 2002, 102(2), 555-578.
[http://dx.doi.org/10.1021/cr000418f] [PMID: 11841254]
[5]
Lee, R.T.; Lee, Y.C. Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj. J., 2000, 17(7-9), 543-551.
[http://dx.doi.org/10.1023/A:1011070425430] [PMID: 11421347]
[6]
Müller, C.; Despras, G.; Lindhorst, T.K. Organizing multivalency in carbohydrate recognition. Chem. Soc. Rev., 2016, 45(11), 3275-3302.
[http://dx.doi.org/10.1039/C6CS00165C] [PMID: 27146554]
[7]
Jayaraman, N. Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. Chem. Soc. Rev., 2009, 38(12), 3463-3483.
[http://dx.doi.org/10.1039/b815961k] [PMID: 20449063]
[8]
Richards, S-J.; Otten, L.; Gibson, M.I. Glycosylated gold nanoparticle libraries for label-free multiplexed lectin biosensing. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(18), 3046-3053.
[http://dx.doi.org/10.1039/C5TB01994J] [PMID: 27162639]
[9]
Khan, H.; Mirzaei, H.R.; Amiri, A.; Kupeli Akkol, E.; Ashhad Halimi, S.M.; Mirzaei, H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin. Cancer Biol., 2021, 69, 24-42.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.004] [PMID: 31870939]
[10]
Zhang, X.; Huang, G.; Huang, H. The glyconanoparticle as carrier for drug delivery. Drug Deliv., 2018, 25(1), 1840-1845.
[http://dx.doi.org/10.1080/10717544.2018.1519001] [PMID: 30799659]
[11]
Shengju, Z.; Piotr, T.; Lili, S.; Sen, H.; Hongguang, L. Sugar-functionalized fullerenes. Curr. Org. Chem., 2016, 20(14), 1490-1501.
[http://dx.doi.org/10.2174/1385272820666151207194235]
[12]
Castro, E.; Hernandez Garcia, A.; Zavala, G.; Echegoyen, L. Fullerenes in biology and medicine. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6523-6535.
[http://dx.doi.org/10.1039/C7TB00855D] [PMID: 29225883]
[13]
Illescas, B.M.; Rojo, J.; Delgado, R.; Martín, N. Multivalent glycosylated nanostructures to inhibit ebola virus infection. J. Am. Chem. Soc., 2017, 139(17), 6018-6025.
[http://dx.doi.org/10.1021/jacs.7b01683] [PMID: 28394600]
[14]
Nierengarten, I.; Nierengarten, J-F. Fullerene sugar balls: A new class of biologically active fullerene derivatives. Chem. Asian J., 2014, 9(6), 1436-1444.
[http://dx.doi.org/10.1002/asia.201400133] [PMID: 24678063]
[15]
Muñoz, A.; Illescas, B.M.; Luczkowiak, J.; Lasala, F.; Ribeiro-Viana, R.; Rojo, J.; Delgado, R.; Martín, N. Antiviral activity of self-assembled glycodendro[60]fullerene monoadducts. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6566-6571.
[http://dx.doi.org/10.1039/C7TB01379E] [PMID: 32264418]
[16]
Nierengarten, J-F.; Iehl, J.; Oerthel, V.; Holler, M.; Illescas, B.M.; Muñoz, A.; Martín, N.; Rojo, J.; Sánchez-Navarro, M.; Cecioni, S.; Vidal, S.; Buffet, K.; Durka, M.; Vincent, S.P. Fullerene sugar balls. Chem. Commun. (Camb.), 2010, 46(22), 3860-3862.
[http://dx.doi.org/10.1039/c0cc00034e] [PMID: 20414495]
[17]
Sánchez-Navarro, M.; Muñoz, A.; Illescas, B.M.; Rojo, J.; Martín, N. [60]Fullerene as multivalent scaffold: Efficient molecular recognition of globular glycofullerenes by concanavalin A. Chemistry, 2011, 17(3), 766-769.
[http://dx.doi.org/10.1002/chem.201002816] [PMID: 21226088]
[18]
Luczkowiak, J.; Muñoz, A.; Sánchez-Navarro, M.; Ribeiro-Viana, R.; Ginieis, A.; Illescas, B.M.; Martín, N.; Delgado, R.; Rojo, J. Glycofullerenes inhibit viral infection. Biomacromolecules, 2013, 14(2), 431-437.
[http://dx.doi.org/10.1021/bm3016658] [PMID: 23281578]
[19]
Alvarez, C.P.; Lasala, F.; Carrillo, J.; Muñiz, O.; Corbí, A.L.; Delgado, R. C-type lectins dc-sign and l-sign mediate cellular entry by ebola virus in <em>cis</em> and in <em>trans</em&gt. J. Virol., 2002, 76(13), 6841.
[http://dx.doi.org/10.1128/JVI.76.13.6841-6844.2002] [PMID: 12050398]
[20]
Lüdtke, A.; Ruibal, P.; Wozniak, D.M.; Pallasch, E.; Wurr, S.; Bockholt, S.; Gómez-Medina, S.; Qiu, X.; Kobinger, G.P.; Rodríguez, E.; Günther, S.; Krasemann, S.; Idoyaga, J.; Oestereich, L.; Muñoz-Fontela, C. Ebola virus infection kinetics in chimeric mice reveal a key role of T cells as barriers for virus dissemination. Sci. Rep., 2017, 7(1), 43776.
[http://dx.doi.org/10.1038/srep43776] [PMID: 28256637]
[21]
Perera-Lecoin, M.; Meertens, L.; Carnec, X.; Amara, A. Flavivirus entry receptors: An update. Viruses, 2013, 6(1), 69-88.
[http://dx.doi.org/10.3390/v6010069] [PMID: 24381034]
[22]
Hamel, R.; Dejarnac, O.; Wichit, S.; Ekchariyawat, P.; Neyret, A.; Luplertlop, N.; Perera-Lecoin, M.; Surasombatpattana, P.; Talignani, L.; Thomas, F.; Cao-Lormeau, V-M.; Choumet, V.; Briant, L.; Desprès, P.; Amara, A.; Yssel, H.; Missé, D. Biology of zika virus infection in human skin cells. J. Virol., 2015, 89(17), 8880-8896.
[http://dx.doi.org/10.1128/JVI.00354-15] [PMID: 26085147]
[23]
Ramos-Soriano, J.; de la Fuente, M.C.; de la Cruz, N.; Figueiredo, R.C.; Rojo, J.; Reina, J.J. Straightforward synthesis of Man9, the relevant epitope of the high-mannose oligosaccharide. Org. Biomol. Chem., 2017, 15(42), 8877-8882.
[http://dx.doi.org/10.1039/C7OB02286G] [PMID: 29051951]
[24]
Muñoz, A.; Sigwalt, D.; Illescas, B.M.; Luczkowiak, J.; Rodríguez-Pérez, L.; Nierengarten, I.; Holler, M.; Remy, J-S.; Buffet, K.; Vincent, S.P.; Rojo, J.; Delgado, R.; Nierengarten, J-F.; Martín, N. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem., 2016, 8(1), 50-57.
[http://dx.doi.org/10.1038/nchem.2387] [PMID: 27055288]
[25]
Engström, O.; Muñoz, A.; Illescas, B.M.; Martín, N.; Ribeiro-Viana, R.; Rojo, J.; Widmalm, G. Investigation of glycofullerene dynamics by NMR spectroscopy. Org. Biomol. Chem., 2015, 13(32), 8750-8755.
[http://dx.doi.org/10.1039/C5OB00929D] [PMID: 26186577]
[26]
Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; de la Cruz, N.; Rodríguez-Pérez, L.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Synthesis of highly efficient multivalent disaccharide/[60]fullerene nanoballs for emergent viruses. J. Am. Chem. Soc., 2019, 141(38), 15403-15412.
[http://dx.doi.org/10.1021/jacs.9b08003] [PMID: 31469952]
[27]
Ramos-Soriano, J.; Reina, J.J.; Pérez-Sánchez, A.; Illescas, B.M.; Rojo, J.; Martín, N. Cyclooctyne [60]fullerene hexakis adducts: A globular scaffold for copper-free click chemistry. Chem. Commun. (Camb.), 2016, 52(69), 10544-10546.
[http://dx.doi.org/10.1039/C6CC05484F] [PMID: 27492263]
[28]
Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; Rojo, J.; Martín, N. Maleimide and cyclooctyne-based hexakis-adducts of fullerene: Multivalent scaffolds for copper-free click chemistry on fullerenes. J. Org. Chem., 2018, 83(4), 1727-1736.
[http://dx.doi.org/10.1021/acs.joc.7b02402] [PMID: 29310437]
[29]
Wadood, A.; Ghufran, M.; Khan, A.; Azam, S.S.; Jelani, M.; Uddin, R. Selective glycosidase inhibitors: A patent review (2012-present). Int. J. Biol. Macromol., 2018, 111, 82-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.148] [PMID: 29305216]
[30]
Dehoux-Baudoin, C.; Génisson, Y. C-branched imino sugars: Synthesis and biological relevance. Eur. J. Org. Chem., 2019, 2019(30), 4765-4777.
[http://dx.doi.org/10.1002/ejoc.201900605]
[31]
Greimel, P.; Spreitz, J.; Stütz, A.E.; Wrodnigg, T.M. Iminosugars and relatives as antiviral and potential anti-infective agents. Curr. Top. Med. Chem., 2003, 3(5), 513-523.
[http://dx.doi.org/10.2174/1568026033452456] [PMID: 12570863]
[32]
Rye, P.D.; Bovin, N.V.; Vlasova, E.V.; Walker, R.A. Monoclonal antibody LU-BCRU-G7 against a breast tumour-associated glycoprotein recognizes the disaccharide Gal β 1-3GlcNAc. Glycobiology, 1995, 5(4), 385-389.
[http://dx.doi.org/10.1093/glycob/5.4.385] [PMID: 7579792]
[33]
Singh, A.; Mhlongo, N.; Soliman, M.E. Anti-cancer glycosidase inhibitors from natural products: A computational and molecular modelling perspective. Anticancer. Agents Med. Chem., 2015, 15(8), 933-946.
[http://dx.doi.org/10.2174/1871520615666150223123622] [PMID: 25706917]
[34]
Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med., 2005, 353(13), 1363-1373.
[http://dx.doi.org/10.1056/NEJMra050740] [PMID: 16192481]
[35]
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst. Eng., 2017, 40(6), 943-957.
[http://dx.doi.org/10.1007/s00449-017-1758-2] [PMID: 28361361]
[36]
Balan, K.; Qing, W.; Wang, Y.; Liu, X.; Palvannan, T.; Wang, Y.; Ma, F.; Zhang, Y. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Advances, 2016, 6(46), 40162-40168.
[http://dx.doi.org/10.1039/C5RA24391B]
[37]
Naik, M.Z.; Meena, S.N.; Ghadi, S.C.; Naik, M.M.; Salker, A.V. Evaluation of silver-doped indium oxide nanoparticles as in vitro α-amylase and α-glucosidase inhibitors. Med. Chem. Res., 2016, 25(3), 381-389.
[http://dx.doi.org/10.1007/s00044-015-1494-6]
[38]
Yuzwa, S.A.; Vocadlo, D.J. O-GlcNAc and neurodegeneration: Biochemical mechanisms and potential roles in Alzheimer’s disease and beyond. Chem. Soc. Rev., 2014, 43(19), 6839-6858.
[http://dx.doi.org/10.1039/C4CS00038B] [PMID: 24759912]
[39]
Wennekes, T.; van den Berg, R.J.B.H.N.; Boot, R.G.; van der Marel, G.A.; Overkleeft, H.S.; Aerts, J.M.F.G. Glycosphingolipids-nature, function, and pharmacological modulation. Angew. Chem. Int. Ed. Engl., 2009, 48(47), 8848-8869.
[http://dx.doi.org/10.1002/anie.200902620] [PMID: 19862781]
[40]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[41]
Ahmed, K.B.A.; Raman, T.; Veerappan, A. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater. Sci. Eng. C, 2016, 68, 939-947.
[http://dx.doi.org/10.1016/j.msec.2016.06.034] [PMID: 27524096]
[42]
Decroocq, C.; Rodríguez-Lucena, D.; Russo, V.; Mena Barragán, T.; Ortiz Mellet, C.; Compain, P. The multivalent effect in glycosidase inhibition: Probing the influence of architectural parameters with cyclodextrin-based iminosugar click clusters. Chemistry, 2011, 17(49), 13825-13831.
[http://dx.doi.org/10.1002/chem.201102266] [PMID: 22052823]
[43]
Decroocq, C.; Rodríguez-Lucena, D.; Ikeda, K.; Asano, N.; Compain, P. Cyclodextrin-based iminosugar click clusters: The first examples of multivalent pharmacological chaperones for the treatment of lysosomal storage disorders. ChemBioChem, 2012, 13(5), 661-664.
[http://dx.doi.org/10.1002/cbic.201200005] [PMID: 22344719]
[44]
Decroocq, C.; Joosten, A.; Sergent, R.; Mena Barragán, T.; Ortiz Mellet, C.; Compain, P. The multivalent effect in glycosidase inhibition: Probing the influence of valency, peripheral ligand structure, and topology with cyclodextrin-based iminosugar click clusters. ChemBioChem, 2013, 14(15), 2038-2049.
[http://dx.doi.org/10.1002/cbic.201300283] [PMID: 24014313]
[45]
Joosten, A.; Schneider, J.P.; Lepage, M.L.; Tarnus, C.; Bodlenner, A.; Compain, P. A convergent strategy for the synthesis of second-generation iminosugar clusters using “clickable” trivalent dendrons. Eur. J. Org. Chem., 2014, 2014(9), 1866-1872.
[http://dx.doi.org/10.1002/ejoc.201301583]
[46]
Brissonnet, Y.; Ortiz Mellet, C.; Morandat, S.; Garcia Moreno, M.I.; Deniaud, D.; Matthews, S.E.; Vidal, S.; Šesták, S.; El Kirat, K.; Gouin, S.G. Topological effects and binding modes operating with multivalent iminosugar-based glycoclusters and mannosidases. J. Am. Chem. Soc., 2013, 135(49), 18427-18435.
[http://dx.doi.org/10.1021/ja406931w] [PMID: 24224682]
[47]
Bonduelle, C.; Huang, J.; Mena-Barragán, T.; Ortiz Mellet, C.; Decroocq, C.; Etamé, E.; Heise, A.; Compain, P.; Lecommandoux, S. Iminosugar-based glycopolypeptides: Glycosidase inhibition with bioinspired glycoprotein analogue micellar self-assemblies. Chem. Commun. (Camb.), 2014, 50(25), 3350-3352.
[http://dx.doi.org/10.1039/C3CC48190E] [PMID: 24535213]
[48]
Lepage, M.L.; Meli, A.; Bodlenner, A.; Tarnus, C.; De Riccardis, F.; Izzo, I.; Compain, P. Synthesis of the first examples of iminosugar clusters based on cyclopeptoid cores. Beilstein J. Org. Chem., 2014, 10, 1406-1412.
[http://dx.doi.org/10.3762/bjoc.10.144] [PMID: 24991295]
[49]
Lepage, M.L.; Schneider, J.P.; Bodlenner, A.; Meli, A.; De Riccardis, F.; Schmitt, M.; Tarnus, C.; Nguyen-Huynh, N-T.; Francois, Y-N.; Leize-Wagner, E.; Birck, C.; Cousido-Siah, A.; Podjarny, A.; Izzo, I.; Compain, P. Iminosugar-cyclopeptoid conjugates raise multivalent effect in glycosidase inhibition at unprecedented high levels. Chemistry, 2016, 22(15), 5151-5155.
[http://dx.doi.org/10.1002/chem.201600338] [PMID: 26917097]
[50]
Brissonnet, Y.; Ladevèze, S.; Tezé, D.; Fabre, E.; Deniaud, D.; Daligault, F.; Tellier, C.; Šesták, S.; Remaud-Simeon, M.; Potocki-Veronese, G.; Gouin, S.G. Polymeric iminosugars improve the activity of carbohydrate-processing enzymes. Bioconjug. Chem., 2015, 26(4), 766-772.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00081] [PMID: 25741759]
[51]
Siriwardena, A.; Khanal, M.; Barras, A.; Bande, O.; Mena-Barragán, T.; Mellet, C.O.; Garcia Fernández, J.M.; Boukherroub, R.; Szunerits, S. Unprecedented inhibition of glycosidase-catalyzed substrate hydrolysis by nanodiamond-grafted O-glycosides. RSC Advances, 2015, 5(122), 100568-100578.
[http://dx.doi.org/10.1039/C5RA21390H]
[52]
Compain, P.; Bodlenner, A. The multivalent effect in glycosidase inhibition: A new, rapidly emerging topic in glycoscience. ChemBioChem, 2014, 15(9), 1239-1251.
[http://dx.doi.org/10.1002/cbic.201402026] [PMID: 24807298]
[53]
Kanfar, N.; Bartolami, E.; Zelli, R.; Marra, A.; Winum, J-Y.; Ulrich, S.; Dumy, P. Emerging trends in enzyme inhibition by multivalent nanoconstructs. Org. Biomol. Chem., 2015, 13(39), 9894-9906.
[http://dx.doi.org/10.1039/C5OB01405K] [PMID: 26338715]
[54]
Gouin, S.G. Multivalent inhibitors for carbohydrate-processing enzymes: Beyond the “lock-and-key” concept. Chemistry, 2014, 20(37), 11616-11628.
[http://dx.doi.org/10.1002/chem.201402537] [PMID: 25081380]
[55]
Nierengarten, J.F.; Schneider, J.P.; Trinh, T.M.N.; Joosten, A.; Holler, M.; Lepage, M.L.; Bodlenner, A.; García-Moreno, M.I.; Ortiz Mellet, C.; Compain, P. Giant glycosidase inhibitors: First- and second-generation fullerodendrimers with a dense iminosugar shell. Chemistry, 2018, 24(10), 2483-2492.
[http://dx.doi.org/10.1002/chem.201705600] [PMID: 29281149]
[56]
Trinh, T.M.N.; Holler, M.; Schneider, J.P.; García-Moreno, M.I.; García Fernández, J.M.; Bodlenner, A.; Compain, P.; Ortiz Mellet, C.; Nierengarten, J.F. Construction of giant glycosidase inhibitors from iminosugar-substituted fullerene macromonomers. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6546-6556.
[http://dx.doi.org/10.1039/C7TB01052D] [PMID: 32264416]
[57]
Abellán Flos, M.; García Moreno, M.I.; Ortiz Mellet, C.; García Fernández, J.M.; Nierengarten, J-F.; Vincent, S.P. Potent glycosidase inhibition with heterovalent fullerenes: Unveiling the binding modes triggering multivalent inhibition. Chemistry, 2016, 22(32), 11450-11460.
[http://dx.doi.org/10.1002/chem.201601673] [PMID: 27374430]
[58]
Compain, P.; Decroocq, C.; Iehl, J.; Holler, M.; Hazelard, D.; Mena Barragán, T.; Ortiz Mellet, C.; Nierengarten, J-F. Glycosidase inhibition with fullerene iminosugar balls: A dramatic multivalent effect. Angew. Chem. Int. Ed. Engl., 2010, 49(33), 5753-5756.
[http://dx.doi.org/10.1002/anie.201002802] [PMID: 20818758]
[59]
Mena-Barragán, T.; Narita, A.; Matias, D.; Tiscornia, G.; Nanba, E.; Ohno, K.; Suzuki, Y.; Higaki, K.; Garcia Fernández, J.M.; Ortiz Mellet, C. pH-responsive pharmacological chaperones for rescuing mutant glycosidases. Angew. Chem. Int. Ed. Engl., 2015, 54(40), 11696-11700.
[http://dx.doi.org/10.1002/anie.201505147] [PMID: 26386364]
[60]
Arroba, A.I.; Alcalde-Estevez, E.; García-Ramírez, M.; Cazzoni, D.; de la Villa, P.; Sánchez-Fernández, E.M.; Mellet, C.O.; García Fernández, J.M.; Hernández, C.; Simó, R.; Valverde, Á.M. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice. Biochim. Biophys. Acta, 2016, 1862(9), 1663-1674.
[http://dx.doi.org/10.1016/j.bbadis.2016.05.024] [PMID: 27267343]
[61]
Sánchez-Fernández, E.M.; Gonçalves-Pereira, R.; Rísquez-Cuadro, R.; Plata, G.B.; Padrón, J.M.; García Fernández, J.M.; Ortiz Mellet, C. Influence of the configurational pattern of sp(2)-iminosugar pseudo N-, S-, O- and C-glycosides on their glycoside inhibitory and antitumor properties. Carbohydr. Res., 2016, 429, 113-122.
[http://dx.doi.org/10.1016/j.carres.2016.01.006] [PMID: 26850915]
[62]
Fernández, E.M.S.; Navo, C.D.; Martínez-Sáez, N.; Gonçalves-Pereira, R.; Somovilla, V.J.; Avenoza, A.; Busto, J.H.; Bernardes, G.J.L.; Jiménez-Osés, G.; Corzana, F.; Fernández, J.M.G.; Mellet, C.O.; Peregrina, J.M. Tn antigen mimics based on sp(2)-iminosugars with affinity for an anti-muc1 antibody. Org. Lett., 2016, 18(15), 3890-3893.
[http://dx.doi.org/10.1021/acs.orglett.6b01899] [PMID: 27453399]
[63]
García-Moreno, M.I.; de la Mata, M.; Sánchez-Fernández, E.M.; Benito, J.M.; Díaz-Quintana, A.; Fustero, S.; Nanba, E.; Higaki, K.; Sánchez-Alcázar, J.A.; García Fernández, J.M.; Ortiz Mellet, C. Fluorinated chaperone-β-cyclodextrin formulations for β-glucocerebrosidase activity enhancement in neuronopathic gaucher disease. J. Med. Chem., 2017, 60(5), 1829-1842.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01550] [PMID: 28171725]
[64]
Stauffert, F.; Bodlenner, A.; Nguyet Trinh, T.M.; García-Moreno, M.I.; Ortiz Mellet, C.; Nierengarten, J-F.; Compain, P. Understanding multivalent effects in glycosidase inhibition using C-glycoside click clusters as molecular probes. New J. Chem., 2016, 40(9), 7421-7430.
[http://dx.doi.org/10.1039/C6NJ01311B]
[65]
Videira, P.A.; Marcelo, F.; Grewal, R.K. Glycosyltransferase inhibitors: A promising strategy to pave a path from laboratory to therapy.Carbohydrate chemistry: Chemical and biological approaches.The Royal Society of Chemistry; , 2018, 43, pp. 135-158.
[66]
Durka, M.; Buffet, K.; Iehl, J.; Holler, M.; Nierengarten, J-F.; Vincent, S.P. The inhibition of liposaccharide heptosyltransferase WaaC with multivalent glycosylated fullerenes: A new mode of glycosyltransferase inhibition. Chemistry, 2012, 18(2), 641-651.
[http://dx.doi.org/10.1002/chem.201102052] [PMID: 22147564]
[67]
Tikad, A.; Fu, H.; Sevrain, C.M.; Laurent, S.; Nierengarten, J-F.; Vincent, S.P. Mechanistic insight into heptosyltransferase inhibition by using kdo multivalent glycoclusters. Chemistry, 2016, 22(37), 13147-13155.
[http://dx.doi.org/10.1002/chem.201602190] [PMID: 27516128]
[68]
Buffet, K.; Gillon, E.; Holler, M.; Nierengarten, J-F.; Imberty, A.; Vincent, S.P. Fucofullerenes as tight ligands of RSL and LecB, two bacterial lectins. Org. Biomol. Chem., 2015, 13(23), 6482-6492.
[http://dx.doi.org/10.1039/C5OB00689A] [PMID: 25967393]
[69]
Nierengarten, J.F. Fullerene hexa-adduct scaffolding for the construction of giant molecules. Chem. Commun. (Camb.), 2017, 53(87), 11855-11868.
[http://dx.doi.org/10.1039/C7CC07479D] [PMID: 29051931]
[70]
Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev., 2015, 115(1), 525-561.
[http://dx.doi.org/10.1021/cr500303t] [PMID: 25495138]
[71]
Buffet, K.; Nierengarten, I.; Galanos, N.; Gillon, E.; Holler, M.; Imberty, A.; Matthews, S.E.; Vidal, S.; Vincent, S.P.; Nierengarten, J-F. Pillar[5]arene-based glycoclusters: Synthesis and multivalent binding to pathogenic bacterial lectins. Chemistry, 2016, 22(9), 2955-2963.
[http://dx.doi.org/10.1002/chem.201504921] [PMID: 26845383]
[72]
Galanos, N.; Gillon, E.; Imberty, A.; Matthews, S.E.; Vidal, S. Pentavalent pillar[5]arene-based glycoclusters and their multivalent binding to pathogenic bacterial lectins. Org. Biomol. Chem., 2016, 14(13), 3476-3481.
[http://dx.doi.org/10.1039/C6OB00220J] [PMID: 26972051]
[73]
Serda, M.; Malarz, K.; Mrozek-Wilczkiewicz, A.; Wojtyniak, M.; Musioł, R.; Curley, S.A. Glycofullerenes as non-receptor tyrosine kinase inhibitors- towards better nanotherapeutics for pancreatic cancer treatment. Sci. Rep., 2020, 10(1), 260-260.
[http://dx.doi.org/10.1038/s41598-019-57155-7] [PMID: 31937861]
[74]
Serda, M.; Ware, M.J.; Newton, J.M.; Sachdeva, S.; Krzykawska-Serda, M.; Nguyen, L.; Law, J.; Anderson, A.O.; Curley, S.A.; Wilson, L.J.; Corr, S.J. Development of photoactive Sweet-C60 for pancreatic cancer stellate cell therapy. Nanomedicine (Lond.), 2018, 13(23), 2981-2993.
[http://dx.doi.org/10.2217/nnm-2018-0239] [PMID: 30501557]
[75]
Bartelmess, J.; Quinn, S.J.; Giordani, S. Carbon nanomaterials: Multi-functional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev., 2015, 44(14), 4672-4698.
[http://dx.doi.org/10.1039/C4CS00306C] [PMID: 25406743]
[76]
Baptista, F.R.; Belhout, S.A.; Giordani, S.; Quinn, S.J. Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev., 2015, 44(13), 4433-4453.
[http://dx.doi.org/10.1039/C4CS00379A] [PMID: 25980819]
[77]
Liu, H.; Zhang, L.; Yan, M.; Yu, J. Carbon nanostructures in biology and medicine. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6437-6450.
[http://dx.doi.org/10.1039/C7TB00891K] [PMID: 32264410]
[78]
Benzigar, M.R.; Talapaneni, S.N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev., 2018, 47(8), 2680-2721.
[http://dx.doi.org/10.1039/C7CS00787F] [PMID: 29577123]
[79]
Kwon, O.S.; Song, H.S.; Park, T.H.; Jang, J. Conducting nanomaterial sensor using natural receptors. Chem. Rev., 2019, 119(1), 36-93.
[http://dx.doi.org/10.1021/acs.chemrev.8b00159] [PMID: 30372041]
[80]
Ibrahim, K.S. Carbon nanotubes-properties and applications: A review. Carbon Letters, 2013, 14, 131-134.
[http://dx.doi.org/10.5714/CL.2013.14.3.131]
[81]
Kong, N.; Shimpi, M.R.; Ramström, O.; Yan, M.; Yan, M. Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides. Carbohydr. Res., 2015, 405, 33-38.
[http://dx.doi.org/10.1016/j.carres.2014.09.006] [PMID: 25746392]
[82]
Dinesh, B.; Bianco, A.; Ménard-Moyon, C. Designing multimodal carbon nanotubes by covalent multi-functionalization. Nanoscale, 2016, 8(44), 18596-18611.
[http://dx.doi.org/10.1039/C6NR06728J] [PMID: 27805213]
[83]
Mallakpour, S.; Soltanian, S. Surface functionalization of carbon nanotubes: Fabrication and applications. RSC Advances, 2016, 6(111), 109916-109935.
[http://dx.doi.org/10.1039/C6RA24522F]
[84]
Alshehri, R.; Ilyas, A.M.; Hasan, A.; Arnaout, A.; Ahmed, F.; Memic, A. Carbon nanotubes in biomedical applications: Factors, mechanisms, and remedies of toxicity. J. Med. Chem., 2016, 59(18), 8149-8167.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01770] [PMID: 27142556]
[85]
Pernía Leal, M.; Assali, M.; Cid, J.J.; Valdivia, V.; Franco, J.M.; Fernández, I.; Pozo, D.; Khiar, N. Synthesis of 1D-glyconanomaterials by a hybrid noncovalent-covalent functionalization of single wall carbon nanotubes: A study of their selective interactions with lectins and with live cells. Nanoscale, 2015, 7(45), 19259-19272.
[http://dx.doi.org/10.1039/C5NR05956A] [PMID: 26531801]
[86]
Hussain, S.; Ji, Z.; Taylor, A.J.; DeGraff, L.M.; George, M.; Tucker, C.J.; Chang, C.H.; Li, R.; Bonner, J.C.; Garantziotis, S. Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano, 2016, 10(8), 7675-7688.
[http://dx.doi.org/10.1021/acsnano.6b03013] [PMID: 27459049]
[87]
Dosekova, E.; Filip, J.; Bertok, T.; Both, P.; Kasak, P.; Tkac, J. Nanotechnology in glycomics: Applications in diagnostics, therapy, imaging, and separation processes. Med. Res. Rev., 2017, 37(3), 514-626.
[http://dx.doi.org/10.1002/med.21420] [PMID: 27859448]
[88]
Kasprzak, A.; Poplawska, M. Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem. Commun. (Camb.), 2018, 54(62), 8547-8562.
[http://dx.doi.org/10.1039/C8CC04120B] [PMID: 29972382]
[89]
Nazarzadeh Zare, E.; Makvandi, P.; Borzacchiello, A.; Tay, F.R.; Ashtari, B.; V T Padil, V. Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem. Commun. (Camb.), 2019, 55(99), 14871-14885.
[http://dx.doi.org/10.1039/C9CC08207G] [PMID: 31776528]
[90]
Dong, Z.; Wang, Q.; Huo, M.; Zhang, N.; Li, B.; Li, H.; Xu, Y.; Chen, M.; Hong, H.; Wang, Y. Mannose-modified multi-walled carbon nanotubes as a delivery nanovector optimizing the antigen presentation of dendritic cells. ChemistryOpen, 2019, 8(7), 915-921.
[http://dx.doi.org/10.1002/open.201900126] [PMID: 31338275]
[91]
Rodríguez-Pérez, L.; Ramos-Soriano, J.; Pérez-Sánchez, A.; Illescas, B.M.; Muñoz, A.; Luczkowiak, J.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Nanocarbon-based glycoconjugates as multivalent inhibitors of ebola virus infection. J. Am. Chem. Soc., 2018, 140(31), 9891-9898.
[http://dx.doi.org/10.1021/jacs.8b03847] [PMID: 30014698]
[92]
Cid Martín, J.J.; Assali, M.; Fernández-García, E.; Valdivia, V.; Sánchez-Fernández, E.M.; Garcia Fernández, J.M.; Wellinger, R.E.; Fernández, I.; Khiar, N. Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(11), 2028-2037.
[http://dx.doi.org/10.1039/C5TB02488A] [PMID: 32263080]
[93]
Pramanik, A.; Jones, S.; Gao, Y.; Sweet, C.; Begum, S.; Shukla, M.K.; Buchanan, J.P.; Moser, R.D.; Ray, P.C. A bio-conjugated chitosan wrapped CNT based 3D nanoporous architecture for separation and inactivation of Rotavirus and Shigella waterborne pathogens. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(48), 9522-9531.
[http://dx.doi.org/10.1039/C7TB02815F] [PMID: 32264567]
[94]
Romero-Ben, E.; Cid, J.J.; Assali, M.; Fernández-García, E.; Wellinger, R.E.; Khiar, N. Surface modulation of single-walled carbon nanotubes for selective bacterial cell agglutination. Int. J. Nanomedicine, 2019, 14, 3245-3263.
[http://dx.doi.org/10.2147/IJN.S179202] [PMID: 31190792]
[95]
Datir, S.R.; Das, M.; Singh, R.P.; Jain, S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug. Chem., 2012, 23(11), 2201-2213.
[http://dx.doi.org/10.1021/bc300248t] [PMID: 23039830]
[96]
Hou, L.; Zhang, H.; Wang, Y.; Wang, L.; Yang, X.; Zhang, Z. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent. Int. J. Nanomedicine, 2015, 10, 4507-4520.
[PMID: 26213465]
[97]
Cao, X.; Tao, L.; Wen, S.; Hou, W.; Shi, X. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. Carbohydr. Res., 2015, 405, 70-77.
[http://dx.doi.org/10.1016/j.carres.2014.06.030] [PMID: 25500334]
[98]
Arosio, P.; Comito, G.; Orsini, F.; Lascialfari, A.; Chiarugi, P.; Ménard-Moyon, C.; Nativi, C.; Richichi, B. Conjugation of a GM3 lactone mimetic on carbon nanotubes enhances the related inhibition of melanoma-associated metastatic events. Org. Biomol. Chem., 2018, 16(33), 6086-6095.
[http://dx.doi.org/10.1039/C8OB01817K] [PMID: 30091781]
[99]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[100]
Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced graphene oxide today. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(4), 1198-1224.
[http://dx.doi.org/10.1039/C9TC04916A]
[101]
Cheng, C.; Li, S.; Thomas, A.; Kotov, N.A.; Haag, R. Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chem. Rev., 2017, 117(3), 1826-1914.
[http://dx.doi.org/10.1021/acs.chemrev.6b00520] [PMID: 28075573]
[102]
Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem., 2018, 8(2), 123-137.
[http://dx.doi.org/10.1007/s40097-018-0265-6]
[103]
Ruhl, G.; Wittmann, S.; Koenig, M.; Neumaier, D. The integration of graphene into microelectronic devices. Beilstein J. Nanotechnol., 2017, 8(1), 1056-1064.
[http://dx.doi.org/10.3762/bjnano.8.107] [PMID: 28685106]
[104]
Akinwande, D.; Kireev, D. Wearable graphene sensors use ambient light to monitor health. Nature, 2019, 576(7786), 220-221.
[http://dx.doi.org/10.1038/d41586-019-03483-7] [PMID: 31822826]
[105]
Kong, N.; Park, J.; Yang, X.; Ramström, O.; Yan, M. Carbohydrate functionalization of few-layer graphene through microwave-assisted reaction of perfluorophenyl azide. ACS Applied Bio Materials, 2019, 2(1), 284-291.
[http://dx.doi.org/10.1021/acsabm.8b00597]
[106]
Sharma, D.; Rao, N.N.M.; Arasaretnam, S.; Sesha Sainath, A.V.; Dhayal, M. Functionalization of structurally diverse glycopolymers on graphene oxide surfaces and their quantification through fluorescence resonance energy transfer with fluorescein isothiocyanate. Colloid Polym. Sci., 2020, 298, 365-375.
[http://dx.doi.org/10.1007/s00396-020-04611-w]
[107]
Sayyar, S.; Murray, E.; Gambhir, S.; Spinks, G.; Wallace, G.G.; Officer, D.L. Synthesis and characterization of covalently linked graphene/chitosan composites. JOM, 2016, 68(1), 384-390.
[http://dx.doi.org/10.1007/s11837-015-1549-7]
[108]
Kim, J.; Lee, M-S.; Jeon, S.; Kim, M.; Kim, S.; Kim, K.; Bien, F.; Hong, S.Y.; Park, J-U. Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater., 2015, 27(21), 3292-3297.
[http://dx.doi.org/10.1002/adma.201500710] [PMID: 25885929]
[109]
He, X-P.; Zang, Y.; James, T.D.; Li, J.; Chen, G-R. Xie, J. Fluorescent glycoprobes: A sweet addition for improved sensing. Chem. Commun. (Camb.), 2016, 53(1), 82-90.
[http://dx.doi.org/10.1039/C6CC06875H] [PMID: 27740660]
[110]
Jiang, T.; Tan, H.; Sun, Y.; Wang, J.; Hang, Y.; Lu, N.; Yang, J.; Qu, X.; Hua, J. Graphene oxide-based NIR fluorescence probe with aggregation-induced emission property for lectins detection and liver cells targeting. Sens. Actuators B Chem., 2018, 261, 115-126.
[http://dx.doi.org/10.1016/j.snb.2017.10.163]
[111]
He, X-P.; Zhu, B-W.; Zang, Y.; Li, J.; Chen, G-R.; Tian, H.; Long, Y-T. Dynamic tracking of pathogenic receptor expression of live cells using pyrenyl glycoanthraquinone-decorated graphene electrodes. Chem. Sci. (Camb.), 2015, 6(3), 1996-2001.
[http://dx.doi.org/10.1039/C4SC03614J] [PMID: 28706649]
[112]
Xie, D.; Feng, X-Q.; Hu, X-L.; Liu, L.; Ye, Z.; Cao, J.; Chen, G-R.; He, X-P.; Long, Y-T. Probing mannose-binding proteins that express on live cells and pathogens with a diffusion-to-surface ratiometric graphene electrosensor. ACS Appl. Mater. Interfaces, 2016, 8(38), 25137-25141.
[http://dx.doi.org/10.1021/acsami.6b08566] [PMID: 27588680]
[113]
He, X-P.; Tian, H. Lightening up membrane receptors with fluorescent molecular probes and supramolecular materials. Chem, 2018, 4(2), 246-268.
[http://dx.doi.org/10.1016/j.chempr.2017.11.006]
[114]
Ji, D-K.; Chen, G-R.; He, X-P.; Tian, H. Simultaneous detection of diverse glycoligand-receptor recognitions using a single-excitation, dual-emission graphene composite. Adv. Funct. Mater., 2015, 25(23), 3483-3487.
[http://dx.doi.org/10.1002/adfm.201500448]
[115]
Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 2011, 5(9), 6971-6980.
[http://dx.doi.org/10.1021/nn202451x] [PMID: 21851105]
[116]
Chandler, C.I.R. Current accounts of antimicrobial resistance: Stabilisation, individualisation and antibiotics as infrastructure. Palgrave Commun., 2019, 5(1), 53.
[http://dx.doi.org/10.1057/s41599-019-0263-4] [PMID: 31157116]
[117]
Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials (Basel), 2019, 9(5), 737.
[http://dx.doi.org/10.3390/nano9050737] [PMID: 31086043]
[118]
Szunerits, S.; Boukherroub, R. Antibacterial activity of graphene-based materials. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(43), 6892-6912.
[http://dx.doi.org/10.1039/C6TB01647B] [PMID: 32263558]
[119]
Nizet, V.; Varki, A.; Aebi, M. Microbial lectins: Hemagglutinins, adhesins, and toxins.Essentials of glycobiology; Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; Schnaar, R. L.; Seeberger, P. H., Eds.; Cold Spring Harbor Laboratory Press. , 2015.
[120]
Khodadadi Chegeni, B.; Dadkhah Tehrani, A.; Adeli, M. Glyco-functionalized graphene oxides as green antibacterial absorbent materials. J. Taiwan Inst. Chem. Eng., 2019, 96, 176-184.
[http://dx.doi.org/10.1016/j.jtice.2018.11.003]
[121]
Qi, Z.; Bharate, P.; Lai, C-H.; Ziem, B.; Böttcher, C.; Schulz, A.; Beckert, F.; Hatting, B.; Mülhaupt, R.; Seeberger, P.H.; Haag, R. Multivalency at interfaces: Supramolecular carbohydrate-functionalized graphene derivatives for bacterial capture, release, and disinfection. Nano Lett., 2015, 15(9), 6051-6057.
[http://dx.doi.org/10.1021/acs.nanolett.5b02256] [PMID: 26237059]
[122]
Maruthupandy, M.; Rajivgandhi, G.; Muneeswaran, T.; Anand, M.; Quero, F. Highly efficient antibacterial activity of graphene/chitosan/magnetite nanocomposites against ESBL-producing Pseudomonas aeruginosa and Klebsiella pneumoniae. Colloids Surf. B Biointerfaces, 2021, 202, 111690.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111690] [PMID: 33721803]
[123]
Shende, P.; Pathan, N. Potential of carbohydrate-conjugated graphene assemblies in biomedical applications. Carbohydr. Polym., 2021, 255, 117385.
[http://dx.doi.org/10.1016/j.carbpol.2020.117385] [PMID: 33436214]
[124]
Rostami, S.; Puza, F.; Ucak, M.; Ozgur, E.; Gul, O.; Ercan, U.K.; Garipcan, B. Bifunctional sharkskin mimicked chitosan/graphene oxide membranes: Reduced biofilm formation and improved cytocompatibility. Appl. Surf. Sci., 2021, 544, 148828.
[http://dx.doi.org/10.1016/j.apsusc.2020.148828]
[125]
Rahnamaee, S.Y.; Bagheri, R.; Heidarpour, H.; Vossoughi, M.; Golizadeh, M.; Samadikuchaksaraei, A. Nanofibrillated chitosan coated highly ordered titania nanotubes array/graphene nanocomposite with improved biological characters. Carbohydr. Polym., 2021, 254, 117465.
[http://dx.doi.org/10.1016/j.carbpol.2020.117465] [PMID: 33357924]
[126]
Diaz-Galvez, K.R.; Teran-Saavedra, N.G.; Burgara-Estrella, A.J.; Fernandez-Quiroz, D.; Silva-Campa, E.; Acosta-Elias, M.; Sarabia-Sainz, H.M.; Pedroza-Montero, M.R.; Sarabia-Sainz, J.A. Specific capture of glycosylated graphene oxide by an asialoglycoprotein receptor: A strategic approach for liver-targeting. RSC Advances, 2019, 9(18), 9899-9906.
[http://dx.doi.org/10.1039/C8RA09732A]
[127]
Ji, D-K.; Zhang, Y.; Zang, Y.; Liu, W.; Zhang, X.; Li, J.; Chen, G-R.; James, T.D.; He, X-P. Receptor-targeting fluorescence imaging and theranostics using a graphene oxide based supramolecular glycocomposite. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(47), 9182-9185.
[http://dx.doi.org/10.1039/C5TB02057C] [PMID: 32263133]
[128]
Wang, C.; Zhang, Z.; Chen, B.; Gu, L.; Li, Y.; Yu, S. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J. Colloid Interface Sci., 2018, 516, 332-341.
[http://dx.doi.org/10.1016/j.jcis.2018.01.073] [PMID: 29408121]
[129]
de Sousa, M.; Martins, C.H.Z.; Franqui, L.S.; Fonseca, L.C.; Delite, F.S.; Lanzoni, E.M.; Martinez, D.S.T.; Alves, O.L. Covalent functionalization of graphene oxide with d-mannose: Evaluating the hemolytic effect and protein corona formation. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(18), 2803-2812.
[http://dx.doi.org/10.1039/C7TB02997G] [PMID: 32254233]
[130]
Oh, B.; Lee, C.H. Development of man-rgo for targeted eradication of macrophage ablation. Mol. Pharm., 2015, 12(9), 3226-3236.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00181] [PMID: 26161461]
[131]
Lima-Sousa, R.; de Melo-Diogo, D.; Alves, C.G.; Costa, E.C.; Ferreira, P.; Louro, R.O.; Correia, I.J. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy. Carbohydr. Polym., 2018, 200, 93-99.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.066] [PMID: 30177213]
[132]
Kang, S.; Hong, Y.L.; Ku, B-C.; Lee, S.; Ryu, S.; Min, D-H.; Jang, H.; Kim, Y-K. Synthesis of biologically-active reduced graphene oxide by using fucoidan as a multifunctional agent for combination cancer therapy. Nanotechnology, 2018, 29(47), 475604.
[http://dx.doi.org/10.1088/1361-6528/aadfa5] [PMID: 30191889]
[133]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[134]
Liang, W.; Huang, Y.; Lu, D.; Ma, X.; Gong, T.; Cui, X.; Yu, B.; Yang, C.; Dong, C.; Shuang, S. β-cyclodextrinhyaluronic acid polymer functionalized magnetic graphene oxide nanocomposites for targeted photo-chemotherapy of tumor cells. Polymers (Basel), 2019, 11(1), 133.
[http://dx.doi.org/10.3390/polym11010133] [PMID: 30960117]
[135]
Yin, T.; Liu, J.; Zhao, Z.; Zhao, Y.; Dong, L.; Yang, M.; Zhou, J.; Huo, M. Redox sensitive hyaluronic acid-decorated graphene oxide for photothermally controlled tumor-cytoplasm-selective rapid drug delivery. Adv. Funct. Mater., 2017, 27(14), 1604620.
[http://dx.doi.org/10.1002/adfm.201604620]
[136]
Hill, S.; Galan, M.C. Fluorescent carbon dots from mono- and polysaccharides: Synthesis, properties and applications. Beilstein J. Org. Chem., 2017, 13, 675-693.
[http://dx.doi.org/10.3762/bjoc.13.67] [PMID: 28503203]
[137]
Hill, S.A.; Benito-Alifonso, D.; Davis, S.A.; Morgan, D.J.; Berry, M.; Galan, M.C. Practical three-minute synthesis of acid-coated fluorescent carbon dots with tuneable core structure. Sci. Rep., 2018, 8(1), 12234.
[http://dx.doi.org/10.1038/s41598-018-29674-2] [PMID: 30111806]
[138]
Hill, S.A.; Benito-Alifonso, D.; Morgan, D.J.; Davis, S.A.; Berry, M.; Galan, M.C. Three-minute synthesis of sp3 nanocrystalline carbon dots as non-toxic fluorescent platforms for intracellular delivery. Nanoscale, 2016, 8(44), 18630-18634.
[http://dx.doi.org/10.1039/C6NR07336K] [PMID: 27801469]
[139]
Hill, S.A.; Sheikh, S.; Zhang, Q.; Sueiro Ballesteros, L.; Herman, A.; Davis, S.A.; Morgan, D.J.; Berry, M.; Benito-Alifonso, D.; Galan, M.C. Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. Nanoscale Adv., 2019, 1(8), 2840-2846.
[http://dx.doi.org/10.1039/C9NA00293F]
[140]
Swift, T.A.; Duchi, M.; Hill, S.A.; Benito-Alifonso, D.; Harniman, R.L.; Sheikh, S.; Davis, S.A.; Seddon, A.M.; Whitney, H.M.; Galan, M.C.; Oliver, T.A.A. Surface functionalisation significantly changes the physical and electronic properties of carbon nano-dots. Nanoscale, 2018, 10(29), 13908-13912.
[http://dx.doi.org/10.1039/C8NR03430C] [PMID: 29999508]
[141]
Swift, T.A.; Oliver, T.A.A.; Galan, M.C.; Whitney, H.M. Functional nanomaterials to augment photosynthesis: Evidence and considerations for their responsible use in agricultural applications. Interface Focus, 2019, 9(1), 20180048.
[http://dx.doi.org/10.1098/rsfs.2018.0048] [PMID: 30603068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy