Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Electrospinning: New Strategies for the Treatment of Skin Melanoma

Author(s): Javier Mauricio Anaya Mancipe, Franz Acker Lobianco, Marcos Lopes Dias and Rossana Mara da Silva Moreira Thiré*

Volume 22, Issue 4, 2022

Published on: 12 July, 2021

Page: [564 - 578] Pages: 15

DOI: 10.2174/1389557521666210712111809

Price: $65

Abstract

Recent studies have shown a significant growth of skin cancer cases in northern regions of the world, in which its presence was not common. Skin cancer is one of the cancers that mostly affects the world’s population, ranking fifth in studies conducted in the United States (USA). Melanoma is cancer that has the highest number of deaths worldwide since it is the most resistant skin cancer to current treatments. This is why alternatives for its treatment has been investigated considering nanomedicine concepts. This study approaches the role of this field in the creation of promising electrospun devices, composed of nanoparticles and nanofibers, among other structures, capable of directing and/or loading active drugs and/or materials with the objective of inhibiting the growth of melanoma cells or even eliminating those cells.

Keywords: Skin melanoma, nanofibers, electrospinning, drug delivery, dressings, nanomedicine.

Graphical Abstract
[1]
Mohamed, M.A.; Fallahi, A.; El-Sokkary, A.M.A.; Salehi, S.; Aki, M.A.; Jafari, A.; Tamayol, A.; Fenniri, H.; Khademhosseini, A.; Andreadis, S.T.; Cheng, C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog. Polym. Sci., 2019, 98 ,101147
[http://dx.doi.org/10.1016/j.progpolymsci.2019.101147]
[2]
Zhu, C.; Liu, J.; He, B.; Qu, X.; Peng, D. The role of human immortal skin keratinocytes-acellular dermal matrix scaffold in skin repair and regeneration. J. Cell. Biochem., 2019, 120(8), 12182-12191.
[http://dx.doi.org/10.1002/jcb.28588] [PMID: 30937961]
[3]
Foyt, D.A.; Norman, M.D.A.; Yu, T.T.L.; Gentleman, E. Exploiting advanced hydrogel technologies to address key challenges in regeneration medicine. Adv. Healthc. Mater., 2018, 7(8) ,e1700939
[http://dx.doi.org/10.1002/adhm.201700939] [PMID: 29316363]
[4]
Watt, S.M.; Pleat, J.M. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv. Drug Deliv. Rev., 2018, 123, 82-106.
[http://dx.doi.org/10.1016/j.addr.2017.10.012] [PMID: 29106911]
[5]
Samani, S.; Shokrogozar, M.; Zamini, A.; Majidi, M.; Tavassoli, H.; Aidun, A.; Bonakdar, S. Preparation of skin tissue engineering scaffold based on adipose-derived tissue. J. Tissues Mater., 2019, 2(1), 47-54.
[6]
Yeung, H.; Balakrishnan, V.; Luk, K.M.H.; Chen, S.C. Risk of cancer in older persons living with HIV: A systematic review. J. Assoc. Nurses AIDS Care, 2019, 30(1), 80-86.
[http://dx.doi.org/10.1097/JNC.0000000000000001] [PMID: 30586085]
[7]
Barros, N.R. Development of latex/alginate and latex/collagen polymer blends for application in tissue engineering.. PhD Thesis, Universidade Estadual Paulista (Unesp): Araraquara,. 2020.
[8]
Abd Ellah, N.H.; Abouelmagd, S.A. Surface functionalization of polymeric nanoparticles for tumor drug delivery: Approaches and challenges. Expert Opin. Drug Deliv., 2017, 14(2), 201-214.
[http://dx.doi.org/10.1080/17425247.2016.1213238] [PMID: 27426638]
[9]
Chen, J.; Zhang, Y.; Meng, Z.; Guo, L.; Yuan, X.; Zhang, Y.; Chai, Y.; Sessler, J.L.; Meng, Q.; Li, C. Supramolecular combination chemotherapy: A pH-responsive co-encapsulation drug delivery system. Chem. Sci. (Camb.), 2020, 11(24), 6275-6282.
[http://dx.doi.org/10.1039/D0SC01756F] [PMID: 32953023]
[10]
Seynhaeve, A.L.B.; Amin, M.; Haemmerich, D.; van Rhoon, G.C.; Ten Hagen, T.L.M. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv. Drug Deliv. Rev., 2020, 163-164, 125-144.
[http://dx.doi.org/10.1016/j.addr.2020.02.004] [PMID: 32092379]
[11]
Chen, F.; Zhang, X.; Ma, K.; Madajewski, B.; Benezra, M.; Zhang, L.; Phillips, E.; Turker, M.Z.; Gallazzi, F.; Penate-Medina, O.; Overholtzer, M.; Pauliah, M.; Gonen, M.; Zanzonico, P.; Wiesner, U.; Bradbury, M.S.; Quinn, T.P. Melanocortin-1 receptor-targeting ultrasmall silica nanoparticles for dual-modality human melanoma imaging. ACS Appl. Mater. Interfaces, 2018, 10(5), 4379-4393.
[http://dx.doi.org/10.1021/acsami.7b14362] [PMID: 29058865]
[12]
Pleguezuelos-Villa, M.; Nácher, A.; Hernández, M.J.; Ofelia Vila Buso, M.A.; Ruiz Sauri, A.; Díez-Sales, O. Mangiferin nanoemulsions in treatment of inflammatory disorders and skin regeneration. Int. J. Pharm., 2019, 564(10), 299-307.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.056] [PMID: 31015007]
[13]
Obayemi, J.D.; Jusu, S.M.; Salifu, A.A.; Ghahremani, S.; Tadesse, M.; Uzonwanne, V.O.; Soboyejo, W.O. Degradable porous drug-loaded polymer scaffolds for localized cancer drug delivery and breast cell/tissue growth. Mater. Sci. Eng. C, 2020, 112 ,110794
[http://dx.doi.org/10.1016/j.msec.2020.110794] [PMID: 32409024]
[14]
Braghirolli, D.I.; Caberlon, B.; Gamba, D.; Petry, J.; Dias, M.L.; Pranke, P. Poly(trimethylene carbonate-co-L-lactide) electrospun scaffolds for use as vascular grafts. Braz. J. Med. Biol. Res., 2019, 52(8) ,e8318
[http://dx.doi.org/10.1590/1414-431x20198318] [PMID: 31411247]
[15]
Souza, I.D.L.; Saez, V.; Campos, V.E.B.; Nascimento, M.R.; Mansur, C.R.E. Multiple response optimization of beeswax-based nanostructured lipid carriers for the controlled release of vitamin E. J. Nanosci. Nanotechnol., 2020, 20(1), 31-41.
[http://dx.doi.org/10.1166/jnn.2020.16875] [PMID: 31383137]
[16]
Desai, T.A.; Steedman, M.R.; Bhisitkul, R.; Bernards, D.A.; Lance, K.D. Multilayer thin film drug delivery device and methods of making and using the same. US Patent 10864158B2, 2020.
[17]
Maia-Pinto, M.O. Brochado, A.C.B.; Teixeira, B. N.; Sartoretto, S.C.; Uzeda, M.J.; Alves, A.T.N.N.; Alves, G.G.; Calasans-Maia, M.D.; Thiré, R.M.S.M. Biomimetic mineralization on 3D printed PLA scaffolds: On the response of human primary osteoblasts spheroids and in in vivo implantation. Polymers (Basel), 2020, 13(1), 74.
[http://dx.doi.org/10.3390/polym13010074] [PMID: 33375451]
[18]
Radhakrishnan, J.; Varadaraj, S.; Dash, S.K.; Sharma, A.; Verma, R.S. Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips. Drug Discov. Today, 2020, 25(5), 879-890.
[http://dx.doi.org/10.1016/j.drudis.2020.03.002] [PMID: 32165322]
[19]
Kostroun, T.; Dvořák, M. Application of the pulse infrared thermography method for nondestructive evaluation of composite aircraft adhesive joins. Materials (Basel), 2021, 14(3), 533.
[http://dx.doi.org/10.3390/ma14030533] [PMID: 33499291]
[20]
Castro, K.A.D.F.; Costa, L.D.; Guieu, S.; Biazzotto, J.C.; da Neves, M.G.P.M.S.; Faustino, M.A.F.; da Silva, R.S.; Tomé, A.C. Photodynamic treatment of melanoma cells using aza-dipyrromethenes as photosensitizers. Photochem. Photobiol. Sci., 2020, 19(7), 885-891.
[http://dx.doi.org/10.1039/D0PP00114G] [PMID: 32662457]
[21]
Facundo, A.N.; Silva, I.M.C. Imunoterapia: Um Olhar na nova modalidade terapêutica do Câncer, Ver. M. Psic, 2019, 33(47), 3194.
[http://dx.doi.org/10.14295/idonline.v13i47.2045]
[22]
Carvalho, V.F.M.; Giacone, D.V.; Costa-Lotufo, L.V.; Silveira, E.R.; Lopes, L.B. Development of a method for quantitative determination of the cytotoxic agent piplartine (piperlongumine) in multiple skin layers. Biomed. Chromatogr., 2019, 33(2) ,e4386
[http://dx.doi.org/10.1002/bmc.4386] [PMID: 30238489]
[23]
Jang, S.I.; Fang, S.; Baek, Y.Y.; Lee, D.H.; Na, K.; Lee, S.Y.; Lee, D.K. Local delivery of gemcitabine inhibits pancreatic and cholangiocarcinoma tumor growth by promoting epidermal growth factor receptor degradation. Int. J. Mol. Sci., 2020, 21(5), 1605.
[http://dx.doi.org/10.3390/ijms21051605] [PMID: 32111094]
[24]
Taghipour-Sabzevar, V.; Sharifi, T.; Moghaddam, M.M. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther. Deliv., 2019, 10(8), 527-550.
[http://dx.doi.org/10.4155/tde-2019-0044] [PMID: 31496433]
[25]
Liu, Z.; Jiang, W.; Nam, J.; Moon, J.J.; Kim, B.Y.S. Immunomodulating nanomedicine for cancer therapy. Nano Lett., 2018, 18(11), 6655-6659.
[http://dx.doi.org/10.1021/acs.nanolett.8b02340] [PMID: 30185039]
[26]
Sharma, M.; Sharma, G.; Singh, B.; Katare, O.P. Stability kinetics of imiquimod: Development and validation of an analytical method. J. Chromatogr. Sci., 2019, 57(7), 583-591.
[http://dx.doi.org/10.1093/chromsci/bmz030] [PMID: 31095670]
[27]
Athawale, R.B.; Jain, D.S.; Singh, K.K.; Gude, R.P. Etoposide loaded solid lipid nanoparticles for curtailing B16F10 melanoma colonization in lung. Biomed. Pharmacother., 2014, 68(2), 231-240.
[http://dx.doi.org/10.1016/j.biopha.2014.01.004] [PMID: 24560352]
[28]
Zhang, Z.; Liu, S.; Qi, Y.; Zhou, D.; Xie, Z.; Jing, X.; Chen, X.; Huang, Y. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J. Control. Release, 2016, 235, 125-133.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.046] [PMID: 27221069]
[29]
Peña-Icart, L.; Dos Santos, E.F.; Luztonó, L.A.; Silva, D.Z.; Andrade, L.; Dias, M.L.; Da Rocha e Lima, L.M.; De Souza, F.G. Placlitaxel-loaded pla/peg/magnetite anticancer and hyperthermic agent prepared from materials obtained by the ugi’s multicomponent reaction. Macromol. Symp., 2018, 380 ,1800094
[http://dx.doi.org/10.1002/masy.201800094]
[30]
Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol., 2008, 17(12), 1063-1072.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00786.x] [PMID: 19043850]
[31]
O’Callaghan, S.; Galvin, P.; O’Mahony, C.; Moore, Z.; Derwin, R. ‘Smart’ wound dressings for advanced wound care: A review. J. Wound Care, 2020, 29(7), 394-406.
[http://dx.doi.org/10.12968/jowc.2020.29.7.394] [PMID: 32654609]
[32]
Zouboulis, C.C.; Makrantonaki, E. Clinical and laboratory skin biomarkers of organ-specific diseases. Mech. Ageing Dev., 2019, 177, 144-149.
[http://dx.doi.org/10.1016/j.mad.2018.08.003] [PMID: 30118721]
[33]
Castellano, D.; Sanchis, A.; Blanes, M.; Pérez Del Caz, M.D.; Ruiz-Saurí, A.; Piquer-Gil, M.; Pelacho, B.; Marco, B.; Garcia, N.; Ontoria-Oviedo, I.; Cambra, V.; Prosper, F.; Sepúlveda, P. Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis. J. Tissue Eng. Regen. Med., 2018, 12(2), e983-e994.
[http://dx.doi.org/10.1002/term.2420] [PMID: 28111928]
[34]
Sundberg, J.; Booth, C.; Nanney, L.B.; Fleckman, P.; King, L.E. 24 – Skin and adnexa. Comparative. Anatomy and Histology, 2018, 2, 511-542.
[http://dx.doi.org/10.1016/B978-0-12-802900-8.00024-5]
[35]
Mahler, V. Skin diseases associated with environmental factors Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2017, 60(6), 605-617.
[http://dx.doi.org/10.1007/s00103-017-2543-8] [PMID: 28516256]
[36]
Brown, M.S.; Ashley, B.; Koh, A. Wearable technology for chronic wound monitoring: Current dressings, advancements, and future prospects. Front. Bioeng. Biotechnol., 2018, 6, 47.
[http://dx.doi.org/10.3389/fbioe.2018.00047] [PMID: 29755977]
[37]
Belvedere, R.; Bizzarro, V.; Parente, L.; Petrella, F.; Petrella, A. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts. Cell Adhes. Migr., 2018, 12(2), 168-183.
[http://dx.doi.org/10.1080/19336918.2017.1340137] [PMID: 28795878]
[38]
Mathes, S.H.; Ruffner, H.; Graf-Hausner, U. The use of skin models in drug development. Adv. Drug Deliv. Rev., 2014, 69-70, 81-102.
[http://dx.doi.org/10.1016/j.addr.2013.12.006] [PMID: 24378581]
[39]
NIH: National Cancer Institute. Available from:, https://visualsonline.cancer.gov/details.cfm?imageid=7279
[40]
Abedini, R.; Nasimi, M.; Nourmohammad Pour, P.; Etesami, I.; Al-Asiri, S.; Tohidinik, H.R. Skin cancer awareness and sun protection behavior before and following treatment among skin cancer-treated patients. J. Cancer Educ., 2019, 34(2), 285-290.
[http://dx.doi.org/10.1007/s13187-017-1299-z] [PMID: 29143268]
[41]
Castelli, V.; Piroli, A.; Marinangeli, F.; d’Angelo, M.; Benedetti, E.; Ippoliti, R.; Zis, P.; Varrassi, G.; Giordano, A.; Paladini, A.; Cimini, A. Local anesthetics counteract cell proliferation and migration of human triple-negative breast cancer and melanoma cells. J. Cell. Physiol., 2020, 235(4), 3474-3484.
[http://dx.doi.org/10.1002/jcp.29236] [PMID: 31541469]
[42]
Oliveira, R.S. Ferreira; Biasi, L.J.; Enokihara, M.M.S.S.; Paiva, G.R.; Wagner, J. Vertical growth phase and positive sentinel node in thin melanoma. Braz. J. Biol. Res., 2003, 36(3), 347-350.
[http://dx.doi.org/10.1590/S0100-879X2003000300009]
[43]
Schatton, T.; Frank, M.H. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res., 2008, 21(1), 39-55.
[http://dx.doi.org/10.1111/j.1755-148X.2007.00427.x] [PMID: 18353142]
[44]
Mayo Clinic Family Health Book, 5a edition. Available from:. https://www.mayoclinic.org/es-es/diseases-conditions/melanoma/symptoms-causes/syc-20374884
[45]
Bay, C.; Kejs, A.M.T.; Storm, H.H.; Engholm, G. Incidence and survival in patients with cutaneous melanoma by morphology, anatomical site and TNM stage: A danish population-based register study 1989-2011. Cancer Epidemiol., 2015, 39(1), 1-7.
[http://dx.doi.org/10.1016/j.canep.2014.10.010] [PMID: 25468643]
[46]
American Cancer Society: Cancer Factor & figures., Available from: . https://www.cancer.gov/types/common-cancers
[47]
Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). 15th International Symposium Biomedical Imaging, 2018, pp. 168-172.
[48]
Yarguinin, S.A.; Shoyhet, Y.N.; Lazarev, A.F. The influence of plastic techniques in surgery of primary ski melanoma on patient survival, Russian. J. Oncol., 2020, 25, 27-36.
[http://dx.doi.org/10.18821/1028-9984-2020-25-1-27-36]
[49]
Li, X.; Karras, P.; Torres, R.; Rambow, F.; van den Oord, J.; Marine, J.C.; Kos, L. Disseminated melanoma cells transdifferentiate into endothelial cells in intravascular niches at metastatic sites. Cell Rep., 2020, 31(11) ,107765
[http://dx.doi.org/10.1016/j.celrep.2020.107765] [PMID: 32553158]
[50]
Clark, W.H., Jr; From, L.; Bernardino, E.A.; Mihm, M.C. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res., 1969, 29(3), 705-727.
[PMID: 5773814]
[51]
Morton, D.L.; Wen, D.R.; Cochran, A.J. Management of earlystage melanoma by intraoperative lymphatic mapping and selective lymphadenectomy: An alternative to routine elective lymphadenectomy or “Watch and wait. Surgical Oncology clinics, 1992, 1(2), 247-259.
[52]
Michael, H.T.; Merlino, G. A topical solution to the sunless tanning problem. Trends Mol. Med., 2017, 23(9), 771-773.
[http://dx.doi.org/10.1016/j.molmed.2017.07.010] [PMID: 28789829]
[53]
Huang, R.; Andersen, L.M.K.; Rofstad, E.K. Metastatic pathway and the microvascular and physicochemical microenvironments of human melanoma xenografts. J. Transl. Med., 2017, 15(1), 203.
[http://dx.doi.org/10.1186/s12967-017-1307-4] [PMID: 29017512]
[54]
Garbe, C.; Keim, U.; Eigentler, T.K.; Amaral, T.; Katalinic, A.; Holleczek, B.; Martus, P.; Leiter, U. Time trends in incidence and mortality of cutaneous melanoma in Germany. J. Eur. Acad. Dermatol. Venereol., 2019, 33(7), 1272-1280.
[http://dx.doi.org/10.1111/jdv.15322] [PMID: 30387899]
[55]
Herlyn, M.; Balaban, G.; Bennicelli, J.; Guerry, D IV; Halaban, R.; Herlyn, D.; Elder, D.E.; Maul, G.G.; Steplewski, Z.; Nowell, P.C.; Clark, W.H.; Koprowski, H. Primary melanoma cells of the vertical growth phase: Similarities to metastatic cells. J. Natl. Cancer Inst., 1985, 74(2), 283-289.
[http://dx.doi.org/10.1093/jnci/74.2.283] [PMID: 3856042]
[56]
Clemente, N.; Argenziano, M.; Gigliotti, C.L.; Ferrara, B.; Boggio, E.; Chiocchetti, A.; Caldera, F.; Trotta, F.; Benetti, E.; Annaratone, L.; Ribero, S.; Pizzimenti, S.; Barrera, G.; Dianzani, U.; Cavalli, R.; Dianzani, C. Paclitaxel-Loaded nanosponges inhibit growth and angiogenesis in melanoma cell models. Front. Pharmacol., 2019, 10, 776.
[http://dx.doi.org/10.3389/fphar.2019.00776] [PMID: 31354491]
[57]
Skin Cancer Foundation. Available from:. http://cancerdepiel.org/cancer-de-piel/melanoma
[58]
Martens, M.C.; Emmert, S.; Boeckmann, L. Genetically caused UV sensitivity photocarcinogenesis and UV protection in children. Monatsschr. Kinderheilkd., 2021, 169, 114-123.
[http://dx.doi.org/10.1007/s00112-020-01115-3]
[59]
Martens, M.C.; Seebode, C.; Lehmann, J.; Emmert, S. Photocarcinogenesis and skin cancer prevention strategies: An update. Anticancer Res., 2018, 38(2), 1153-1158.
[http://dx.doi.org/10.21873/anticanres.12334] [PMID: 29374752]
[60]
Rutkowski, P.; Owezarek, W.; Nejc, D.; Jeziorski, A.; Wysocki, W.M.; Slowinska, M.; Sledz, M.D.; Wisniewski, P.; Paterczyk, H.K.; Kiprian, D. Skin Carcinomas. Oncology in Clinical Practice, 2020, 16(4), 143-162.
[http://dx.doi.org/10.5603/OCP.2020.0018]
[61]
Acosta, L.S.; Hernández, M.S.; Santoyo, F.M.; De la Torre, M.H.; Flórez, M.J.M.; Frausto, R.G.; Muñoz, S.S. Study of skin rigidity variation due to UV radiation using digital holographic interferometry. Opt. Lasers Eng., 2020, 126 ,105909
[http://dx.doi.org/10.1016/j.optlaseng.2019.105909]
[62]
Carr, S.; Smith, C.; Wernberg, J. Epidemiology and risk factors of melanoma. Surg. Clin. North Am., 2020, 100(1), 1-12.
[http://dx.doi.org/10.1016/j.suc.2019.09.005] [PMID: 31753105]
[63]
DeSantis, C.E.; Ma, J.; Goding Sauer, A.; Newman, L.A.; Jemal, A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin., 2017, 67(6), 439-448.
[http://dx.doi.org/10.3322/caac.21412] [PMID: 28972651]
[64]
Yao, C.G.; Martins, P.N. Nanotechnology applications in transplantation medicine. Transplantation, 2020, 104(4), 682-693.
[http://dx.doi.org/10.1097/TP.0000000000003032] [PMID: 31651794]
[65]
Yadid, M.; Feiner, R.; Dvir, T. Gold nanoparticles scaffolds for tissue engineering and regenerative medicine. Nano Lett., 2019, 19(4), 2198-2206.
[http://dx.doi.org/10.1021/acs.nanolett.9b00472] [PMID: 30884238]
[66]
Yuan, Z.; Zhang, K.; Jiao, X.; Cheng, Y.; Zhang, Y.; Zhang, P.; Zhang, X.; Wen, Y. A controllable local drug delivery system based on porous fibers for synergistic treatment of melanoma and promoting wound healing. Biomater. Sci., 2019, 7(12), 5084-5096.
[http://dx.doi.org/10.1039/C9BM01045A] [PMID: 31565707]
[67]
Chaudhari, A.A.; Vig, K.; Baganizi, D.R.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S.R.; Pillai, S.R. Future prospects for scaffolding methods and Biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci., 2016, 17(12), 1974.
[http://dx.doi.org/10.3390/ijms17121974] [PMID: 27898014]
[68]
Iqbal, N.; Khan, A.S.; Asif, A.; Yar, M.; Haycock, J.W.; Rehman, I.U. Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. Int. Mater. Rev., 2019, 64(2), 1-36.
[http://dx.doi.org/10.1080/09506608.2018.1460943]
[69]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorok, H.F.; Chan, W.C.W. Analysis of nanoparticles delivery to tumors. Nat. Rev. Mater., 2016, 1, 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[70]
Li, T.; Chang, J.; Zhu, Y.; Wu, C. 3D printing of bioinspired biomaterials for tissue regeneration. Adv. Healthc. Mater., 2020, 9(23) ,e2000208
[http://dx.doi.org/10.1002/adhm.202000208] [PMID: 32338464]
[71]
Keirouz, A.; Chung, M.; Kwon, J.; Fortunato, G.; Radacsi, N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(4) ,e1626
[http://dx.doi.org/10.1002/wnan.1626] [PMID: 32166881]
[72]
Lozano, K.; Gilkerson, R.; Quiñones, K.L.B.; Zuñiga, A.E. Usage of melt spun polyolefin fine fibers for skin regeneration and mesh implantation. U.S. Patent 20200289249A1, 2020.
[73]
Lorente, M.A.; Corral, A.; González-Benito, J. PCL/Collagen blends prepared by solution blow spinning as potential materials for skin regeneration. J. Appl. Polym. Sci., 2021. ,e50493
[http://dx.doi.org/10.1002/app.50493]
[74]
Yang, J.; Zhao, R.; Feng, Q.; Zhuo, X.; Wang, R. Development of a carrier system containing hyaluronic acid and protamine for siRNA delivery in the treatment of melanoma; Invest. New Drug, 2020.
[http://dx.doi.org/10.1007/s10637-020-00986-3]
[75]
Monge-Fuentes, V.; Muehlmann, L.A.; Longo, J.P.F.; Silva, J.R.; Fascineli, M.L.; de Souza, P.; Faria, F.; Degterev, I.A.; Rodriguez, A.; Carneiro, F.P.; Lucci, C.M.; Escobar, P.; Amorim, R.F.; Azevedo, R.B. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J. Photochem. Photobiol. B, 2017, 166, 301-310.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.002] [PMID: 28024281]
[76]
Banerjee, I.; De, M.; Dey, G.; Bharti, R.; Chattopadhyay, S.; Ali, N.; Chakrabarti, P.; Reis, R.L.; Kundu, S.C.; Mandal, M. A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomater. Sci., 2019, 7(3), 1161-1178.
[http://dx.doi.org/10.1039/C8BM01403E] [PMID: 30652182]
[77]
Di Blasio, S.; van Wigcheren, G.F.; Becker, A.; van Duffelen, A.; Gorris, M.; Verrijp, K.; Stefanini, I.; Bakker, G.J.; Bloemendal, M.; Halilovic, A.; Vasaturo, A.; Bakdash, G.; Hato, S.V.; de Wilt, J.H.W.; Schalkwijk, J.; de Vries, I.J.M.; Textor, J.C.; van den Bogaard, E.H.; Tazzari, M.; Figdor, C.G. The tumour microenvironment shapes dendritic cell plasticity in a human organotypic melanoma culture. Nat. Commun., 2020, 11(1), 2749.
[http://dx.doi.org/10.1038/s41467-020-16583-0] [PMID: 32488012]
[78]
Stie, M.B.; Thoke, H.S.; Issinger, O.G.; Hochscherf, J.; Guerra, B.; Olsen, L.F. Delivery of proteins encapsulated in chitosan-tripolyphosphate nanoparticles to human skin melanoma cells. Colloids Surf. B Biointerfaces, 2019, 174, 216-223.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.005] [PMID: 30465996]
[79]
Mancipe, J.M.A.; Dias, M.L.; Thiré, R.M.S.M. Mophological evaluation of electrospun polycaprolactone fibers depending on the type of solvent. Rev. Mat., 2019, 24(3) ,e12400
[http://dx.doi.org/10.1590/s1517-707620190003.0713]
[80]
Ramakrishna, S.; Fujihara, K.; Teo, W.E.; Lim, T.C.; Ma, Z. An introduction to electrospinning of nanofibers; World Scientific: Singapore, 2005.
[http://dx.doi.org/10.1142/5894]
[81]
Mancipe, J.M.A.; Nista, S.G.V.; Caballero, G.E.R.; Mei, L.H.I. Thermochromic and/or photochromic properties of electrospun cellulose acetate microfibers for application as sensors in smart packing. J. Appl. Polym. Sci., 2021, 138(15), 50039.
[http://dx.doi.org/10.1002/app.50039]
[82]
Rahmani Del Bakhshayesh, A.; Annabi, N.; Khalilov, R.; Akbarzadeh, A.; Samiei, M.; Alizadeh, E.; Alizadeh-Ghodsi, M.; Davaran, S.; Montaseri, A. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 691-705.
[http://dx.doi.org/10.1080/21691401.2017.1349778] [PMID: 28697631]
[83]
Lee, Y.; Parck, J.; Choe, S.; Cho, S.; Kim, J.; Ko, H. Mimicking human and biological skin for multifuncional skin electronics. Adv. Funct. Mater., 2019, 30(20) ,1904523
[http://dx.doi.org/10.1002/adfm.201904523]
[84]
Farzanfar, S.; Kouzekonan, G.S.; Mirjani, R.; Shekarchi, B. Vitamin B12-loaded polycaprolacton/gelatin nanofibrous scaffold as potential wound care material. Biomed. Eng. Lett., 2020, 10(4), 547-554.
[http://dx.doi.org/10.1007/s13534-020-00165-6] [PMID: 33194247]
[85]
Deepak, A.; Goyal, A.K.; Rath, G. Nanofiber in transmucosal drug delivery. J. Drug Deliv. Sci. Technol., 2018, 43, 379-387.
[http://dx.doi.org/10.1016/j.jddst.2017.11.008]
[86]
Sedghi, R.; Gholami, M.; Shaabani, A.; Saber, M.; Niknejad, H. Preparation of novel chitosan derivative nanofibers for prevention of breast cancer recurrence. Eur. Polym. J., 2020, 123(15) ,109421
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109421]
[87]
Abdullah, M.F.; Nuge, T.; Andriyana, A.; Ang, B.C.; Muhamad, F. Core-shell fibers: Design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers (Basel), 2019, 11(12), 2008.
[http://dx.doi.org/10.3390/polym11122008] [PMID: 31817133]
[88]
He, Y.; Li, X.; Ma, J.; Ni, G.; Yang, G.; Zhou, S. Programmable codelivery of doxorubicin and apatinib using an implantable hierarchical-structured fiber device for overcoming cancer multidrug resistance. Small, 2019, 15(8) ,e1804397
[http://dx.doi.org/10.1002/smll.201804397] [PMID: 30677228]
[89]
Jia, D.; Gao, Y.; Williams, G.R. Core/shell poly(ethylene oxide)/Eudragit fibers for site-specific release. Int. J. Pharm., 2017, 523(1), 376-385.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.038] [PMID: 28344174]
[90]
Zhao, J.; Cui, W. Functional electrospun fibers for local therapy of cancer. Adv. Fiber Mater., 2020, 2, 229-245.
[http://dx.doi.org/10.1007/s42765-020-00053-9]
[91]
Brito-Pereira, R.; Correia, D.M.; Ribeiro, C.; Francesko, A.; Etxebarria, I.; Pérez-Alvarez, L.; Vilas, J.L.; Martins, P.; Lanceros-Mendes, S. Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering application. Compos., Part B Eng., 2018, 141, 70-75.
[http://dx.doi.org/10.1016/j.compositesb.2017.12.046]
[92]
Sharif, S.; Ai, J.; Azami, M.; Verdi, J.; Atlasi, M.A.; Shirian, S.; Samadikuchaksaraei, A. Collagen-coated nano-electrospun PCL seeded with human endometrial stem cells for skin tissue engineering applications. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(4), 1578-1586.
[http://dx.doi.org/10.1002/jbm.b.33966] [PMID: 28792664]
[93]
Li, W.; Wu, D.; Tan, J.; Liu, Z.; Lu, L.; Zhou, C. A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes in in vivo revascularization and epidermalization. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(43), 6977-6992.
[http://dx.doi.org/10.1039/C8TB02006J] [PMID: 32254581]
[94]
Kim, Y.J.; Ebara, M.; Aoyagi, T. A smart hyperthermia nanofiber with switchable drug release for inducting cancer apoptosis. Adv. Funct. Mater., 2013, 23(46), 5753-5761.
[http://dx.doi.org/10.1002/adfm.201300746]
[95]
Hu, P.Y.; Zhao, Y.T.; Zhang, J.; Yu, S.X.; Yan, J.S.; Wang, X.X.; Hu, M.Z.; Xiang, H.F.; Long, Y.Z. In situ melt electrospun polycaprolactone/Fe3O4 nanofibers for magnetic hyperthermia. Mater. Sci. Eng. C, 2020, 110 ,110708
[http://dx.doi.org/10.1016/j.msec.2020.110708] [PMID: 32204020]
[96]
Lee, S.H.; Koo, B.S.; Park, S.Y.; Kim, Y.M. Anti-angiogenic effects of resveratrol in combination with 5-fluorouracil on B16 murine melanoma cells. Mol. Med. Rep., 2015, 12(2), 2777-2783.
[http://dx.doi.org/10.3892/mmr.2015.3675] [PMID: 25936796]
[97]
Balan, P.; Indrakumar, J.; Murali, P.; Korrapati, P.S. Bi-faceted delivery of phytochemicals through chitosan nanoparticles impregnated nanofibers for cancer therapeutics. Int. J. Biol. Macromol., 2020, 142, 201-211.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.093] [PMID: 31604079]
[98]
Fahrioğlu, U.; Dodurga, Y.; Elmas, L.; Seçme, M. Ferulic acid decreases cell via bility and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Gene, 2016, 576(1 Pt 3), 476-482.
[http://dx.doi.org/10.1016/j.gene.2015.10.061] [PMID: 26516023]
[99]
Varshney, N.; Sahi, A.K.; Poddar, S.; Mahto, S.K. Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization. Int. J. Biol. Macromol., 2020, 160, 112-127.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.090] [PMID: 32422270]
[100]
Radmansouri, M.; Bahmani, E.; Sarikhani, E.; Rahmani, K.; Sharifianjazi, F.; Irani, M. Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int. J. Biol. Macromol., 2018, 116, 378-384.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.161] [PMID: 29723626]
[101]
Rengifo, A.F.C.; Stefanes, N.M.; Toigo, J.; Mendes, C.; Argenta, D.F.; Dotto, M.E.R.; Da Silva, M.C.; Nunes, R.J.; Caon, T.; Parize, A.L. PEO-Chitosan nanofibers containing carboxymethyl-hexanoyl chitosan/dodecyl sulfate nanoparticles loaded with pyrazoline for skin cancer treatment. Eur. Polym. J., 2019, 119, 335-343.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.001]
[102]
Xi, Y.; Ge, J.; Wang, M.; Chen, M.; Niu, W.; Cheng, W.; Xue, Y.; Lin, C.; Lei, B. Bioactive Anti-inflammatory antibacterial antioxidative silicon-based nanofibrous dressing enables cutaneous tumor Photothermo-chemo therapy and infection-induced wound healing. ACS Nano, 2020, 14(3), 2904-2916.
[http://dx.doi.org/10.1021/acsnano.9b07173] [PMID: 32031782]
[103]
Samadzadeh, S.; Babazadeh, M.; Zarghami, N.; Pilehvar-Soltanahmadi, Y.; Mousazadeh, H. An implantable smart hyperthermia nanofiber with switchable, controlled and sustained drug release: Possible application in prevention of cancer local recurrence. Mater. Sci. Eng. C, 2021, 118 ,111384
[http://dx.doi.org/10.1016/j.msec.2020.111384] [PMID: 33254991]
[104]
Morad, H.; Jahanshahi, M.; Akbari, J.; Saeedi, M.; Gill, P.; Enayatifard, R. Novel topical and transdermal delivery of colchicine with chitosan based biocomposite nanofibers system; formulation, optimization, characterization, ex vivo skin deposition/permeation, and anti-melanoma evaluation. Mater. Chem. Phys., 2021, 263 ,124381
[http://dx.doi.org/10.1016/j.matchemphys.2021.124381]
[105]
Zhu, L.F.; Zheng, Y.; Fan, J.; Yao, Y.; Ahmad, Z.; Chang, M.W. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci., 2019, 137 ,105002
[http://dx.doi.org/10.1016/j.ejps.2019.105002] [PMID: 31302215]
[106]
Movahedi, M.; Asefnejad, A.; Rafienia, M.; Khorasani, M.T. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: n vitro and in vivo evaluation. Int. J. Biol. Macromol., 2020, 146, 627-637.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.233] [PMID: 31805327]
[107]
Tsekova, P.; Spasova, M.; Manolova, N.; Rashkov, I.; Markova, N.; Georgieva, A.; Toshkova, R. Electrospun cellulose acetate membranes decorated with curcumin-PVP particles: Preparation, antibacterial and antitumor activities. J. Mater. Sci. Mater. Med., 2017, 29(1), 9.
[http://dx.doi.org/10.1007/s10856-017-6014-4] [PMID: 29275497]
[108]
Stoyanova, N.; Spasova, M.; Manolova, N.; Rashkov, I.; Georgieva, A.; Toshkova, R. Antioxidant and antitumor activities of novel quercetin-loaded electrospun cellulose acetate/polyethylene glycol fibrous materials. Antioxidants, 2020, 9(3), 232.
[http://dx.doi.org/10.3390/antiox9030232] [PMID: 32168830]
[109]
Wang, Y.; Qian, J.; Liu, T.; Xu, W.; Zhao, N.; Suo, A. Electrospun PBLG/PLA nanofiber membrane for constructing in vitro 3D model of melanoma. Mater. Sci. Eng. C, 2017, 76(1), 313-318.
[http://dx.doi.org/10.1016/j.msec.2017.03.098] [PMID: 28482533]
[110]
Yu, Q.; Han, Y.; Wang, X.; Qin, C.; Zhai, D.; Yi, Z.; Chang, J.; Xiao, Y.; Wu, C. Copper silicate hollow microspheres-incorporated scaffolds for chemo-photothermal therapy of melanoma and tissue healing. ACS Nano, 2018, 12(3), 2695-2707.
[http://dx.doi.org/10.1021/acsnano.7b08928] [PMID: 29518321]
[111]
Guo, M.; Zhou, G.; Liu, Z.; Liu, J.; Tang, J.; Xiao, Y.; Xu, W.; Lui, Y.; Chen, C. Direct site-specific treatment of skin cancer using doxorubicin-loaded nanofibrous membranes. Sci. Bull. (Beijing), 2018, 63(2), 92-100.
[http://dx.doi.org/10.1016/j.scib.2017.11.018]
[112]
Kumar, S.; Singh, A.P.; Senapati, S.; Maiti, P. Controlling Drug Delivery Using Nanosheet-Embedded Electrospun Fiber for efficient tumor treatment. ACS Appl. Bio Mater, 2019, 2(2), 884-889.
[http://dx.doi.org/10.1021/acsabm.8b00735]
[113]
Lin, W.C.; Yeh, I.T.; Niyama, E.; Huang, W.R.; Ebara, M.; Wu, C.S. Electrospun Poly(ɛ-caprolactone) nanofibers mesh for Imiquimod delivery in melanoma therapy. Polymers (Basel), 2018, 10(3), 231.
[http://dx.doi.org/10.3390/polym10030231] [PMID: 30966266]
[114]
Oliveira, C.; Soares, A.I.; Neves, N.M.; Reis, R.L.; Marques, A.P.; Silva, T.H.; Martins, A. Fucoidan immobilized at the surface of a fibrous mesh presents toxic effects over melanoma cells, but not over noncancer skin cells. Biomacromolecules, 2020, 21(7), 2745-2754.
[http://dx.doi.org/10.1021/acs.biomac.0c00482] [PMID: 32421313]
[115]
Suneet, K.; De, T.; Rangarajan, A.; Jain, S. Magnetic nanofibers-based bandage for skin cancer treatment: A non-invasive hyperthermia therapy.Cancer Reports,, 2020. ,e1281.
[116]
Tiwari, P.; Agarwal, S.; Srivastava, S.; Jain, S. The combined effect of thermal and chemotherapy on HeLa cells using magnetically actuated smart textured fibrous system. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(1), 40-51.
[http://dx.doi.org/10.1002/jbm.b.33812] [PMID: 29218857]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy