Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Chemical Constituents and Antitumor Mechanisms of Artemisia

Author(s): Yasin Kamarya, Xia Lijie* and Li Jinyao*

Volume 22, Issue 10, 2022

Published on: 12 January, 2022

Page: [1838 - 1844] Pages: 7

DOI: 10.2174/1871520621666210708125230

open access plus

Abstract

Background: At present, chemotherapy is still the main treatment for cancer, but its side effects and multidrug resistance limit the therapeutic efficacy. Natural products are the important sources for the development of antitumor drugs with higher efficiency and lower toxicity. Artemisia contains a variety of antitumor constituents, which can induce tumor cell apoptosis and cell cycle arrest, inhibit tumor angiogenesis, and accelerate iron ion-mediated oxidative damage.

Objective: This paper provides a focused, up-to-date, and comprehensive overview of the antitumor active constituents and mechanisms of Artemisia.

Methods: The relevant references on Artemisia and its bioactive components were obtained from scientific databases, including PubMed, Web of Science, and Science Direct.

Results: We have summarized the current progress about on the bioactive components and mechanisms of Artemisia. The application prospect of active components of Artemisia in cancer prevention and treatment has also been discussed.

Conclusion: This review may provide new ideas for the follow-up treatment of cancer and contribute to the development of safe and effective antitumor drugs.

Keywords: Artemisia, antitumor, active constituents, natural products, chemotherapy, bioactive components.

Graphical Abstract
[1]
Wang, C.; Liu, H.; Liu, S.; Wang, Z.; Zhang, J. pH and redox dual-sensitive covalent organic framework nanocarriers to resolve the dilemma between extracellular drug loading and intracellular drug release. Front Chem., 2020, 8, 488-498.
[http://dx.doi.org/10.3389/fchem.2020.00488] [PMID: 32671019]
[2]
Jiao, L.; Dong, C.; Liu, J.; Chen, Z.; Zhang, L.; Xu, J.; Shen, X.; Che, J.; Yang, Y.; Huang, H.; Li, H.; Sun, J.; Jiang, Y.; Mao, Z.; Chen, P.; Gong, Y.; Jin, X.; Xu, L. Effects of chinese medicine as adjunct medication for adjuvant chemotherapy treatments of non-small cell lung cancer patients. Sci. Rep., 2017, 7, 46524.
[http://dx.doi.org/10.1038/srep46524] [PMID: 28436479]
[3]
Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47-77.
[http://dx.doi.org/10.3390/biom10010047] [PMID: 31892257]
[4]
Enrique, K.K. Ascencio-Aragón, Jorge.; Sebastian, N. L.; Rosalino, Vázquez-López. Artemisinin and its synthetic derivatives as a possible therapy for cancer. Med. Sci., 2018, 6(1), 19-28.
[5]
Cai, F.F.; Wu, R.; Song, Y.N.; Xiong, A.Z.; Chen, X.L.; Yang, M.D.; Yang, L.; Hu, Y.; Sun, M.Y.; Su, S.B. Yinchenhao decoction alleviates liver fibrosis by regulating bile acid metabolism and TGF-β/Smad/ERK signalling pathway. Sci. Rep., 2018, 8(1), 15367.
[http://dx.doi.org/10.1038/s41598-018-33669-4] [PMID: 30337590]
[6]
Kim, S.M.; Vetrivel, P.; Kim, H.H.; Ha, S.E.; Saralamma, V.V.G.; Kim, G.S. Artemisia iwayomogi (Dowijigi) inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppressing the NF-κB signaling pathway. Exp. Ther. Med., 2020, 19(3), 2161-2170.
[http://dx.doi.org/10.3892/etm.2020.8472] [PMID: 32104280]
[7]
Tseng, C.P.; Huang, Y.L.; Chang, Y.W.; Liao, H.R.; Chen, Y.L.; Hsieh, P.W. Polysaccharide-containing fraction from Artemisia argyi inhibits tumor cell-induced platelet aggregation by blocking interaction of podoplanin with C-type lectin-like receptor 2. J. Food Drug Anal., 2020, 28(1), 115-123.
[http://dx.doi.org/10.1016/j.jfda.2019.08.002] [PMID: 31883599]
[8]
Jiao, J.; Yang, Y.; Liu, M.; Li, J.; Cui, Y.; Yin, S.; Tao, J. Artemisinin and Artemisia annua leaves alleviate Eimeria tenella infection by facilitating apoptosis of host cells and suppressing inflammatory response. Vet. Parasitol., 2018, 254, 172-177.
[http://dx.doi.org/10.1016/j.vetpar.2018.03.017] [PMID: 29657004]
[9]
Jung, K.H.; Rumman, M.; Yan, H.; Cheon, M.J.; Choi, J.G.; Jin, X.; Park, S.; Oh, M.S.; Hong, S.S. An ethyl acetate fraction of Artemisia capillaris (ACE-63) induced apoptosis and anti-angiogenesis via inhibition of PI3K/AKT signaling in hepatocellular carcinoma. Phytother. Res., 2018, 32(10), 2034-2046.
[http://dx.doi.org/10.1002/ptr.6135] [PMID: 29972254]
[10]
Aloui, Z.; Messaoud, C.; Haoues, M.; Neffati, N.; Bassoumi Jamoussi, I.; Essafi-Benkhadir, K.; Boussaid, M.; Guizani, I.; Karoui, H. Asteraceae Artemisia campestris and Artemisia herba-alba essential oils trigger apoptosis and cell cycle arrest in Leishmania infantum promastigotes. Evid. Based Complement. Alternat. Med., 2016, 20169147096
[http://dx.doi.org/10.1155/2016/9147096] [PMID: 27807464]
[11]
Lin, Z.C.; Lee, C.W.; Tsai, M.H.; Ko, H.H.; Fang, J.Y.; Chiang, Y.C.; Liang, C.J.; Hsu, L.F.; Hu, S.C.; Yen, F.L. Eupafolin nanoparticles protect HaCaT keratinocytes from particulate matter-induced inflammation and oxidative stress. Int. J. Nanomedicine, 2016, 11, 3907-3926.
[http://dx.doi.org/10.2147/IJN.S109062] [PMID: 27570454]
[12]
Fei, X.; Wang, J.; Chen, C.; Ding, B.; Fu, X.; Chen, W.; Wang, C.; Xu, R. Eupatilin inhibits glioma proliferation, migration, and invasion by arresting cell cycle at G1/S phase and disrupting the cytoskeletal structure. Cancer Manag. Res., 2019, 11, 4781-4796.
[http://dx.doi.org/10.2147/CMAR.S207257] [PMID: 31213900]
[13]
Wang, Y.; Hou, H.; Li, M.; Yang, Y.; Sun, L. Anticancer effect of eupatilin on glioma cells through inhibition of the Notch-1 signaling pathway. Mol. Med. Rep., 2016, 13(2), 1141-1146.
[http://dx.doi.org/10.3892/mmr.2015.4671] [PMID: 26676446]
[14]
Woo, S.M.; Kwon, T.K. Jaceosidin induces apoptosis through Bax activation and down-regulation of Mcl-1 and c-FLIP expression in human renal carcinoma Caki cells. Chem. Biol. Interact., 2016, 260, 168-175.
[http://dx.doi.org/10.1016/j.cbi.2016.10.011] [PMID: 27729209]
[15]
Han, H.Y.; Joon, K.H.; Seung-Hwa, J.; Jiyeon, K.; Sung-Hee, J.; Cheon, K.G.; Dae-Seok, H.; Uk-Kyu, K.; Heon, R.M. The flavonoid jaceosidin from Artemisiaprinceps induces apoptotic cell death and inhibits the Akt pathway in oral cancer cells. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[16]
Yuan, Z.; Xu-Bin, W.; Ning, Z. Research progress in antitumor effect of natural terpenoids. World Latest Med. Infor., 2019, 19(98), 48-49.
[17]
Rabe, S.T.; Emami, S.A.; Iranshahi, M.; Rastin, M.; Tabasi, N.; Mahmoudi, M. Anti-cancer properties of a sesquiterpene lactone-bearing fraction from Artemisia khorassanica. Asian Pac. J. Cancer Prev., 2015, 16(3), 863-868.
[http://dx.doi.org/10.7314/APJCP.2015.16.3.863] [PMID: 25735374]
[18]
Noori, S.; Hassan, Z.M.; Farsam, V. Artemisinin as a Chinese medicine, selectively induces apoptosis in pancreatic tumor cell line. Chin. J. Integr. Med., 2014, 20(8), 618-623.
[http://dx.doi.org/10.1007/s11655-013-1454-2] [PMID: 23771805]
[19]
Fei, Z.; Gu, W.; Xie, R.; Su, H.; Jiang, Y. Artesunate enhances radiosensitivity of esophageal cancer cells by inhibiting the repair of DNA damage. J. Pharmacol. Sci., 2018, 138(2), 131-137.
[http://dx.doi.org/10.1016/j.jphs.2018.09.011] [PMID: 30337244]
[20]
Li, P.C.; Lam, E.; Roos, W.P.; Zdzienicka, M.Z.; Kaina, B.; Efferth, T. Artesunate derived from traditional Chinese medicine induces DNA damage and repair. Cancer Res., 2008, 68(11), 4347-4351.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2970] [PMID: 18519695]
[21]
Li, Z.; Li, Q.; Wu, J.; Wang, M.; Yu, J. Artemisinin and its derivatives as a repurposing anticancer agent: What else do we need to do? Molecules, 2016, 21(10), 1331-1359.
[http://dx.doi.org/10.3390/molecules21101331] [PMID: 27739410]
[22]
Yang, Y.; Wu, N.; Wu, Y.; Chen, H.; Qiu, J.; Qian, X.; Zeng, J.; Chiu, K.; Gao, Q.; Zhuang, J. Artesunate induces mitochondria-mediated apoptosis of human retinoblastoma cells by upregulating Kruppel-like factor 6. Cell Death Dis., 2019, 10(11), 862-874.
[http://dx.doi.org/10.1038/s41419-019-2084-1] [PMID: 31723124]
[23]
Wang, Z.; Wang, Q.; He, T.; Li, W.; Liu, Y.; Fan, Y.; Wang, Y.; Wang, Q.; Chen, J. The combination of artesunate and carboplatin exerts a synergistic anti-tumour effect on non-small cell lung cancer. Clin. Exp. Pharmacol. Physiol., 2020, 47(6), 1083-1091.
[http://dx.doi.org/10.1111/1440-1681.13287] [PMID: 32072678]
[24]
Wei, S.; Liu, L.; Chen, Z.; Yin, W.; Liu, Y.; Ouyang, Q.; Zeng, F.; Nie, Y.; Chen, T. Artesunate inhibits the mevalonate pathway and promotes glioma cell senescence. J. Cell. Mol. Med., 2020, 24(1), 276-284.
[http://dx.doi.org/10.1111/jcmm.14717] [PMID: 31746143]
[25]
Amicucci, M.J.; Nandita, E.; Galermo, A.G.; Castillo, J.J.; Chen, S.; Park, D.; Smilowitz, J.T.; German, J.B.; Mills, D.A.; Lebrilla, C.B. A nonenzymatic method for cleaving polysaccharides to yield oligosaccharides for structural analysis. Nat. Commun., 2020, 11(1), 3963.
[http://dx.doi.org/10.1038/s41467-020-17778-1] [PMID: 32770134]
[26]
Yan, L.; Xiong, C.; Xu, P.; Zhu, J.; Yang, Z.; Ren, H.; Luo, Q. Structural characterization and in vitro antitumor activity of A polysaccharide from Artemisia annua L. (Huang Huahao). Carbohydr. Polym., 2019, 213, 361-369.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.081] [PMID: 30879680]
[27]
Wang, J.; Yang, X.; Bao, A.; Liu, X.; Zeng, J.; Liu, X.; Yao, J.; Zhang, J.; Lei, Z. Microwave-assisted synthesis, structure and anti-tumor activity of selenized Artemisia sphaerocephala polysaccharide. Int. J. Biol. Macromol., 2017, 95, 1108-1118.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.101] [PMID: 27810352]
[28]
Taleghani, A.; Emami, S.A.; Tayarani-Najaran, Z. Artemisia: a promising plant for the treatment of cancer. Bioorg. Med. Chem., 2020, 28(1)115180
[http://dx.doi.org/10.1016/j.bmc.2019.115180] [PMID: 31784199]
[29]
Li, Y.; Li, M.Y.; Wang, L.; Jiang, Z.H.; Li, W.Y.; Li, H. Induction of apoptosis of cultured hepatocarcinoma cell by essential oil of Artemisia Annul L. Sichuan Da Xue Xue Bao Yi Xue Ban, 2004, 35(3), 337-339.
[PMID: 15181829]
[30]
Liu, C.Z.; Murch, S.J.; El-Demerdash, M.; Saxena, P.K. Artemisia judaica L.: micropropagation and antioxidant activity. J. Biotechnol., 2004, 110(1), 63-71.
[http://dx.doi.org/10.1016/j.jbiotec.2004.01.011] [PMID: 15099906]
[31]
Saleh, A.M.; Aljada, A.; Rizvi, S.A.; Nasr, A.; Alaskar, A.S.; Williams, J.D. In vitro cytotoxicity of Artemisia vulgaris L. essential oil is mediated by a mitochondria-dependent apoptosis in HL-60 leukemic cell line. BMC Complement. Altern. Med., 2014, 14(1), 226-240.
[http://dx.doi.org/10.1186/1472-6882-14-226] [PMID: 25002129]
[32]
Tilaoui, M.; Ait Mouse, H.; Jaafari, A.; Zyad, A. Comparative phytochemical analysis of essential oils from different biological parts of Artemisia herba alba and their cytotoxic effect on cancer cells. PLoS One, 2015, 10(7)e0131799
[http://dx.doi.org/10.1371/journal.pone.0131799] [PMID: 26196123]
[33]
Lee, R.H.; Jeon, Y.J.; Cho, J.H.; Jang, J.Y.; Kong, I.K.; Kim, S.H.; Kim, M.S.; Chung, H.J.; Oh, K.B.; Park, S.M.; Shin, J.C.; Seo, J.M.; Ko, S.; Shim, J.H.; Chae, J.I. Esculetin exerts anti-proliferative effects against non-small-cell lung carcinoma by suppressing specificity protein 1 in vitro. Gen. Physiol. Biophys., 2017, 36(1), 31-39.
[http://dx.doi.org/10.4149/gpb_2016024] [PMID: 27901471]
[34]
Kim, J.; Jung, K.H.; Yan, H.H.; Cheon, M.J.; Kang, S.; Jin, X.; Park, S.; Oh, M.S.; Hong, S.S. Artemisia Capillaris leaves inhibit cell proliferation and induce apoptosis in hepatocellular carcinoma. BMC Complement. Altern. Med., 2018, 18(1), 147-156.
[http://dx.doi.org/10.1186/s12906-018-2217-6] [PMID: 29739391]
[35]
Khan, K.; Fatima, H.; Taqi, M.M.; Zia, M.; Ur-Rehman, T.; Mirza, B.; Haq, I. Phytochemical and in vitro biological evaluation of Artemisiascoparia waldst. & kit for enhanced extraction of commercially significant bioactive compounds. J. Appl. Res. Med. Aroma., 2015, 2(3), 77-86.
[36]
Kweon, S.H.; Song, J.H.; Kim, H.J.; Kim, T.S.; Choi, B.G. Induction of human leukemia cell differentiation via PKC/MAPK pathways by arsantin, a sesquiterpene lactone from Artemisia santolina. Arch. Pharm. Res., 2015, 38(11), 2020-2028.
[http://dx.doi.org/10.1007/s12272-015-0609-4] [PMID: 25956697]
[37]
Wang, F.F.; Shi, C.; Yang, Y.; Fang, Y.; Sheng, L.; Li, N. Medicinal mushroom Phellinus igniarius induced cell apoptosis in gastric cancer SGC-7901 through a mitochondria-dependent pathway. Biomed. Pharmacother., 2018, 102, 18-25.
[http://dx.doi.org/10.1016/j.biopha.2018.03.038] [PMID: 29549725]
[38]
Han, H.Y.; Joon, K.H.; Seung-Hwa, J.; Jiyeon, K.; Cheon, K.G.; Dae-Seok, H.; Uk-Kyu, K.; Heon, R.M. The flavonoid jaceosidin from, Artemisiaprinceps,induces apoptotic cell death and inhibits the Akt pathway in Oral Cancer Cells. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[39]
Kim, E.J.; Kim, G.T.; Kim, B.M.; Lim, E.G.; Kim, S.Y.; Kim, Y.M. Apoptosis-induced effects of extract from Artemisia annua Linné by modulating PTEN/p53/PDK1/Akt/signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells. BMC Complement. Altern. Med., 2017, 17(1), 236-247.
[http://dx.doi.org/10.1186/s12906-017-1702-7] [PMID: 28454566]
[40]
Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.N.; Varoni, E.M.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res., 2018, 32(8), 1425-1449.
[http://dx.doi.org/10.1002/ptr.6087] [PMID: 29672977]
[41]
Jin, H.; Jiang, A.Y.; Wang, H.; Cao, Y.; Wu, Y.; Jiang, X.F. Dihydroartemisinin and gefitinib synergistically inhibit NSCLC cell growth and promote apoptosis via the Akt/mTOR/STAT3 pathway. Mol. Med. Rep., 2017, 16(3), 3475-3481.
[http://dx.doi.org/10.3892/mmr.2017.6989] [PMID: 28713965]
[42]
Huang, X.T.; Liu, W.; Zhou, Y.; Hao, C.X.; Zhou, Y.; Zhang, C.Y.; Sun, C.C.; Luo, Z.Q.; Tang, S.Y. Dihydroartemisinin attenuates lipopolysaccharide induced acute lung injury in mice by suppressing NF κB signaling in an Nrf2 dependent manner. Int. J. Mol. Med., 2019, 44(6), 2213-2222.
[http://dx.doi.org/10.3892/ijmm.2019.4387] [PMID: 31661121]
[43]
Zhu, L.; Chen, X.; Zhu, Y.; Qin, J.; Niu, T.; Ding, Y.; Xiao, Y.; Jiang, Y.; Liu, K.; Lu, J.; Yang, W.; Qiao, Y.; Jin, G.; Ma, J.; Dong, Z.; Zhao, J. Dihydroartemisinin inhibits the proliferation of esophageal squamous cell carcinoma partially by targeting AKT1 and p70S6K. Front. Pharmacol., 2020, 11587470
[http://dx.doi.org/10.3389/fphar.2020.587470] [PMID: 33658929]
[44]
Liu, Y.; Gao, S.; Zhu, J.; Zheng, Y.; Zhang, H.; Sun, H. Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the hedgehog signaling pathway. Cancer Med., 2018, 7(11), 5704-5715.
[http://dx.doi.org/10.1002/cam4.1827] [PMID: 30338663]
[45]
Wang, B.; Hou, D.; Liu, Q.; Wu, T.; Guo, H.; Zhang, X.; Zou, Y.; Liu, Z.; Liu, J.; Wei, J.; Gong, Y.; Shao, C. Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51. Cancer Biol. Ther., 2015, 16(10), 1548-1556.
[http://dx.doi.org/10.1080/15384047.2015.1071738] [PMID: 26176175]
[46]
Ning, W.J.; Sun, X.; Zhou, H.; Gong, Y.Q.; Chen, D.F. Dihydroartemisinin protects against dextran sulfate sodium-induced colitis in mice through inhibiting the PI3K/AKT and NF-κB signaling pathways. BioMed Res. Int., 2019, 2019, 1-12.
[47]
Polyphenols from Artemisiaannua L inhibit adhesion and eMT of highly metastatic breast cancer cells MDA-MB-231. Phytother. Res., 2016, 30(7), 1180-1188.
[http://dx.doi.org/10.1002/ptr.5626] [PMID: 27151203]
[48]
Michaelsen, F.W.; Saeed, M.E.; Schwarzkopf, J.; Efferth, T. Activity of Artemisia annua and artemisinin derivatives, in prostate carcinoma. Phytomedicine, 2015, 22(14), 1223-1231.
[http://dx.doi.org/10.1016/j.phymed.2015.11.001] [PMID: 26655404]
[49]
Meiya, Li. Fusheng, Jiang.; Xiangli, Yu.; Zhiqi, Miao. Engineering isoprenoid biosynthesis in Artemisia annua L. for the production of taxadiene, a key intermediate of taxol. BioMed Res. Int., 2015, 2015504932
[50]
Fröhlich, T.; Mai, C.; Bogautdinov, R.P.; Morozkina, S.N.; Shavva, A.G.; Friedrich, O.; Gilbert, D.F.; Tsogoeva, S.B. Synthesis of tamoxifen-artemisinin and estrogen-artemisinin hybrids highly potent against breast and prostate cancer. ChemMedChem, 2020, 15(15), 1473-1479.
[http://dx.doi.org/10.1002/cmdc.202000174] [PMID: 32374071]
[51]
Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res., 2018, 122(6), 877-902.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311401] [PMID: 29700084]
[52]
Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol., 2018, 80, 50-64.
[http://dx.doi.org/10.1016/j.semcdb.2017.05.023] [PMID: 28587975]
[53]
Shen, Y.; Zhang, B.; Su, Y.; Badshah, S.A.; Wang, X.; Li, X.; Xue, Y.; Xie, L.; Wang, Z.; Yang, Z.; Zhang, G.; Shang, P. Iron promotes dihydroartemisinin cytotoxicity via ROS production and blockade of autophagic flux via lysosomal damage in osteosarcoma. Front. Pharmacol., 2020, 11, 444-461.
[http://dx.doi.org/10.3389/fphar.2020.00444] [PMID: 32431605]
[54]
Tang, C.; Zhao, Y.; Huang, S.; Jin, Y.; Liu, J.; Luo, J.; Zheng, J.; Shi, D. Influence of Artemisia annua extract derivatives on proliferation, apoptosis and metastasis of osteosarcoma cells. Pak. J. Pharm. Sci., 2015, 28(2)(Suppl.), 773-779.
[PMID: 25796153]
[55]
Gao, X.; Luo, Z.; Xiang, T.; Wang, K.; Li, J.; Wang, P. Dihydroartemisinin induces endoplasmic reticulum stress-mediated apoptosis in HepG2 human hepatoma cells. Tumori J., 2011, 97(6), 771-780.
[http://dx.doi.org/10.1177/030089161109700615] [PMID: 22322845]
[56]
Fu, W.R.; Chen, J.L.; Li, X.Y.; Dong, J.X.; Liu, Y. Bidirectional regulatory mechanisms of jaceosidin on mitochondria function: Protective effects of the permeability transition and damage of membrane functions. J. Membr. Biol., 2020, 253(1), 25-35.
[http://dx.doi.org/10.1007/s00232-019-00102-4] [PMID: 31712855]
[57]
Wu, M.X. Effect of artemisinin combined with cisplatin intervention on epithelialmesenchymal transition, angiogenesis and ATP generation in MGC-803 gastric cancer cell lines. J. Hainan Med. Uni., 2016, 22(18), 2073-2076.
[58]
Greenshields, A.L.; Fernando, W.; Hoskin, D.W. The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells. Exp. Mol. Pathol., 2019, 107, 10-22.
[http://dx.doi.org/10.1016/j.yexmp.2019.01.006] [PMID: 30660598]
[59]
Nagaraj, N.R.; Natarajan, S.K.; Karunakaran, C. Inhibition of angiogenesis in endothelial cells by Human Lysyl oxidase propeptide. Sci. Rep., 2018, 8(1), 1-16.
[PMID: 29311619]
[60]
Verma, S.; Das, P.; Kumar, V.L. Chemoprevention by artesunate in a preclinical model of colorectal cancer involves down regulation of β-catenin, suppression of angiogenesis, cellular proliferation and induction of apoptosis. Chem. Biol. Interact., 2017, 278, 84-91.
[http://dx.doi.org/10.1016/j.cbi.2017.10.011] [PMID: 29031619]
[61]
Chen, H.; Shi, L.; Yang, X.; Li, S.; Guo, X.; Pan, L. Artesunate inhibiting angiogenesis induced by human myeloma RPMI8226 cells. Int. J. Hematol., 2010, 92(4), 587-597.
[http://dx.doi.org/10.1007/s12185-010-0697-3] [PMID: 20945119]
[62]
Chen, L.J.; Yao, L.; Jin, Q.Y.; Xie, H.; Wen-Liang, H.U. Analyzing the mechanisms related with anti-cancer of artesunate and artemisinin. Xiandai Shengwu Yixue Jinzhan, 2009, 9(08), 1428-1431.
[63]
Chen, H.H.; Zhou, H.J. Inhibitory effects of artesunate on angiogenesis. Yao Xue Xue Bao, 2004, 39(1), 29-33.
[PMID: 15127577]
[64]
Tran, K.Q.; Tin, A.S.; Firestone, G.L. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling. Anticancer Drugs, 2014, 25(3), 270-281.
[http://dx.doi.org/10.1097/CAD.0000000000000054] [PMID: 24296733]
[65]
Jia, J.; Qin, Y.; Zhang, L.; Guo, C.; Wang, Y.; Yue, X.; Qian, J. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Mol. Med. Rep., 2016, 13(5), 4461-4468.
[http://dx.doi.org/10.3892/mmr.2016.5073] [PMID: 27035431]
[66]
Chen, K.; Shou, L.M.; Lin, F.; Duan, W.M.; Wu, M.Y.; Xie, X.; Xie, Y.F.; Li, W.; Tao, M. Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells. Anticancer Drugs, 2014, 25(6), 652-662.
[http://dx.doi.org/10.1097/CAD.0000000000000089] [PMID: 24518199]
[67]
Gaschler, M.M.; Andia, A.A.; Liu, H.; Csuka, J.M.; Hurlocker, B.; Vaiana, C.A.; Heindel, D.W.; Zuckerman, D.S.; Bos, P.H.; Reznik, E.; Ye, L.F.; Tyurina, Y.Y.; Lin, A.J.; Shchepinov, M.S.; Chan, A.Y.; Peguero-Pereira, E.; Fomich, M.A.; Daniels, J.D.; Bekish, A.V.; Shmanai, V.V.; Kagan, V.E.; Mahal, L.K.; Woerpel, K.A.; Stockwell, B.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol., 2018, 14(5), 507-515.
[http://dx.doi.org/10.1038/s41589-018-0031-6] [PMID: 29610484]
[68]
Wang, N.; Zeng, G.Z.; Yin, J.L.; Bian, Z.X. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt’s Lymphoma. Biochem. Biophys. Res. Commun., 2019, 519(3), 533-539.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.023] [PMID: 31537387]
[69]
Du, J.; Wang, T.T. Li, Y. C.; Zhou, Y.; Wang, X.; Yu, X.X.; Ren, X. Y.; An, Y.H.; Wu, Y.; Sun, W.D.; Fan, W. M.; Zhu, Q.J.; Wang Y.; Tong, X. M. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic. Biol. Med., 2019, 131, 356-369.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.011]
[70]
Huang, T.H.; Xian-Ming, L.U.; Chen, S.L. Pharmacodynamics Research and safety evaluation of the Folk Herb-Artemisia japonica Thumb. J. Chengdu Univ. Tradit. Chin. Med., 2010, 33(002), 77-79.
[71]
Azeguli, H.; Xia, L.; Wei, X.; Li, J. Effects of Artemisiaabsinthium L. extracts on the maturation and function of dendritic cells. Chin. J. Microbiol. Immunol., 2018, 38(9), 673-682.
[72]
Wei, X., ; Xia, L., ; Ziyayiding, D., ; Chen, Q., ; Liu, R., ; Xu, X., ; Li, J., The extracts of Artemisia absinthium L. suppress the growth of hepatocellular carcinoma cells through induction of apoptosis via endoplasmic reticulum stress and mitochondrial-dependent pathway. Molecules 2019, 24(5), 913-929.
[http://dx.doi.org/10.3390/molecules24050913] [PMID: 30841648]

© 2024 Bentham Science Publishers | Privacy Policy